
Modular MPI Components and the Composition of Grid Applications

J.Y.Cotronis
Dept. of Informatics and Communications, Univ. of Athens, Panepistimiopolis, 157 84, Greece

cotronis@di.uoa.gr Tel. + 301 7275223 Fax + 301 7275214

Abstract
The Ensemble methodology supports the design and
implementation of message passing applications,
particularly MPMD and those demanding irregular or
partially regular process topologies. In Ensemble
applications are built by composition of modular
message passing components. We outline the Ensemble
Software Architecture (ESA) and give an overview of
the concepts and its supporting tools. We present
extensions of ensemble components for composing Grid
applications and outline their transformation to pure
MPI executables and their execution on MPICH-G2.
We demonstrate by building two simple applications,
one SPMD and one MPMD where the former SPMD
code is reused.

1. Introduction

We have developed the Ensemble methodology
[1,2,3,4] for designing and building message passing
(MP) applications based on modular MP components
and composition. We have developed tools for
designing and implementing components, designing
topologies, specifying allocation resources and
generating composition directives. These tools
comprise the Ensemble Software Architecture (ESA),
which has been developed on top of PVM [8] and
MPI [10,11], the two most popular APIs. In addition
to the general benefits of modular design, Ensemble
overcomes three design and implementation
difficulties.

The first is that implementation of MP applications
does not only depend on the application design, but
also on the target MP API, mainly because of the
process model each API adopts. Some process
topologies are easier to establish than others on
specific APIs. For example, it is easy to create tree
topologies (regular or irregular) in PVM and regular
ring or grid topologies in MPI, but more difficult the
other way round. Topologies not well suited to an
API may certainly be created, but require specialized
programming. Ensemble hides these idiosyncrasies of

APIs and implementations maintain the original
design.

The second difficulty is that APIs favour regular
topologies and do not adequately support irregular or
partially regular ones. Irregular topologies may be
derived either from irregular domain decomposition
and/or from functional decomposition [5]. They may
give better performance, but they are much more
difficult to design and implement than regular SPMD
designs, which is the “favourite” model. In SPMD all
processes are spawned from the same executable, but
it is also implicitly assumed that they form regular
topologies, usually a two dimensional mesh. Process
topologies are established by implicit communication
channels, expressed by symmetric calls of send and
receive operations. For regular topologies the
designer develops topology functions, which given a
process identifier (e.g. rank) they return the
identifiers of its communicating processes. These
functions are usually parameterised to return the
identifiers of processes in any size of the regular
topology. For topologies, which are not SPMD and
not globally regular but only locally or even
altogether irregular, general functions cannot be
derived and consequently ad hoc programming
methods are used. Ensemble provides support for
designing and implementing such applications.

The third difficulty is that modularity of MP
components is limited [5]. The task a designer of a
message passing program faces is to express in a
source program P the interactions of all processes,
which will be spawned from the executable of P, in
all possible positions in the topology and for any size
of the topology. Modularity is limited by the use of
specific process identifiers (e.g. rank) or topology
functions in send or receive calls, which presuppose a
specific regular topology. Ensemble supports the
design and implementation of modular MP
components, which may be used in any topology,
whether regular, partially regular or irregular.

In this paper we extend Ensemble to enable
implementations to run on Grids [6] and particularly
on MPICH-G2 [7,12]. We use the Globus RSL [9]
language for application composition. Grids impose
additional requirements for program modularity, since

cotronis
Accepted and presented in
Euromicro Parallel, Distributed and Network Processing PDP 2002

applications may share components developed by
different teams. An application may still be required
to run independently, possibly as an SPMD, but it
may be also required to co-operate with other
applications, running together as MPMD. Such
applications cannot in general be implemented in
MPICH for two inter-related reasons a) the mpirun
command may spawn processes from different
executables, but the same command line arguments
are passed to all of them, and b) MPI standard
specifies that the developer should not assume a
specific order for rank creation. Consequently, in an
MPMD program, processes may find their rank, but
they cannot even determine their neighbours.
Previous Ensemble implementations support the
design and development of MPMD programs under
the assumption that process ranks are given in the
order of their appearance in the process group file. In
the grid implementation we have alleviated this
assumption as the Globus RSL language permits each
process to have its own command line arguments.

Previous Ensemble implementations were trying to
abstract from particular APIs (PVM, MPI) and
consequently program components could only use a
limited semantically common subset of routines (e.g.
send, receive, broadcast). In this paper we define MPI
modular components and their composition
supporting all point-point as well as collective MPI
communication.

The structure of the paper is as follows: In section
2, we overview ESA; in section 3 we present the
Ensemble MPI modular components and their
transparent transformation to pure MPI sources and
executables; in section 4 we outline topology design
of two applications; in section 5 we present the
generation of RSL composition scripts and the
execution of applications; finally in section 6 we
present our conclusions and plans for future work.

2. Ensemble Overview

Ensemble specifies a software architecture
common for all MP applications in any API (figure
1). Differences in APIs are hidden in the ESA tools.
The Ensemble software architecture (ESA) is divided
in two layers: the Abstract Design and
Implementation (AD&I), which is the responsibility
of the programmer and the Architecture Specific
Implementation (ASI), in this case MPICH, which is
generated from the AD&I and is transparent to the
developer. In the AD&I the programmer develops a
complete, but abstract MP implementation, which is
transformed into an ASI on the target execution
environment (cluster, MPP or Grid).

2.1 Abstract Design and Implementation

The AD&I consists of three well-separated
implementation parts. Two of them, namely the
virtual components and the symbolic application
topology are independent of the execution
environment. The third one, the resource allocation is
the bridge between the AD&I and the execution
environment.

2.1.1 Virtual Components. A virtual component is
an implementation abstraction of a MP program and
consists of three attributes: the envelope, the
arguments and the source code.

The first attribute, the envelope, is an abstraction
of envelope related data in MPI calls. The envelope
specifies abstract names for contexts that a
component uses and within them abstract roots for
collective calls and abstract point-point interaction.
For point-point communication, ports are introduced,
which is an abstraction of the envelope triplet
(context, rank, message tag). Virtual ports with the
same semantics are treated as an array of ports
(MultiPort). The virtual envelop reflects the fact that
MPI calls use four argument types, which determine
envelopes; Context (communicator) and within it
Ranks, Message Tags, and Roots (Rank). All four are
specified in a component’s virtual envelope.

The second component attribute, the arguments,
correspond to command line arguments passed upon
process spawning; they are distinguished in
application and topology arguments. Application
arguments are determined by the application
requirements (e.g. I/O data files) and topology
arguments (usually integers) determined by the
distributed algorithms requirements, which reflect
some measure of the topology (e.g. size of a ring
topology). They are distinguished for semantic
reasons.

Finally, the third attribute is the MPI source code
in C. This code looks like an MPI program with one
exception. All envelope-related arguments in MPI
communication and synchronization calls refer to the
virtual envelope. All other arguments have the usual
bindings. For point-point communications the code
refers to envelope ports.

Virtual Components are the heart of the Ensemble
methodology. At compile time (pre-processing) all
virtual envelop names are replaced by appropriate
MPI envelop bindings and at process spawn time
envelope are given actual values for Contexts, ranks,
message tags and roots. A component may for
example specify a virtual group (virtual context). All
processes eventually spawned from this component
must belong to some group (context). The actual

group is not known at compile time, but will be
determined at run time by appropriate command line
arguments. The group may involve processes
spawned from the same component (SPMD) or from
different components (MPMD). Also processes
spawned from the same component may belong to
different groups, all having the same virtual context,
but associated with different actual contexts.

2.1.2 The Symbolic Topology. It is an abstraction of
a process topology, which specifies the number of
processes required from each component, each
process’s interface and its interaction with other
processes. For each process the programmer specifies
its actual envelope in a symbolic form. If the
envelope specifies a group, then it is associated with
a symbolic name. All processes associated with the
same symbolic name will belong to the same group.
For point-point communication AD&I resembles the
task/channel model [5], but in a two-step manner:
step one, within component code (task to port); and
step 2 specified in the topology (port-port binding)
outside processes. In a way we have extended the

task/channel model for collective communications.
Virtual groups are defined within components, which
are associated with symbolic names in the topology.

2.1.3 Resource Allocation. The Ensemble design
obtained in the first two parts is abstract. On the one
hand it is independent of any execution environment,
but on the other it other cannot “run” as it is. In
AD&I we also specify the mapping of processes, as
well as the location of source and executable files,
input and output files in the execution environment.

Ensemble Design & Implementation

 Virtual
Components

 Symbolic
Topology

 Envelope
Contexts
MultiPorts-ports
Roots

 Processes
Instantiation
Interface
Top- Args

Interaction
Groups
Point-Point
Roots

 Arguments
Topology
 (Top-Args)
Application

 (Appl-Args)

Resource
Allocation

 Source Code
MPI Code with

macros
referring to
Envelope
names

Mapping
Appl-Args
Location of

sources and
executables

A
bs

tr
ac

t D
es

ig
n&

Im
pl

em
en

ta
tio

n
(A

D
&

I)

Generation of
MPI Source Codes

and Make files
Composition

Script

Binaries procgroup or RSL

A
rc

h.
+.

M
PI

Im

pl
em

en
ta

tio
n

Mpirun
 EXECUTION ENVIRONMENT

Fig. 1: The Ensemble Software Architecture

2.2 Architecture Specific MPI Implementation

An architecture specific MPI implementation is
transparently generated from an AD&I. It comprises
of pure MPI sources (together with make files) and a
composition script. MPI source files are generated
from Ensemble components, which are compiled into
modular MPI components. For single domain systems
(e.g. clusters or MPPs) the composition script is in
procgroup format is used and for Grids in a Globus
RSL format. Each line of procgroup or each job
request in RSL specifies the spawning of a single
process, as each process has distinct arguments
determining its communication bindings (actual
point-point and collective communications).

In the sequel we demonstrate the development of
applications by the Ensemble Methodology. We
develop two solutions to a simple problem: There are
processes, called terminal, which get an integer
argument and require the maximum.

We describe the AD&I which is the programmer’s
responsibility and outline the generation and
execution of “pure” MPI programs. The first
implementation is an SPMD program of terminal
processes. The second is an MPMD, in which
terminal processes are grouped with server processes;
servers find the local minimum within their group and
cooperate (in a ring fashion) to find max which then
broadcast to their terminals.

In the next section we develop the two Ensemble
components (terminal and server) and outline their
transformation into MPI code. In section 4 we design
the two implementations using these two components.
In section 5 we follow their composition and
execution.

3. Developing Modular Components

We develop virtual components for terminal and
server and outline their transformation into “pure”
MPI executables.

3.1. The Virtual Components

We specify their envelope, arguments and code for
terminal and server.

3.1.1 Terminal Component. Terminal processes get
their integer argument, and then call MPI_Reduce
with MPI_MAX specifying a context and a reduction
root. Finally they call MPI_Bcast by which the root
broadcasts the maximum. The virtual envelope is

Virtual Envelope of Terminal Component
Context1: LocalGroup /* context for group ops */
 Root1: CalcRoot /* calculates Max */

Terminal has only one application argument,

namely int-val its integer and no topology arguments.
Arguments of Terminal Component

Appl-Arg: int-val /* the integer argument */

The terminal code calls a procedure SetEnvArgs

immediately after MPI_Init which must be considered
as important. SetEnvArgs parses binding
communication data in argv and assigns values to
envelope data. ParseArg is a utility function, which
selects in command line arguments (argv) a value
preceded (indexed) by “int-val”, the name of the
application argument and puts its value in variable
Val. The code uses MPI Reduce and Broadcast
routines, but envelop parameters for Root and
Communicator are refer to virtual envelope names,
i.e. CalcRoot and LocalGroup by a macro
ENVRoot(CalcRoot, LocalGroup).

Code of Terminal Component
main (int argc, char **argv)
{ Int GlobalMax, Val;
 MPI_Init (&argc, &argv)
 SetEnvArgs(&argc, &argv); /* set envelop */
 ParseArg(int-val, Val); /* parse argument*/
 MPI_Reduce(&Val,&Max,1,MPI_INT,MPI_MAX,

ENVRoot(CalcRoot,LocalGroup)); /*find Max*/
 MPI_Bcast(&GlobalMax,1, MPI_INT,

ENVRoot(CalcRoot,LocalGroup)); /*bcast Max */
MPI_Finalize (); }

The actual Communicator and the actual rank of
the Root executing the reduction and broadcast are
not specified. This code generally specifies that a root
process CalcRoot in a group LocalGroup will reduce
Max and will broadcast it to the other processes in the
group. The actual group and the actual root will be
specified in the Topology part of the application,
outside the components themselves. Each process will
be passed appropriate arguments for constructing the
communicator and the rank of the root. In the SPMD
solution, the all-terminal solution, all terminals will

be in the same group, and one of them will make the
reduction (it could be any of them, which one will be
determined in the topology). In the MPMD solution
the terminals will be organized in different groups,
each having a server as the reduction root.

3.1.2 Server Component. Server processes parse
their Rsize (Ring size) argument, and then call
MPI_Reduce with MPI_MAX within TerminalGroup
and find the local Maximum. Within ServerGroup,
they repeatedly send their current max to Out port,
receive a value from In port and if greater than max
keeps it as max. Finally they call MPI_Bcast by
which the root sends the maximum to all processes of
TerminalGroup. Its virtual envelope is

Virtual envelope of Server Component
Context1: TerminalGroup /* terminals and server */
 Root1: CalcRoot /*calculates Local Max */
Context2: ServerGroup /* context of Servers*/
 Port1: Out[1..1]/* output port */
 Port2: In[1..1] /* input port */

The range 1..1 denotes that there is exactly one

port for Out and one for In.
Server has only one topology argument, the size of

the server ring.
Arguments of Server Component

Top-Arg: RingSize /* the size of server ring */

In server code we have used MPI routines with the

same bindings as MPI routines, except where
communication processes or groups are required, in
which case they refer to Virtual envelope names for
contexts, roots and ports.

All envelop arguments of point-point
communication (Rank, Message Tag, Communicator)
refer to virtual envelope names by a macro i.e.
ENVPort(Out, 1, Servers). This macro denotes that a
message is to be sent to port 1 (here the only one) of
Multiport Out within the Servers group. There is a
third macro ENVComm(VComm), which does not
appear in terminal or server implementations and
refers to the communicator of a context, which may
be used in other MPI calls (probe, wait, etc.). With
these three simple macros MPI code may refer to
virtual envelope names and by expansion generate
appropriate MPI bindings. Macros ENVPort and
ENVRoot rely on the consecutive appearance of
envelope related arguments in MPI calls (Root and
Communicator) and (Rank, Message Tag and
Communicator). We have experimented with other
macros, but these proved the most simple and
convenient. We believe that such code is
straightforward to develop and does not deviate much
from pure MPI calls.

Virtual Code of Server Component

main (int argc, char **argv)
{ Int Max, Temp, d=INT_MIN, Rsize, I;
 MPI_Status status;

 MPI_Init (&argc, &argv);
 SetEnvArgs(&argc, &argv);
 ParseArg(RingSize, Rsize);

 MPI_Reduce(&d, &Max, 1, MPI_INT, MPI_MAX,

ENVRoot(CalcRoot,TerminalGroup));

 For (I=1; I<Rsize; I++) {/* Rsize –1 cycles */
 MPI_Send(&Max, 1, MPI_INT,

ENVPort(Out,1,Servers));
 MPI_Recv(&Temp, 1, MPI_INT,

ENVPort(In,1,Servers), status);
 If (Max < Temp) then Max=Temp;};/* end loop */

 MPI_Bcast(&Max, 1, MPI_INT,

ENVRoot(CalcRoot, TerminalGroup));
 MPI_Finalize (); }

We note, that the code does not use functions for

determining the next ((Rank+1) mod Rsize) and
previous ((Rank-1) mod Rsize) neighbours using the
process rank, which is a technique applicable for
regular topologies. Although, this practice is not
prohibited in Ensemble (it couldn’t be anyway) it is
not recommended as it restricts modular designs. For
example, server processes could not be connected in
disjoint ring topologies, which is possible in the
above with the appropriate bindings for Out[1] and
In[1] ports.

3.2 Generation of pure MPI code

From the Virtual Envelope and Code of
components we generate pure MPI executables. A
central element in this transformation is a structure
called EnvArgs. The Virtual Component Code is
wrapped by the declaration of EnvArgs and
SetEnvArgs. EnvArgs is used for storing the actual
MPI envelope data required by each process. Its top
down declaration is shown in table 1. EnvArgs is an
array, each element of which stores envelope data of
one context (communicator). NrContexts is the
number of contexts, as specified in the Virtual
Envelope of a component. Each context element
keeps envelope data for its Communicator and
Process Rank, as well as for its Roots (namely ranks)
and MultiPorts (a port is a pair rank and message tag)
in two arrays. Procedure SetEnvArgs, which is called
in each process after MPI_Init, parses appropriate

argv values and performs the assignments to EnvArgs
fields.

Table 1: Declaration of Structure EnvArgs

Context EnvArgs[NrContexts];
typedef struct
{ MPI_Comm ActualComm;

int MyRank;
int NrMPorts;
MPortType MPorts[GlNrMPorts+1];
int NrRoots;
RootType Roots[GlNrRoots+1];

} Context;
typedef struct
{ int NrPorts;

PortType Ports[GlNrPorts+1];
} MPortType;
typedef struct

int Rank;
int MessageTag;

} PortType;
typedef struct{int Root;} RootType;

The Virtual Code is also wrapped by macro

definitions for ENVRoot, ENVPort and ENVComm
and constant definitions by which MPI virtual
routines are transformed to pure MPI routines, with
proper envelop bindings to the elements of EnvArgs.
For example the reduce call in the terminal source
MPI_Reduce(&Val, &Max, 1, MPI_INT, MPI_MAX,

ENVRoot(CalcRoot, LocalGroup));
expands to
MPI_Reduce(&Val, &Max, 1, MPI_INT, MPI_MAX,

EnvArgs[1].Roots[0].Root),
EnvArgs[1].ActualComm);
Where EnvArgs[1] denotes the Context of

LocalGroup and Roots[0] the CalcRoot.
Ensemble components are now transformed into

pure MPI code and all calls have their proper
bindings.

An important consideration is performance. The
only overhead imposed to the execution of the
generated code is the execution of SetEnvArgs, which
is negligible. We took care so that MPI calls do not
have any run time overhead; although the number of
Roots and MultiPorts are in general different in each
Context, we have used an array (bounded by the
highest value of number of Roots and MultiPorts,
respectively in all contexts of a component) rather
than using a dynamic structure, which would not
“waste” memory space. The reason for not using a
dynamic structure is that during execution time each
communication call would need one or two indirect
memory accesses, which would reduce application
performance. Using arrays all envelope-related data is
bound at compile time. The “wasted” space is
insignificant. The true value of Roots and MultiPorts
in each Context and the true value of Ports in each

MultiPort are stored in NrRoots, NrMultiPorts and
NrPorts respectively.

We have also defined (not shown here) a structure
called SymbolicName for keeping all symbolic
process names for processes used in the AD&I (e.g.
terminal[1]); these names may be used in printf
statements for symbolic program tracing and
debugging.

4. Designing Symbolic Application
Topologies

Having developed terminal and server components
we proceed with developing application topologies.

4.1 All Terminals AD&I

In this design (fig. 2) we depict six processes from
component terminal. All terminals belong to the same
group and one is assigned to be the root. We associate
their virtual LocalGroup with the symbolic group
name TermG.

Fig. 2: Six terminal processes in TermG

4.2 Terminal Servers AD&I

In the second design (fig. 3) we use three server
processes. Server terminal groups are of different
sizes. Server[1] is grouped together with terminal[1]
by associating TerminalGroup of server[1] and
LocalGroup of terminal[1] with symbolic group name
TG1. Similarly server[2] is grouped with terminal[2]
and terminal[3] by associating TerminalGroup of
server[2] and LocalGroup of terminal[2] and terminal
[3] with symbolic group name TG2. Finally server[3]
is grouped with terminal[4], terminal[5] and
terminal[6] by associating TerminalGroup of
server[3] and LocalGroup of terminal[4], terminal[5]
and terminal[6] with TG3. Furthermore, server

processes are grouped together by associating their
ServerGroup with symbolic name Servers.

Fig. 3: Six terminals and three servers in groups

This design is depicted in figure 4 as a screen

dump of our design tool, called Graphical Ensemble
Tool (GrEnT), which supports Ensemble AD&I
Design and the generation of composition scripts.

Fig 4.: GrEnT design for Terminals and Servers

In the screen dump we see on the top the two

components, terminal and server. The virtual
envelope and argument of the marked server are
displayed. In the middle left panel the names of the
six terminals and three servers are displayed
(server[3] is selected). In the large window in the
middle the interface of the selected server[3] are
displayed. In the bottom left the symbolic group
names in which server[3] belongs and a list with the
other members in the TG3 group. Finally, in the large
window in the bottom, the server ring point-point
connections are displayed.

5. Composition Script and Application
Execution

The RSL composition script is produced from
AD&I by generating one request for each process,
specifying the machine on which the executable will
be spawned, the environment, the default directory,
the executable and of course the arguments. The
request for terminal[1] of the all terminal design is

(&(resourceManagerContact="gtest1.di.uoa.gr")
(count=1)
(label="subjob 0")
(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0))
(arguments=1 terminal 1 1 0 MPI_WORLD 0 0 1

TermG 0 1 1 terminal 1 int-val 134)
(directory="/home/Ensemble1")
(executable="terminal")

)

The argument list, which is processed by
SetEnvArgs to set EnvArgs requires more detailed
explanation.

5.1 The Arguments

The first argument of each process is an integer,
internally generated, uniquely identifying the process.
We use these ids to define point-point communication
and roots. SetEnvArgs replaces ids with ranks (see
5.2). The second and third are symbolic name and
index in AD&I. Then an integer indicates how many
splits of MPI_WORLD_COMM will be performed. In
the all terminal design, only one split corresponding
to the construction of LocalGroup. Then envelope
information for MPI_COMM_WORLD follows
(always present). By convention we associate with it
color 0 and symbolic name MPI_World; there are no
Multiports and no Roots in this context. Then
information for the first (and last in this case) split
follows; the color (1) and the symbolic group name
used in AD&I (TermG). According to MPI all
processes in a group must call split routine. The
number of Multiports follows, in this case 0, and the
number of roots, in this case 1. Then envelope data
for the root, its unique id, and symbolic name
(terminal[1]). The arguments that follow are
processed by ParseArgs and are pairs of virtual
argument names and values.

Most terminal arguments are the same. The
differences are in their unique identification (id and
symbolic names) and the value of the integer. This is
a simple SPMD design and the advantages cannot yet
be demonstrated, except that the reduction root can be
externally selected and not fixed in the code.

In the terminal server design the Ensemble
advantages become apparent. There are significant
differences in the arguments of terminals. As the six

terminal processes are grouped in three disjoint
groups, namely TG1, TG2 and TG3, a different color
is used in each case; also each group has a different
root. TG1 is associated with color 1 and its root is
id=7 (server[1]), which also is part of TG1. Similarly,
TG2 is associated with color 2 and its root is id=8
(server[2]), which is also part of TG2. Similarly for
TG3. The three groups are created by the same
collective split calls, as groups are disjoint.

Server processes participate in another group with
color 4 and symbolic name “Servers”. Terminal
processes do not participate in it and are given –1 as
split color. If color > 0 the process will be a member
of the group of the constructed communicator. If
color < 0 split routine is called with MPI color set to
MPI_UNDEFINED returning MPI_COMM_NULL.
In the former case the communicator is stored in array
EnvPars, whilst in the latter it is ignored. The context
associated with Servers has two Multiports each
having one port. Information follows for each port
(id, symbolic name and message tag). There are no
roots in Context servers. Finally, argument tag
RingSize and value 3 completes the argument list of
server processes.

Let us point out that by passing a different set of
arguments to processes terminal and servers they may
be grouped into different configurations. Terminal[1]
for example would join TG2 by changing the
arguments for color to 2, symbolic name to TG2 and
its root info to id=8 (server[2]). No changes to the
arguments of the other processes are required.

5.2 From Ensemble ids to MPI ranks

In describing the argument list of processes we
have also described most of the processing of routine
SetEnvArgs (parsing argv, splitting groups and
assigning values to EnvArgs). We have left out the
transformation of unique integer process ids, which
are Ensemble internal identifiers, to MPI rank
identifiers. Ids are absolute unique identifiers known
before process spawning; ranks on the other hand are
not known before process spawning and are unique
within a communicator. Therefore, we must translate
ids of ports and roots to their rank within their
appropriate communicator. The following code
extract of SetEnvArgs constructs two arrays
Ranks2Ids and Ids2Ranks, for each new context (field
ActualComm of EnvArgs indexed by
CurrentContext). Array Ranks2Ids associates ranks to
ids of processes in the group (Size is the number of
processes in the group) and is constructed by
MPI_Allgather. Array Ids2Ranks is obtained by
inverting Ranks2Ids and associates Ids to Ranks. It
has WS+1 elements, as ids start from 1, where WS is

the number of processes in MPI_COMM_WORLD.
Elements of Ids2Ranks corresponding to ids not
participating in the group are set to –1.

int *Ranks2Ids, *Ids2Ranks, I;

Ranks2Ids=(int*)malloc(Size*sizeof(int));
Ids2Ranks=(int*)malloc((WS+1)*sizeof(int));

MPI_Allgather(&id,1, MPI_INT, Ranks2Ids, 1,
MPI_INT,
EnvArgs(CurrentContext).ActualComm);

for (I=0; I<=WS; I++) Ids2Ranks[I]=-1;
for (I=0; I<Size; I++)

Ids2Ranks[Ranks2Ids[I]]=I;

The rank of a port or root is obtained from its id by

Ids2Ranks[id] and stored in the appropriate elements
of EnvArgs. Upon completion of the SetEnvArg
routine, all MPI envelope-related data required in
executables is in the appropriate elements of
EnvArgs. By calling “mpirun –globusrsl composition-
script.rsl” applications are spawned.

6. Conclusions

We presented two fundamental extensions of
Ensemble Methodology. The first is that Virtual
Component Code supports all communication MPI
routines and it is very close to MPI pure code, apart
from the call of SetEnvArgs routine and the use of
macros instead of envelope related expressions in
MPI calls. Pre-processing expands macros and the
envelop arguments get their appropriate bindings to
EnvArgs elements. The second extension is its
implementation on top of MPICH-G2.

Modular components and their co-operation is a
fundamental requirement in Grid computing. We have
demonstrated Ensemble Grid programming by two
designs of a simple problem. The all-terminal design
is a regular SPMD application where Ensemble does
not offer any significant advantages. The terminal
server design however, is a challenging design and
demonstrates how modular components used in
SPMD (terminals), may co-ordinate with other
modular components (servers) in MPMD without any
code modifications. Terminals and servers may be
grouped in any configuration by appropriate
arguments. With current programming techniques
each configuration would require source code
modification.

Plans for future work are re-designing real SPMD
programs as modular components and use them in
MPMD Grid applications. Until now we have only
experimented with small demonstrating programs,
which show the feasibility of complex MPMD
compositions, but do not solve real problems.

We will also explore the relation between
component generality and modularity. If for example
in the terminal code, the two collective calls Reduce
and Broadcast were replaced by All_Reduce the code
could not be re-used in the second design. The server
and terminal design relied on the separation of the
two collective calls, so that between the two calls
servers compute the max. Generality built within code
influences component modularity.

Finally, we plan to extend GrEnT to design
parameterised symbolic topologies and to manage
underlying grids.

Acknowledgment. This work has been partially
supported by the Special Account for Research of the
University of Athens.

7. References

1. Cotronis, J.Y. (1996) Efficient Composition and Automatic
Initialisation of Arbitrarily Structured PVM Programs, in
Proc. of 1st IFIP International Workshop on Parallel and
Distributed Software Engineering, Berlin, 74-85, Chapman
& Hall.

2. Cotronis, J.Y. (1996) Efficient Program Composition on
Parix by the Ensemble Methodology, in Proc. of Euromicro
Conference’96, Prague, IEEE Computer Society Press.

3. Cotronis, J.Y.:(1997) Message Passing Program Development
by Ensemble, Proc. PVM/MPI’97, LNCS 1332, 242-249,
Springer.

4. Cotronis, J.Y. (1998) Developing Message Passing
Applications on MPICH under Ensemble, in Proc. of
PVM/MPI’98, LNCS 1497, 145-152, Springer.

5. Foster, I. (1995) Designing and Building Parallel Programs,
Addison-Wesley Publishing Company, ISBN 0-201-57594-9.

6. Foster, I., Kesselman, C (eds.) The Grid, Blueprint for the
New Computing Infrastructure, Morgan Kaufmann, 1999.

7. Foster, I., Geisler, J, Gropp, W, Karonis, N., Lusk, E.,
Thiruvathukal, G., and Tuecke S.: Wide-Area
Implementation of the Message Passing Interface, Parallel
Computing, 24(12):1735-1749, 1998.

8. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.
and Sunderam, V. (1994) PVM 3 User's guide and Reference
Manual, ORNL/TM--12187.

9. Globus Quick Start Guide, Globus Software version 1.1.3 and
1.1.4, February 2001. www.globus.org

10. Gropp, W. and Lusk, E. (1999) User's Guide for mpich, a
Portable Implementation of MPI, ANL/MCS-TM-ANL-96/6
Rev B

11. Message Passing Interface Forum (1994) MPI: A Message
Passing Interface Standard.

12. MPICH-G2, http://www.hpclab.niu.edu/mpi/g2_body.html

