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Abstract 

Coupling grid applications developed by different 
teams requires code modification and high S/W engineer-
ing effort. In the Ensemble methodology message passing 
components are developed separately as independent 
modules, and applications, whether regular, irregular, 
SPMD or MPMD, are composed from these modular 
components, without any code modification. We demon-
strate by developing two downsized atmospheric and 
ocean components, which may run on their own or cou-
pled together (climate model) in any configuration de-
pending on geography or other design issues. 

1 Introduction 

In the Ensemble methodology [2,3,4] message passing 
(MP) applications are designed and built by composing 
modular MP components. We have developed tools for a) 
designing and implementing MP components, b) for 
specifying composition directives for MP applications and 
c) for actually composing applications from components. 

The Ensemble tools have been developed on top of the 
most popular MP APIs, PVM [9] and MPI [12] (MPICH 
[11]). The composed MP applications are pure PVM or 
MPI programs, relying only on the APIs themselves and 
do not use any external environment for process commu-
nication. Consequently, Ensemble does not modify the 
capabilities of MP APIs and does not interfere with appli-
cation communication. In this paper we concentrate on 
composing MPI applications, but the interested reader 
may refer to [5] for composing PVM applications. 

The contribution of Ensemble is that it reduces soft-
ware engineering (SE) costs when compared to imple-
menting applications directly on MPI, except possibly in 
the case of regular SPMD applications. Of course SPMD 
is presently the most popular programming style, mainly 
due to its simplicity. However, Grids [7] impose new re-
quirements concerning program modularity, since applica-
tions (possibly regular SPMD) may need to be coupled 
with other applications developed by different teams. An 
application may still be required to run independently, 
possibly as an SPMD (e.g. atmospheric model), or to be 
coupled with other applications (e.g. ocean model) run-

ning together as MPMD (e.g. climate model). Even regu-
lar SPMD applications need substantial code modification 
to be coupled with other applications. Usually, different 
code modifications are necessary for different application 
configurations. For example, the climate model may be 
used to model the global earth climate or the more local 
El-Ninio phenomenon (different geography). We may also 
need to couple only the atmospheric and ocean model and 
later add land and hydrology models. Code modifications 
required in each case make single code maintenance of 
individual applications (e.g. atmospheric, ocean) a diffi-
cult task. 

Ensemble aims to reduce the SE costs incurring in 
composing application configurations and in maintaining 
a single code for each of the components involved. Appli-
cations may either be SPMD or MPMD and either regular 
or irregular. Components are developed separately as in-
dependent MP programs specifying local and global 
communication abstractly (like “formal communication 
parameters”). Modular processes spawned from any of the 
modular components may communicate (by point-to-point 
or collectively) with other modular processes, not neces-
sarily spawned from the same component. Applications 
are composed from modular processes specifying for each 
process its actual local and collective communications 
(like “actual communication parameters”). In Ensemble, 
irregular MPMD applications are naturally supported and 
regular SPMD applications are just a special case. 

The structure of the paper is as follows: in section 2 we 
present the requirements for downsized atmospheric, 
ocean and climate models in a Grid environment; in sec-
tion 3 we discuss the SE costs when applications are di-
rectly programmed in MPI; in section 4 we present En-
semble modular MPI components, demonstrating the 
principles by the downsized atmospheric and ocean mod-
els; in 5 we outline the composition of applications; and 
finally in section 6 we present our conclusions and plans 
for future work. 

2. Downsized atmospheric, ocean and climate 
models 

We set the following requirements for the downsized 
Atmospheric (atm), Ocean (ocn) and Climate Models. 



1. The atm and ocn models may be run on their own. 
2. The two models may be also coupled with each other 

or even with others (e.g. Land, Hydrology). Any cou-
pling configuration should be possible according to 
actual geography (over ocean or land). 

3. In the atm the data is just one three-dimensional array 
A(na,ma,la). 
a.  Process Topology is a regular two-

dimensional mesh of processes obtained from 
the decomposition of array A in the x, y di-
mensions (no reason for irregular topology, as 
there are no natural boundaries in atmosphere).  

b. Processes exchange halo rows and columns 
with N, S and E, W neighbors respectively; 
they compute new values; repeat until conver-
gence. 

4. In the ocn model the data is also one three-
dimensional array S(ns,ms,ls) in 2-dimensional do-
main decomposition in x, y dimensions. 
a. Process Topology is a two-dimensional (possi-

bly ragged) mesh, depending on geography 
(same is true for Land model). Ocean and 
Land processes may be interlaced, according 
to the modeled earth surface. Each process op-
erates on a rectangular partition of array S in 
the x and y dimensions. 

b. Processes exchange halo rows and columns 
with N, S and E, W neighbors respectively; 
they compute new values; repeat until conver-
gence. 

5. In case atm and ocn are coupled together 
a. The x, y planes of arrays A (lowest plane of 

atmosphere) and S (highest plane of ocean) are 
exchanged replacing corresponding values in 
A and S. 

b. Depending on geography some atm processes 
may not be coupled with ocn processes (they 
execute as if model executes on its own). 

c. One atm process may be coupled with a num-
ber of Ocn processes for load balancing, as 
atm computations are more demanding than 
ocn computations. The actual number of ocn 
processes is not fixed, as it depends on a num-
ber of parameters. 

d. The simulation stops when both models con-
verge. 

Figure 1 depicts a possible design configuration of 
coupling atm and ocn processes together. In two planes 
we depict the two distinct SPMD applications. Only Atm 
processes in the eastern part of the atm-plane are coupled 
with ocn processes, under the assumption that the western 
region does not correspond to ocean, but land. We also 
note that in the region where atm and ocn processes are 
coupled there is a one to six correspondence: one ocn cor-
responds to six atm processes. The rational is to maintain 
load balancing, as the atm computations are more de-
manding than the ocn ones. The optimal domain decom-
position of the atm model may not in general be the same 
as that of the ocn model. Such configurations may be pro-
grammed directly in MPI, but as we will outline in the 
next section each requires code modification.  

3. Software engineering costs of direct MPI 
implementations 

The mainstream practice for “composing” applications 
is to construct an SPMD application according to the re-
quired configuration. For example if atm and ocn proc-
esses were to be coupled together, their code would be 
rewritten as procedures in a new program, say AtmOcn. 
The role of each process (atm or ocn) spawned would be 
determined by its rank by  

if (MyRank<=LastAtm) then atm else ocn; 

as the main program, specifying that processes with ranks 
0 to LastAtm behave like atms and the rest like ocns. 
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Fig. 1. The coupled climate model 



This method works well if the atm and ocn topologies 
were regular and there were always a direct mapping be-
tween atm and ocn processes. The reason is that process 
communication needs to be explicitly coded. A MP pro-
gram designer and implementer has to code in a program 
P the symmetric interactions of all processes, which will 
be spawned from the executable of P, in all possible posi-
tions in the topology and for any size of the topology. 
Message passing communication requires process identi-
fiers, which are specified either directly (as process ranks) 
or indirectly by functions (determining ranks), which pre-
suppose a specific (usually regular) topology. If the topol-
ogy is not regular, but only partially regular, extensive 
code modifications are needed within atm, ocn and land 
code for each configuration. 

4. Modular MPI components 

Ensemble components look like MPI programs, but all 
envelope data related to the origin and the destination of 
messages in MPI calls (i.e., contexts, ranks, message tags 
and roots) are specified as “formal communication pa-
rameters”. The “actual communication parameters” corre-
sponding to the “formal” ones are passed to each process 
as command line parameters as they are spawned. 

The principle is simple. If processes are to be coupled 
together in a number of configurations (e.g. atm and ocn, 
atm and land, ocn and land) they should not have any spe-
cific envelope data built into their code, but rather given 
individually and dynamically to each process as it is 
spawned. One possibility is via their command line argu-
ments (CLA). The envelope data in MPI calls is bound to 
a communicator, a rank and a message tag types (roots are 
ranks). Obviously, the first two cannot be passed directly 
in CLA. The communicator, because it is not a basic type 
and the rank, although an integer, because, according to 
the MPI standard, we cannot assume the rank of a process 
before its spawning. But there are indirect ways of passing 
them. 

Instead of passing a communicator to a group of proc-
esses we may pass an integer indicating the color, which 
may be used to split MPI_WORLD_COMM and obtain 
the communicator. 

For ranks the solution we adopted is to associate each 
process with a unique integer, named Unique Ensemble 
Rank (UER). The UER of each process is passed in its 
CLA. We use UERs in the “actual communication pa-
rameters” in CLA. For example the pair (3,4) in CLA may 
be interpreted in an MPI_Send call to send a message to 
the process having UER 3 with message tag 4. Processes 
may determine associations of UER to MPI Ranks by call-
ing Allgather for each communicator they belong and use 
MPI ranks thereafter as usual. In our example the UER 3 
will be replaced by the associated MPI rank. However, 
there is a practical problem, as each process must in prin-
ciple have its own CLA arguments; at least its UER. In 

MPICH, MPMD applications may be spawned by using a 
procgroup file, but the same CLA are passed to all proc-
esses. This problem is overcome in MPICH-G [8,13] as 
processes may have their own CLA in RSL [10] scripts. 

Having shown the feasibility of passing directly or in-
directly envelope data via CLA we may outline the struc-
ture of Ensemble Components depicted in figure 2. A 
process is spawned from executable P with CLA enclosed 
in square brackets. The CLA are comprised of the UER of 
the process (2), the color for constructing the communica-
tor (1), and finally the UER (3) and the Message Tag (4) 
of a communicating process. The CLA are parsed by a 
routine SetEnvArgs, which performs the necessary opera-
tions and stores MPI envelope data in structure EnvArgs. 
In the code all MPI envelop data refer to structure En-
vArgs having the appropriate MPI bindings, but of course 
at compile time has no values. 

 

 
Fig. 2. From CLA to MPI bindings 

Each component needs its own CLA, EnvArgs struc-
ture and SetEnvArgs routine. However, for programming 
convenience we have defined a generic EnvArgs (which is 
appropriately shaped for each component) and a universal 
SetEnvArgs routine. For symbolic tracing and debugging 
we also pass in CLA and store in EnvArgs symbolic 
names for processes and contexts. In table 1 we present 
(top-down) the structures EnvArgs and ProcessNames. 

In EnvArgs we keep for each context (struct context) 
envelope data for point-to-point and reduce operations 
(roots), which are proper MPI bindings (e.g. Actual-
Comm). There are also fields related to symbolic names 
of contexts and array bounds (e.g. NrRoots). The values 
of all symbolic names, array bounds and some of MPI 
envelope bindings (e.g. message tags) are taken directly 
from CLA, but the rest are computed (e.g. MyRank and 
ActualComm), indicated by a D or C in comments. 

For point-to-point communication within a context, 
ports are introduced, which are abstractions of the enve-
lope pair (rank, message tag). Ports with similar semantics 
are treated as an array of ports (MultiPort), dynamically 
scaled for individual processes. 



Table 1: Declaration of Structures ProcessNames and EnvArgs 
ProcessId ProcessNames;   /* Process’s Ids */ 
Context EnvArgs[NrContexts]; /* Array for Contexts and Envelope Arguments*/ 
typedef struct /* Symbolic Ids of processes*/; 
 char *ProcessName   /* D – Process name, e.g. Atm[3,4] */ 
 int UER;     /* D – its Unique Ensemble Rank (UER)*/ 
}ProcessId; 
typedef struct /* Envelope Arguments of a single context */ 
{ char* SymbolicContext;  /* D - The symbolic group name, e.g. atm-plane */
  MPI_Comm ActualComm;  /* C - The constructed communicator / 
  int* TopologyParameters;  /* D – size of topology */ 
  int MyRank;    /* C - My rank in this constructed communicator */
  int NrMultiports;   /* D – actual number of MultiPorts */ 
  MultiPortType MultiPorts[GlNrMultiPorts+1];  /* List of MultiPorts */ 
  int NrRoots    /* D – actual number of Roots */ 
  RootType Roots[GlNrRoots+1]; /* List of Roots */ 
}Context; 
typedef struct /* A MultiPort*/ 
{ int NrPorts;   /* D-actual number of ports in a MultiPort */ 
 PortType Ports[GlNrPorts+1]; /* List of Ports */ 
}MultiPortType; 
typedef struct  /* A single Port */ 
{ ProcessId ProcessNames;  /* D – the symbolic names of communicating proc */
  int Rank;    /* C - MPI Rank*/ 
  int MessageTag;   /* D -the message tag of the port */ 
}PortType;  
typedef struct /* a single Root */ 
{ int Root;    /* C - the Rank of the root */ 
  ProcessId ProcessNames;  /* the symbolic names of the root process*/ 
}RootType; 

 
Let us comment on EnvArgs. NrContexts is the spe-

cific number of contexts a process belongs to. Each con-
text element keeps envelope data for the Communicator 
and process Rank, as well as for Roots and MultiPorts in 
two arrays. Although the number of Roots and MultiPorts 
are in general different in each Context, we have used an 
array (bounded by the highest value of Roots and Multi-
Ports, resp. in all contexts) rather than a dynamic struc-
ture, which would not “waste” memory space. The reason 
for not using a dynamic structure is that during execution 
each communication call would need one or two indirect 
memory accesses, which would reduce application per-
formance. Using arrays all envelope-related data are 
bound at compile time. Anyway, the “wasted” space is 
insignificant. The actual number of Roots and MultiPorts 
in each Context and the actual number of Ports in each 
MultiPort are stored in NrRoots, NrMultiPorts and 
NrPorts respectively. 

We now outline two components atm and ocn, each 
solving a finite difference problem, assumed to be “down-
scaled” versions of atm and the ocn models respectively.  

4.1 The Ensemble atm component 

An Ensemble component has two parts, a virtual com-
ponent envelope and code, in which all envelope data in 
MPI calls refer to virtual envelopes by macros. The mac-
ros bind envelope data to EnvArgs elements transparently. 

All other arguments have the usual bindings. Pure MPI 
code is generated (by expanding the macros) and com-
piled, as all parameters have proper bindings. 

The virtual envelope of atm (table 2) requires two con-
texts. Within a virtual envelope, roots for reductions and 
ports for point-to-point interactions are defined. The first 
is Atm for processes involved in the atm calculations. As 
the process topology is always a regular mesh, we may 
not specify Atm ports explicitly, but use functions (in the 
code of table 2 not precise, as boundary positions are not 
checked) to determine N, S, E and W neighbors, as in 
mainstream SPMD programming. In this case we need to 
specify the size of the regular mesh NxM (topology argu-
ments). In the send calls we use the macro EnvRank(Atm) 
to refer to the process rank. This would mean of course 
that processes in Atm context will always execute as a 
regular SPMD application (cf. ocn component in the next 
section). Macros shown in boxed italics. 

An Atm process in context X may also communicate, if 
X is not NULL, with some other process (e.g. ocn or land) 
via its single port Down[1]. The actual value of context 
and port will depend on the application configuration.  

Following the virtual envelope we specify application 
arguments needed in the calculations. In the case of Atm 
component we specify I/O files and the threshold. We 
note that for the coupled program not to deadlock, it is not 
sufficient to pass the same threshold value to all atm and 
ocn processes, as their convergence speed may vary. 



Table 2. The Virtual Envelope and Code of Atm 
Virtual Envelope 
 Context Atm; 
    Topology Arguments N, M; 
 Context X 
    Ports Down [1..1]; 
 
 Application Arguments Threshold; InputFile; OutputFile 

Code 
/* Declarations omitted */ 
MPI_Init(&argc, &argv); 
SetEnvArgs(&argc, &argv); 
 
Done=0 
while (!Done) { 
 MPI_ISend(NRowData, n, MPI_Float, ENVRank(Atm)+N, 1, EnvComm(Atm), &SendReq[0]); 
 MPI_ISend(SRowData, n, MPI_Float, ENVRank(Atm)-N, 1, EnvComm(Atm), &SendReq[1]); 
 MPI_ISend(ERowData, m, MPI_Float, ENVRank(Atm)+1, 1, EnvComm(Atm), &SendReq[2]); 
 MPI_ISend(WRowData, m, MPI_Float, ENVRank(Atm)-1, 1, EnvComm(Atm), &SendReq[3]); 
 
 MPI_IRecv(NRowData, n, MPI_Float, ENVRank(Atm)+N, 1, EnvComm(Atm), &RecvReq[0]); 
 MPI_IRecv(SRowData, m, MPI_Float, ENVRank(Atm)-N, 1, EnvComm(Atm), &RecvReq[1]); 
 MPI_IRecv(ERowData, m, MPI_Float, ENVRank(Atm)+1, 1, EnvComm(Atm), &RecvReq[2]); 
 MPI_IRecv(WRowData, m, MPI_Float, ENVRank(Atm)-1, 1, EnvComm(Atm), &RecvReq[3]); 
 MPI_Waitall(4,&RecvReq,&RecvStatus); 
 
 AtmComputations(&LocalError); 
 
 MPI_AllReduce(&MaxError, &LocalError, 1, MPI_Float, MPI_MAX, ENVComm(Atm)); 
 if (MaxError < threshold) Done=1; 
 
   /* Possible interactions with X (e.g. Ocean, Land) */ 
 if (ENVComm(X) != MPI_NULL){ 
  MPI_Send(&Done,      1, MPI_INT, ENVport(Down,1,X)); 
  MPI_Recv(&OtherDone, 1, MPI_INT, ENVport(Down,1,X), &st); 
 
  Done = Done && OtherDone; 
  if (!Done){ 
   MPI_ISend(BottomData, L, MPI_FLOAT, ENVport(Down,1,X), &SendDown); 
   MPI_IRecv(BottomData, L, MPI_FLOAT, ENVport(Down,1,X), &RecvDown); 
   MPI_Wait(&RecvDown, &RecvDownStatus);  
   MPI_Wait(&SendDown, &SendDownStatus); 
  };/*end if not all Done */ 
 };/* End of Interactions with X */ 
 MPI_Waitall(4, &SendReq, &SendStatus); 
 
};/* while not Done */ 

 
Few simple macros in MPI envelope arguments using 

virtual envelope names generate by expansion proper MPI 
bindings. All envelop arguments of point-to-point com-
munication (rank, message tag, communicator) refer to 
virtual envelope ports by macros e.g. ENVPort (Down, 1, 

X). This macro refers to port 1 of multiport Down within 
the X context. Macro ENVComm(Atm) refers to the ac-
tual communicator corresponding to virtual context Atm. 
A third macro ENVRoot(Vcomm,Vroot), which is not 
used here, refers to roots.  



Thus all communication is expressed in the code with-
out any actual information about the receiver or the sender 
of messages. The code resembles the task/channel model 
[5], but in a two stage manner. Stage one is within com-
ponent code (task to port) and stage 2 specified in the 
composition (port-port, context and root binding). In a 
way we have extended the task/channel model to deal 
with contexts and collective communications. 

4.2 The Ensemble ocn component 

The ocn component also requires two contexts, ocn for 
ocn calculations and Y for possible coupling with corre-
sponding atm processes. 

In the ocn context there are four multiports. As the 
process topology of ocn is not necessarily regular, we 
leave the N, S, E and W neighbors unspecified (cf. atm 
component). Each multiport may have none or one port 
depending on its position on the plane. Any topology may 
be constructed by appropriate port bindings. In context Y 
of Ocn multiport Up may have up to N ports, the number 
of corresponding Atm processes. ENVportN(Up,Y) refers 
to the number of ports in Multiport Up. 

Finally, we specify application arguments for I/O and 
the convergence threshold, as for the atm component. 

The Ensemble components are transformed to pure 
MPI code by expanding the macros, which generate ap-
propriate MPI bindings (fields of EnvArgs). For example 
the macro expression ENVPort (Up, i, Y) expands to 

EnvArgs[2].MultiPort[0].Port[i].Rank,  
EnvArgs[2].MultiPort[0].Port[i].MessageTag, 
EnvArgs[2].ActualComm 

as context Y is stored in the second element of EnvArgs 
(after MPI_WORLD_COMM and ocn) and Up is its first 
multiport. The expansion complies with MPI bindings.  

We have developed another class of macros for print-
ing symbolic names of processes, contexts, roots, etc for 
aiding debugging. For example it would be possible to 
print tracing lines such as  
ocn[1,1] sends to atm[2,6] via port 
Up[1] within context of Vertical[3] 

5. The composition of applications 

The composition of applications is specified in two 
levels: by a High Level Composition Tool (HLCT) in 
which the designer puts the components together using 
symbolic names for processes, roots, groups, etc. At this 
level, we specify the number processes and the scaling of 
their multiports (possibly parametrically), the contexts 
they belong in, their point-to-point and collective commu-
nication. 

The HLCT generates Low Level Composition Direc-
tives (LLCD), which are MPICH-G globus RSL scripts. 
For each process an RSL request is generated having its 
own CLA (argv), which are composition directives related 

to the specific process. Executing the RSL scripts the ap-
plication is composed. SetEnvArgs sets envelope data 
dynamically for each process. The structure of argv for 
each process is: 

 
• Its Ensemble Rank (UER) and Symbolic Name (SN) 
• The number of splits (NS) the process participates 

followed by NS groups of data specifying the splits 
• For each split its color. If color >= 0 (a real context)  
o SN of context and index of context in EnvArgs 
o Number of multiports and roots 
o For each multiport 

� Number of ports 
� For each port  
¾ a UER and SN, Message Tag 

o For each root 
� a UER and SN 

• Application arguments 
For an actual example of RSL scripts refer to [4]. 

In the special case where processes spawned from the 
same component are allocated on the same parallel ma-
chine or cluster (where a local scheduler exists) only one 
RSL request may be generated, having as CLA a range of 
UER. All data that would appear in CLA are put in a text 
file, one line per process. In this case an extra step is 
needed: processes are put in a temporary group, and 
depending on their MPI rank in this group, pick an UER, 
directing them to the appropriate line of the file. 

The communicators each process belongs to will be de-
termined at run time by its CLA. Processes spawned either 
from the same component (SPMD) or from different com-
ponents (MPMD) may be given the same color for a split 
and will be in the same communicator. In either case, 
processes involved will refer to the same actual context. In 
the former case (SPMD) all have the same virtual context, 
but in the latter (MPMD) only processes spawned from 
the same component will have the same virtual context. 
Processes spawned from the same component may also be 
organized into different contexts. In this case the virtual 
context of processes will correspond to a number of actual 
contexts. From each process’s point of view however its 
virtual context will correspond to exactly one actual con-
text. 

In the climate configuration of figure 1 we have two 
actual contexts atm-plane and ocn-plane corresponding to 
virtual contexts of atm and ocn respectively. Also groups 
of six atm processes and one ocn process are in a context 
of their own, associated with some color C. The X virtual 
context of the six atm processes and the Y of the ocn 
process will refer to the same actual context created by 
color C. If the context of an atm process is NULL it indi-
cates that there it is not coupled with any ocn process. A 
process cannot (and does not need to) determine if this is 
because the atm model runs independently or because of 
the physical constraints. 



Table 3. The Virtual Envelope and Code of Ocn 
Virtual Envelope 
 Context Ocn; 
    Ports North[0..1]; South[0..1]; East[0..1];West[0..1]; 
 Context Y 
    Ports Up[1..N]; 
 
Application Arguments Threshold; InputFile; OutputFile; 

Code 
/* Declarations omitted */ 
 
MPI_Init(&argc, &argv); 
SetEnvArgs(&argc, &argv); 
 
Done=0; 
while (!Done) { 
 /*Internal Ocean Communications */ 
 MPI_ISend(NorthData, n, MPI_Float, ENVPort(North,1,Οcn), &SendReq[0]); 
 MPI_ISend(SouthData, n, MPI_Float, ENVPort(South,1,Ocn), &SendReq[1]); 
 MPI_ISend(EastData,  m, MPI_Float, ENVPort(East,1,Ocn),  &SendReq[2]); 
 MPI_ISend(WestData,  m, MPI_Float, ENVPort(West,1,Ocn),  &SendReq[3]); 
 
 MPI_IRecv(NorthData, n, MPI_Float, ENVPort(North,1,Ocn), &RecvReq[0]); 
 MPI_IRecv(SouthData, n, MPI_Float, ENVPort(South,1,Ocn), &RecvReq[1]); 
 MPI_IRecv(EastData,  m, MPI_Float, ENVPort(East,1,Ocn),  &RecvReq[2]); 
 MPI_IRecv(WestData,  m, MPI_Float, ENVPort(West,1,Ocn),  &RecvReq[3]); 
 MPI_Waitall(4, &RecvReq, &RecvStatus); 
 
 OcnComputations(&LocalError); 
 
 MPI_AllReduce(&MaxError, &LocalError, 1, MPI_Float, MPI_MAX, ENVComm(Ocn)); 
 if (MaxError < threshold) Done=1; 
 
/* Possible interactions with Y (e.g.Atm) */ 
 if (ENVComm(Y)!=MPI_NULL){ 
  for (i=1; i < ENVportN(Up,Y); i++){ 
   MPI_Send(&Done,     1,MPI_INT,ENVport(Up,i,Y)); 
   MPI_Recv(&OtherDone,1,MPI_INT,ENVport(Up,i,Y),&st); 
   Done = Done && OtherDone; 
  }; 
 
  if (!Done){ 
   for (i=1; i < ENVportN(Up,Y); i++){ 
    MPI_ISend(Top[i], L, MPI_FLOAT, ENVport(Up,i,Y), &UpSend[i-1]); 
    MPI_IRecv(Top[i], L, MPI_FLOAT, ENVport(Up,i,Y), &UpRecv[i-1); 
   }; /* end for all Up ports*/ 
   MPI_Waitall(ENVportN(Up,Y), &UpSend, &UpSendStatus);  
   MPI_Waitall(ENVportN(Up,Y), &UpRecv, &UpRecvStatus); 
  }; /* end if not all Done*/ 
 };/* End of Interactions with Y */ 
 
 MPI_Waitall(4,&SendReq,&SendStatus); 
};/* while not done */ 



6 Conclusions 

We presented modular MPI components, which may be 
combined in various configurations (SPMD, MPMD, 
regular, irregular). However, their code and particular 
their communication must be compatible to guarantee 
correct behavior. In that sense modules cannot be devel-
oped altogether independently. Ensemble provides the 
architecture for developing modular components or modi-
fying existing programs with the desired generality for 
composition. Components may then be composed in vari-
ous configurations without further modifications. Other 
compatible components (e.g. land model) may be also 
coupled with already existing ones (e.g. atm and ocn). 

Compatibility in general is a dynamic property and is 
not restricted to the static compatibility of channel bind-
ing. We are developing lightweight formal methods used 
in synergy with program execution to test module com-
patibility and debug application composition [14]. 

Our aim is to be as close as possible to MPI both syn-
tactically and semantically, so that we may use all its ca-
pabilities and tools (analysis, visualization, etc.). Com-
posed programs are pure MPI programs; we do not use 
any external environment for gluing components together. 
Other approaches dealing with a broader problem, that of 
the composition of heterogeneous components, develop 
component architectures (CCA [15], Charisma [1]). They 
manage “componentized” programs (mainly using OO 
techniques) as well as their communication. Although 
component architectures are successful in many respects, 
each has its own limitations in supporting MPI programs. 

Application composition, in general, requires a compo-
sition environment, in which composition directives are 
specified outside the modules themselves. This is against 
SPMD practice, by which all programming is expressed in 
one source code (computations, topology generation, load 
balancing, etc.). In Ensemble we have two such environ-
ments. The first is the Low Level composition with RSL 
scripts, not convenient to use, leaving a lot of responsibili-
ties and space for errors to the programmer. The other, the 
High Level Composition Tool, which uses virtual enve-
lope variables and symbolic names for processes, roots 
and contexts (virtual and symbolic). We have experi-
mented with a number of them (supporting grammatical, 
graphical, GUI based directives), each having its own ad-
vantages and disadvantages. We currently develop a new 
HLCT, in which composition directives are specified 
grammatically and as close as possible to a pseudo-SPMD 
style of programming. This new composition tool will 
also manage components, executables, etc as grid re-
sources using web-services. 

Performance is in the core of parallel programming. No 
execution overhead is introduced by Ensemble, as enve-
lope bindings are done at pre-processing and compile 
time. The only cause for overhead is the execution of 
SetEnvArgs, which mainly computes that would have 

been coded anyway (construct communicators, find proc-
ess rank, etc). Actually, we eliminate function evaluations 
determining neighboring processes each time a send/recv 
is invoked. The only overhead is computing the associa-
tions of UER and MPI rank (e.g allgather call, internal 
table creation). 

We plan to re-engineer SPMD programs as modular 
components; to extend the component communication 
interface with associations of data sub-domains to ports to 
deal with the coupling of M atm to N ocn processes [16]. 
Our objective is to define libraries for managing unstruc-
tured communication of coupled processes conveniently. 
Finally we plan to address dynamically configurable ap-
plications by modifying EnvArgs at run time, redirecting 
ports and decoupling/recoupling processes. 
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