
Building Grid MPI Applications from Modular Components

Yiannis Cotronis

Department of Informatics and Telecommunications, Univ. of Athens, 15784 Athens, Greece.
cotronis@di.uoa.gr

Abstract

Coupling grid applications developed by different
teams requires code modification and high S/W engineer-
ing effort. In the Ensemble methodology message passing
components are developed separately as independent
modules, and applications, whether regular, irregular,
SPMD or MPMD, are composed from these modular
components, without any code modification. We demon-
strate by developing two downsized atmospheric and
ocean components, which may run on their own or cou-
pled together (climate model) in any configuration de-
pending on geography or other design issues.

1 Introduction

In the Ensemble methodology [2,3,4] message passing
(MP) applications are designed and built by composing
modular MP components. We have developed tools for a)
designing and implementing MP components, b) for
specifying composition directives for MP applications and
c) for actually composing applications from components.

The Ensemble tools have been developed on top of the
most popular MP APIs, PVM [9] and MPI [12] (MPICH
[11]). The composed MP applications are pure PVM or
MPI programs, relying only on the APIs themselves and
do not use any external environment for process commu-
nication. Consequently, Ensemble does not modify the
capabilities of MP APIs and does not interfere with appli-
cation communication. In this paper we concentrate on
composing MPI applications, but the interested reader
may refer to [5] for composing PVM applications.

The contribution of Ensemble is that it reduces soft-
ware engineering (SE) costs when compared to imple-
menting applications directly on MPI, except possibly in
the case of regular SPMD applications. Of course SPMD
is presently the most popular programming style, mainly
due to its simplicity. However, Grids [7] impose new re-
quirements concerning program modularity, since applica-
tions (possibly regular SPMD) may need to be coupled
with other applications developed by different teams. An
application may still be required to run independently,
possibly as an SPMD (e.g. atmospheric model), or to be
coupled with other applications (e.g. ocean model) run-

ning together as MPMD (e.g. climate model). Even regu-
lar SPMD applications need substantial code modification
to be coupled with other applications. Usually, different
code modifications are necessary for different application
configurations. For example, the climate model may be
used to model the global earth climate or the more local
El-Ninio phenomenon (different geography). We may also
need to couple only the atmospheric and ocean model and
later add land and hydrology models. Code modifications
required in each case make single code maintenance of
individual applications (e.g. atmospheric, ocean) a diffi-
cult task.

Ensemble aims to reduce the SE costs incurring in
composing application configurations and in maintaining
a single code for each of the components involved. Appli-
cations may either be SPMD or MPMD and either regular
or irregular. Components are developed separately as in-
dependent MP programs specifying local and global
communication abstractly (like “formal communication
parameters”). Modular processes spawned from any of the
modular components may communicate (by point-to-point
or collectively) with other modular processes, not neces-
sarily spawned from the same component. Applications
are composed from modular processes specifying for each
process its actual local and collective communications
(like “actual communication parameters”). In Ensemble,
irregular MPMD applications are naturally supported and
regular SPMD applications are just a special case.

The structure of the paper is as follows: in section 2 we
present the requirements for downsized atmospheric,
ocean and climate models in a Grid environment; in sec-
tion 3 we discuss the SE costs when applications are di-
rectly programmed in MPI; in section 4 we present En-
semble modular MPI components, demonstrating the
principles by the downsized atmospheric and ocean mod-
els; in 5 we outline the composition of applications; and
finally in section 6 we present our conclusions and plans
for future work.

2. Downsized atmospheric, ocean and climate
models

We set the following requirements for the downsized
Atmospheric (atm), Ocean (ocn) and Climate Models.

1. The atm and ocn models may be run on their own.
2. The two models may be also coupled with each other

or even with others (e.g. Land, Hydrology). Any cou-
pling configuration should be possible according to
actual geography (over ocean or land).

3. In the atm the data is just one three-dimensional array
A(na,ma,la).
a. Process Topology is a regular two-

dimensional mesh of processes obtained from
the decomposition of array A in the x, y di-
mensions (no reason for irregular topology, as
there are no natural boundaries in atmosphere).

b. Processes exchange halo rows and columns
with N, S and E, W neighbors respectively;
they compute new values; repeat until conver-
gence.

4. In the ocn model the data is also one three-
dimensional array S(ns,ms,ls) in 2-dimensional do-
main decomposition in x, y dimensions.
a. Process Topology is a two-dimensional (possi-

bly ragged) mesh, depending on geography
(same is true for Land model). Ocean and
Land processes may be interlaced, according
to the modeled earth surface. Each process op-
erates on a rectangular partition of array S in
the x and y dimensions.

b. Processes exchange halo rows and columns
with N, S and E, W neighbors respectively;
they compute new values; repeat until conver-
gence.

5. In case atm and ocn are coupled together
a. The x, y planes of arrays A (lowest plane of

atmosphere) and S (highest plane of ocean) are
exchanged replacing corresponding values in
A and S.

b. Depending on geography some atm processes
may not be coupled with ocn processes (they
execute as if model executes on its own).

c. One atm process may be coupled with a num-
ber of Ocn processes for load balancing, as
atm computations are more demanding than
ocn computations. The actual number of ocn
processes is not fixed, as it depends on a num-
ber of parameters.

d. The simulation stops when both models con-
verge.

Figure 1 depicts a possible design configuration of
coupling atm and ocn processes together. In two planes
we depict the two distinct SPMD applications. Only Atm
processes in the eastern part of the atm-plane are coupled
with ocn processes, under the assumption that the western
region does not correspond to ocean, but land. We also
note that in the region where atm and ocn processes are
coupled there is a one to six correspondence: one ocn cor-
responds to six atm processes. The rational is to maintain
load balancing, as the atm computations are more de-
manding than the ocn ones. The optimal domain decom-
position of the atm model may not in general be the same
as that of the ocn model. Such configurations may be pro-
grammed directly in MPI, but as we will outline in the
next section each requires code modification.

3. Software engineering costs of direct MPI
implementations

The mainstream practice for “composing” applications
is to construct an SPMD application according to the re-
quired configuration. For example if atm and ocn proc-
esses were to be coupled together, their code would be
rewritten as procedures in a new program, say AtmOcn.
The role of each process (atm or ocn) spawned would be
determined by its rank by

if (MyRank<=LastAtm) then atm else ocn;

as the main program, specifying that processes with ranks
0 to LastAtm behave like atms and the rest like ocns.

0 1 2 3 4 5 6 7 8 9 10 11
0
1
2
3
4
5

0 1 2

0

1

2

atm-plane

ocn-plane

ocnP[1,1]

atmP[2,6] atmP[2,8]atmP[2,7]

atmP[3,7]atmP[3,6] atmP[3,8]

Fig. 1. The coupled climate model

This method works well if the atm and ocn topologies
were regular and there were always a direct mapping be-
tween atm and ocn processes. The reason is that process
communication needs to be explicitly coded. A MP pro-
gram designer and implementer has to code in a program
P the symmetric interactions of all processes, which will
be spawned from the executable of P, in all possible posi-
tions in the topology and for any size of the topology.
Message passing communication requires process identi-
fiers, which are specified either directly (as process ranks)
or indirectly by functions (determining ranks), which pre-
suppose a specific (usually regular) topology. If the topol-
ogy is not regular, but only partially regular, extensive
code modifications are needed within atm, ocn and land
code for each configuration.

4. Modular MPI components

Ensemble components look like MPI programs, but all
envelope data related to the origin and the destination of
messages in MPI calls (i.e., contexts, ranks, message tags
and roots) are specified as “formal communication pa-
rameters”. The “actual communication parameters” corre-
sponding to the “formal” ones are passed to each process
as command line parameters as they are spawned.

The principle is simple. If processes are to be coupled
together in a number of configurations (e.g. atm and ocn,
atm and land, ocn and land) they should not have any spe-
cific envelope data built into their code, but rather given
individually and dynamically to each process as it is
spawned. One possibility is via their command line argu-
ments (CLA). The envelope data in MPI calls is bound to
a communicator, a rank and a message tag types (roots are
ranks). Obviously, the first two cannot be passed directly
in CLA. The communicator, because it is not a basic type
and the rank, although an integer, because, according to
the MPI standard, we cannot assume the rank of a process
before its spawning. But there are indirect ways of passing
them.

Instead of passing a communicator to a group of proc-
esses we may pass an integer indicating the color, which
may be used to split MPI_WORLD_COMM and obtain
the communicator.

For ranks the solution we adopted is to associate each
process with a unique integer, named Unique Ensemble
Rank (UER). The UER of each process is passed in its
CLA. We use UERs in the “actual communication pa-
rameters” in CLA. For example the pair (3,4) in CLA may
be interpreted in an MPI_Send call to send a message to
the process having UER 3 with message tag 4. Processes
may determine associations of UER to MPI Ranks by call-
ing Allgather for each communicator they belong and use
MPI ranks thereafter as usual. In our example the UER 3
will be replaced by the associated MPI rank. However,
there is a practical problem, as each process must in prin-
ciple have its own CLA arguments; at least its UER. In

MPICH, MPMD applications may be spawned by using a
procgroup file, but the same CLA are passed to all proc-
esses. This problem is overcome in MPICH-G [8,13] as
processes may have their own CLA in RSL [10] scripts.

Having shown the feasibility of passing directly or in-
directly envelope data via CLA we may outline the struc-
ture of Ensemble Components depicted in figure 2. A
process is spawned from executable P with CLA enclosed
in square brackets. The CLA are comprised of the UER of
the process (2), the color for constructing the communica-
tor (1), and finally the UER (3) and the Message Tag (4)
of a communicating process. The CLA are parsed by a
routine SetEnvArgs, which performs the necessary opera-
tions and stores MPI envelope data in structure EnvArgs.
In the code all MPI envelop data refer to structure En-
vArgs having the appropriate MPI bindings, but of course
at compile time has no values.

Fig. 2. From CLA to MPI bindings

Each component needs its own CLA, EnvArgs struc-
ture and SetEnvArgs routine. However, for programming
convenience we have defined a generic EnvArgs (which is
appropriately shaped for each component) and a universal
SetEnvArgs routine. For symbolic tracing and debugging
we also pass in CLA and store in EnvArgs symbolic
names for processes and contexts. In table 1 we present
(top-down) the structures EnvArgs and ProcessNames.

In EnvArgs we keep for each context (struct context)
envelope data for point-to-point and reduce operations
(roots), which are proper MPI bindings (e.g. Actual-
Comm). There are also fields related to symbolic names
of contexts and array bounds (e.g. NrRoots). The values
of all symbolic names, array bounds and some of MPI
envelope bindings (e.g. message tags) are taken directly
from CLA, but the rest are computed (e.g. MyRank and
ActualComm), indicated by a D or C in comments.

For point-to-point communication within a context,
ports are introduced, which are abstractions of the enve-
lope pair (rank, message tag). Ports with similar semantics
are treated as an array of ports (MultiPort), dynamically
scaled for individual processes.

Table 1: Declaration of Structures ProcessNames and EnvArgs
ProcessId ProcessNames; /* Process’s Ids */
Context EnvArgs[NrContexts]; /* Array for Contexts and Envelope Arguments*/
typedef struct /* Symbolic Ids of processes*/;
 char *ProcessName /* D – Process name, e.g. Atm[3,4] */
 int UER; /* D – its Unique Ensemble Rank (UER)*/
}ProcessId;
typedef struct /* Envelope Arguments of a single context */
{ char* SymbolicContext; /* D - The symbolic group name, e.g. atm-plane */
 MPI_Comm ActualComm; /* C - The constructed communicator /
 int* TopologyParameters; /* D – size of topology */
 int MyRank; /* C - My rank in this constructed communicator */
 int NrMultiports; /* D – actual number of MultiPorts */
 MultiPortType MultiPorts[GlNrMultiPorts+1]; /* List of MultiPorts */
 int NrRoots /* D – actual number of Roots */
 RootType Roots[GlNrRoots+1]; /* List of Roots */
}Context;
typedef struct /* A MultiPort*/
{ int NrPorts; /* D-actual number of ports in a MultiPort */
 PortType Ports[GlNrPorts+1]; /* List of Ports */
}MultiPortType;
typedef struct /* A single Port */
{ ProcessId ProcessNames; /* D – the symbolic names of communicating proc */
 int Rank; /* C - MPI Rank*/
 int MessageTag; /* D -the message tag of the port */
}PortType;
typedef struct /* a single Root */
{ int Root; /* C - the Rank of the root */
 ProcessId ProcessNames; /* the symbolic names of the root process*/
}RootType;

Let us comment on EnvArgs. NrContexts is the spe-

cific number of contexts a process belongs to. Each con-
text element keeps envelope data for the Communicator
and process Rank, as well as for Roots and MultiPorts in
two arrays. Although the number of Roots and MultiPorts
are in general different in each Context, we have used an
array (bounded by the highest value of Roots and Multi-
Ports, resp. in all contexts) rather than a dynamic struc-
ture, which would not “waste” memory space. The reason
for not using a dynamic structure is that during execution
each communication call would need one or two indirect
memory accesses, which would reduce application per-
formance. Using arrays all envelope-related data are
bound at compile time. Anyway, the “wasted” space is
insignificant. The actual number of Roots and MultiPorts
in each Context and the actual number of Ports in each
MultiPort are stored in NrRoots, NrMultiPorts and
NrPorts respectively.

We now outline two components atm and ocn, each
solving a finite difference problem, assumed to be “down-
scaled” versions of atm and the ocn models respectively.

4.1 The Ensemble atm component

An Ensemble component has two parts, a virtual com-
ponent envelope and code, in which all envelope data in
MPI calls refer to virtual envelopes by macros. The mac-
ros bind envelope data to EnvArgs elements transparently.

All other arguments have the usual bindings. Pure MPI
code is generated (by expanding the macros) and com-
piled, as all parameters have proper bindings.

The virtual envelope of atm (table 2) requires two con-
texts. Within a virtual envelope, roots for reductions and
ports for point-to-point interactions are defined. The first
is Atm for processes involved in the atm calculations. As
the process topology is always a regular mesh, we may
not specify Atm ports explicitly, but use functions (in the
code of table 2 not precise, as boundary positions are not
checked) to determine N, S, E and W neighbors, as in
mainstream SPMD programming. In this case we need to
specify the size of the regular mesh NxM (topology argu-
ments). In the send calls we use the macro EnvRank(Atm)
to refer to the process rank. This would mean of course
that processes in Atm context will always execute as a
regular SPMD application (cf. ocn component in the next
section). Macros shown in boxed italics.

An Atm process in context X may also communicate, if
X is not NULL, with some other process (e.g. ocn or land)
via its single port Down[1]. The actual value of context
and port will depend on the application configuration.

Following the virtual envelope we specify application
arguments needed in the calculations. In the case of Atm
component we specify I/O files and the threshold. We
note that for the coupled program not to deadlock, it is not
sufficient to pass the same threshold value to all atm and
ocn processes, as their convergence speed may vary.

Table 2. The Virtual Envelope and Code of Atm
Virtual Envelope
 Context Atm;
 Topology Arguments N, M;
 Context X
 Ports Down [1..1];

 Application Arguments Threshold; InputFile; OutputFile

Code
/* Declarations omitted */
MPI_Init(&argc, &argv);
SetEnvArgs(&argc, &argv);

Done=0
while (!Done) {
 MPI_ISend(NRowData, n, MPI_Float, ENVRank(Atm)+N, 1, EnvComm(Atm), &SendReq[0]);
 MPI_ISend(SRowData, n, MPI_Float, ENVRank(Atm)-N, 1, EnvComm(Atm), &SendReq[1]);
 MPI_ISend(ERowData, m, MPI_Float, ENVRank(Atm)+1, 1, EnvComm(Atm), &SendReq[2]);
 MPI_ISend(WRowData, m, MPI_Float, ENVRank(Atm)-1, 1, EnvComm(Atm), &SendReq[3]);

 MPI_IRecv(NRowData, n, MPI_Float, ENVRank(Atm)+N, 1, EnvComm(Atm), &RecvReq[0]);
 MPI_IRecv(SRowData, m, MPI_Float, ENVRank(Atm)-N, 1, EnvComm(Atm), &RecvReq[1]);
 MPI_IRecv(ERowData, m, MPI_Float, ENVRank(Atm)+1, 1, EnvComm(Atm), &RecvReq[2]);
 MPI_IRecv(WRowData, m, MPI_Float, ENVRank(Atm)-1, 1, EnvComm(Atm), &RecvReq[3]);
 MPI_Waitall(4,&RecvReq,&RecvStatus);

 AtmComputations(&LocalError);

 MPI_AllReduce(&MaxError, &LocalError, 1, MPI_Float, MPI_MAX, ENVComm(Atm));
 if (MaxError < threshold) Done=1;

 /* Possible interactions with X (e.g. Ocean, Land) */
 if (ENVComm(X) != MPI_NULL){
 MPI_Send(&Done, 1, MPI_INT, ENVport(Down,1,X));
 MPI_Recv(&OtherDone, 1, MPI_INT, ENVport(Down,1,X), &st);

 Done = Done && OtherDone;
 if (!Done){
 MPI_ISend(BottomData, L, MPI_FLOAT, ENVport(Down,1,X), &SendDown);
 MPI_IRecv(BottomData, L, MPI_FLOAT, ENVport(Down,1,X), &RecvDown);
 MPI_Wait(&RecvDown, &RecvDownStatus);
 MPI_Wait(&SendDown, &SendDownStatus);
 };/*end if not all Done */
 };/* End of Interactions with X */
 MPI_Waitall(4, &SendReq, &SendStatus);

};/* while not Done */

Few simple macros in MPI envelope arguments using

virtual envelope names generate by expansion proper MPI
bindings. All envelop arguments of point-to-point com-
munication (rank, message tag, communicator) refer to
virtual envelope ports by macros e.g. ENVPort (Down, 1,

X). This macro refers to port 1 of multiport Down within
the X context. Macro ENVComm(Atm) refers to the ac-
tual communicator corresponding to virtual context Atm.
A third macro ENVRoot(Vcomm,Vroot), which is not
used here, refers to roots.

Thus all communication is expressed in the code with-
out any actual information about the receiver or the sender
of messages. The code resembles the task/channel model
[5], but in a two stage manner. Stage one is within com-
ponent code (task to port) and stage 2 specified in the
composition (port-port, context and root binding). In a
way we have extended the task/channel model to deal
with contexts and collective communications.

4.2 The Ensemble ocn component

The ocn component also requires two contexts, ocn for
ocn calculations and Y for possible coupling with corre-
sponding atm processes.

In the ocn context there are four multiports. As the
process topology of ocn is not necessarily regular, we
leave the N, S, E and W neighbors unspecified (cf. atm
component). Each multiport may have none or one port
depending on its position on the plane. Any topology may
be constructed by appropriate port bindings. In context Y
of Ocn multiport Up may have up to N ports, the number
of corresponding Atm processes. ENVportN(Up,Y) refers
to the number of ports in Multiport Up.

Finally, we specify application arguments for I/O and
the convergence threshold, as for the atm component.

The Ensemble components are transformed to pure
MPI code by expanding the macros, which generate ap-
propriate MPI bindings (fields of EnvArgs). For example
the macro expression ENVPort (Up, i, Y) expands to

EnvArgs[2].MultiPort[0].Port[i].Rank,
EnvArgs[2].MultiPort[0].Port[i].MessageTag,
EnvArgs[2].ActualComm

as context Y is stored in the second element of EnvArgs
(after MPI_WORLD_COMM and ocn) and Up is its first
multiport. The expansion complies with MPI bindings.

We have developed another class of macros for print-
ing symbolic names of processes, contexts, roots, etc for
aiding debugging. For example it would be possible to
print tracing lines such as
ocn[1,1] sends to atm[2,6] via port
Up[1] within context of Vertical[3]

5. The composition of applications

The composition of applications is specified in two
levels: by a High Level Composition Tool (HLCT) in
which the designer puts the components together using
symbolic names for processes, roots, groups, etc. At this
level, we specify the number processes and the scaling of
their multiports (possibly parametrically), the contexts
they belong in, their point-to-point and collective commu-
nication.

The HLCT generates Low Level Composition Direc-
tives (LLCD), which are MPICH-G globus RSL scripts.
For each process an RSL request is generated having its
own CLA (argv), which are composition directives related

to the specific process. Executing the RSL scripts the ap-
plication is composed. SetEnvArgs sets envelope data
dynamically for each process. The structure of argv for
each process is:

• Its Ensemble Rank (UER) and Symbolic Name (SN)
• The number of splits (NS) the process participates

followed by NS groups of data specifying the splits
• For each split its color. If color >= 0 (a real context)
o SN of context and index of context in EnvArgs
o Number of multiports and roots
o For each multiport

� Number of ports
� For each port
¾ a UER and SN, Message Tag

o For each root
� a UER and SN

• Application arguments
For an actual example of RSL scripts refer to [4].

In the special case where processes spawned from the
same component are allocated on the same parallel ma-
chine or cluster (where a local scheduler exists) only one
RSL request may be generated, having as CLA a range of
UER. All data that would appear in CLA are put in a text
file, one line per process. In this case an extra step is
needed: processes are put in a temporary group, and
depending on their MPI rank in this group, pick an UER,
directing them to the appropriate line of the file.

The communicators each process belongs to will be de-
termined at run time by its CLA. Processes spawned either
from the same component (SPMD) or from different com-
ponents (MPMD) may be given the same color for a split
and will be in the same communicator. In either case,
processes involved will refer to the same actual context. In
the former case (SPMD) all have the same virtual context,
but in the latter (MPMD) only processes spawned from
the same component will have the same virtual context.
Processes spawned from the same component may also be
organized into different contexts. In this case the virtual
context of processes will correspond to a number of actual
contexts. From each process’s point of view however its
virtual context will correspond to exactly one actual con-
text.

In the climate configuration of figure 1 we have two
actual contexts atm-plane and ocn-plane corresponding to
virtual contexts of atm and ocn respectively. Also groups
of six atm processes and one ocn process are in a context
of their own, associated with some color C. The X virtual
context of the six atm processes and the Y of the ocn
process will refer to the same actual context created by
color C. If the context of an atm process is NULL it indi-
cates that there it is not coupled with any ocn process. A
process cannot (and does not need to) determine if this is
because the atm model runs independently or because of
the physical constraints.

Table 3. The Virtual Envelope and Code of Ocn
Virtual Envelope
 Context Ocn;
 Ports North[0..1]; South[0..1]; East[0..1];West[0..1];
 Context Y
 Ports Up[1..N];

Application Arguments Threshold; InputFile; OutputFile;

Code
/* Declarations omitted */

MPI_Init(&argc, &argv);
SetEnvArgs(&argc, &argv);

Done=0;
while (!Done) {
 /*Internal Ocean Communications */
 MPI_ISend(NorthData, n, MPI_Float, ENVPort(North,1,Οcn), &SendReq[0]);
 MPI_ISend(SouthData, n, MPI_Float, ENVPort(South,1,Ocn), &SendReq[1]);
 MPI_ISend(EastData, m, MPI_Float, ENVPort(East,1,Ocn), &SendReq[2]);
 MPI_ISend(WestData, m, MPI_Float, ENVPort(West,1,Ocn), &SendReq[3]);

 MPI_IRecv(NorthData, n, MPI_Float, ENVPort(North,1,Ocn), &RecvReq[0]);
 MPI_IRecv(SouthData, n, MPI_Float, ENVPort(South,1,Ocn), &RecvReq[1]);
 MPI_IRecv(EastData, m, MPI_Float, ENVPort(East,1,Ocn), &RecvReq[2]);
 MPI_IRecv(WestData, m, MPI_Float, ENVPort(West,1,Ocn), &RecvReq[3]);
 MPI_Waitall(4, &RecvReq, &RecvStatus);

 OcnComputations(&LocalError);

 MPI_AllReduce(&MaxError, &LocalError, 1, MPI_Float, MPI_MAX, ENVComm(Ocn));
 if (MaxError < threshold) Done=1;

/* Possible interactions with Y (e.g.Atm) */
 if (ENVComm(Y)!=MPI_NULL){
 for (i=1; i < ENVportN(Up,Y); i++){
 MPI_Send(&Done, 1,MPI_INT,ENVport(Up,i,Y));
 MPI_Recv(&OtherDone,1,MPI_INT,ENVport(Up,i,Y),&st);
 Done = Done && OtherDone;
 };

 if (!Done){
 for (i=1; i < ENVportN(Up,Y); i++){
 MPI_ISend(Top[i], L, MPI_FLOAT, ENVport(Up,i,Y), &UpSend[i-1]);
 MPI_IRecv(Top[i], L, MPI_FLOAT, ENVport(Up,i,Y), &UpRecv[i-1);
 }; /* end for all Up ports*/
 MPI_Waitall(ENVportN(Up,Y), &UpSend, &UpSendStatus);
 MPI_Waitall(ENVportN(Up,Y), &UpRecv, &UpRecvStatus);
 }; /* end if not all Done*/
 };/* End of Interactions with Y */

 MPI_Waitall(4,&SendReq,&SendStatus);
};/* while not done */

6 Conclusions

We presented modular MPI components, which may be
combined in various configurations (SPMD, MPMD,
regular, irregular). However, their code and particular
their communication must be compatible to guarantee
correct behavior. In that sense modules cannot be devel-
oped altogether independently. Ensemble provides the
architecture for developing modular components or modi-
fying existing programs with the desired generality for
composition. Components may then be composed in vari-
ous configurations without further modifications. Other
compatible components (e.g. land model) may be also
coupled with already existing ones (e.g. atm and ocn).

Compatibility in general is a dynamic property and is
not restricted to the static compatibility of channel bind-
ing. We are developing lightweight formal methods used
in synergy with program execution to test module com-
patibility and debug application composition [14].

Our aim is to be as close as possible to MPI both syn-
tactically and semantically, so that we may use all its ca-
pabilities and tools (analysis, visualization, etc.). Com-
posed programs are pure MPI programs; we do not use
any external environment for gluing components together.
Other approaches dealing with a broader problem, that of
the composition of heterogeneous components, develop
component architectures (CCA [15], Charisma [1]). They
manage “componentized” programs (mainly using OO
techniques) as well as their communication. Although
component architectures are successful in many respects,
each has its own limitations in supporting MPI programs.

Application composition, in general, requires a compo-
sition environment, in which composition directives are
specified outside the modules themselves. This is against
SPMD practice, by which all programming is expressed in
one source code (computations, topology generation, load
balancing, etc.). In Ensemble we have two such environ-
ments. The first is the Low Level composition with RSL
scripts, not convenient to use, leaving a lot of responsibili-
ties and space for errors to the programmer. The other, the
High Level Composition Tool, which uses virtual enve-
lope variables and symbolic names for processes, roots
and contexts (virtual and symbolic). We have experi-
mented with a number of them (supporting grammatical,
graphical, GUI based directives), each having its own ad-
vantages and disadvantages. We currently develop a new
HLCT, in which composition directives are specified
grammatically and as close as possible to a pseudo-SPMD
style of programming. This new composition tool will
also manage components, executables, etc as grid re-
sources using web-services.

Performance is in the core of parallel programming. No
execution overhead is introduced by Ensemble, as enve-
lope bindings are done at pre-processing and compile
time. The only cause for overhead is the execution of
SetEnvArgs, which mainly computes that would have

been coded anyway (construct communicators, find proc-
ess rank, etc). Actually, we eliminate function evaluations
determining neighboring processes each time a send/recv
is invoked. The only overhead is computing the associa-
tions of UER and MPI rank (e.g allgather call, internal
table creation).

We plan to re-engineer SPMD programs as modular
components; to extend the component communication
interface with associations of data sub-domains to ports to
deal with the coupling of M atm to N ocn processes [16].
Our objective is to define libraries for managing unstruc-
tured communication of coupled processes conveniently.
Finally we plan to address dynamically configurable ap-
plications by modifying EnvArgs at run time, redirecting
ports and decoupling/recoupling processes.

Acknowledgment. This work has been supported by the
Special Account for Research of the University of Athens.

References

[1] Bhandarkar M. A. CHARISMA: A Component Architecture for
Parallel Programming, http://www.cs.uiuc.edu/Dienst/UI/2.0/
Describe/ncstrl.uiuc_cs/UIUCDCS-R-2002-2274, 2002.

[2] Cotronis, J.Y. (1996) Efficient Composition and Automatic
Initialisation of Arbitrarily Structured PVM Programs, in
Proc. of 1st IFIP International Workshop on Parallel and Dis-
tributed Software Engineering, pp 74-85, Chapman & Hall.

[3] Cotronis, J.Y. (1998) Developing Message Passing Applica-
tions on MPICH under Ensemble, in Proc. of PVM/MPI’98,
LNCS 1497, 145-152, Springer.

[4] Cotronis, J.Y, (2002) Modular MPI Components and the
Composition of Grid Applications, Proc. PDP 2002, IEEE
Press pp 154-161.

[5] Cotronis, J.Y., Tsiatsoulis Z., Modular MPI and PVM compo-
nents, PVM/MPI’02, LNCS 2474, pp. 252-259, Springer.

[6] Foster, I. (1995) Designing and Building Parallel Programs,
Addison-Wesley Publishing Company, ISBN 0-201-57594-9.

[7] Foster, I., Kesselman, C (eds.) The Grid, Blueprint for the New
Computing Infrastructure, Morgan Kaufmann, 1999.

[8] Foster, I., Geisler, J, Gropp, W, Karonis, N., Lusk, E., Thiru-
vathukal, G., and Tuecke S.: Wide-Area Implementation of
the Message Passing Interface, Parallel Computing,
24(12):1735-1749, 1998.

[9] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.
and Sunderam, V. (1994) PVM 3 User's guide and Reference
Manual, ORNL/TM--12187.

[10] Globus Quick Start Guide, Globus Software version 1.1.3 and
1.1.4, February 2001. www.globus.org

[11] Gropp, W. and Lusk, E. (1999) User's Guide for mpich, a
Portable Implementation of MPI, ANL/MCS-TM-ANL-96/6
Rev B

[12] Message Passing Interface Forum (1994) MPI: A Message
Passing Interface Standard.

[13] MPICH-G2, http://www.hpclab.niu.edu/mpi/g2_body.html
[14] Tsiatsoulis Z., Cotronis J.Y.: Testing and Debugging Message

Passing Programs in Synergy with their Specifications, Fun-
damenta Informaticae 41, No 3 (February 2000) pp. 341-366.

[15] http://www.csm.ornl.gov/cca/
[16] http://www.csm.ornl.gov/cca/mxn/

