ECG
IST-2000-26473

Effective Computational Geometry for Curves and Surfaces

EGE

ECG Technical Report No. : ECG-TR-3022006-03

Comparison of fourth-degree algebraic numbers and

applications to geometric predicates
(revised version)

Ioannis Z. Emiris Elias P. Tsigaridas

Deliverable: 30 22 06 (item 03)
Site: INRIA
Month: 30

Project funded by the European Community
under the “Information Society Technologies”
Programme (1998-2002)

technologies

Ioannis Z. Emiris
Department of Informatics and Telecommunications, National and Kapodistrian University of
Athens, GREECE, and INRIA Sophia-Antipolis, FRANCE (emiris@di.uoa.gr)

Elias P. Tsigaridas
Department of Informatics and Telecommunications, National and Kapodistrian University of
Athens, GREECE (et@di.uoa.gr)

Abstract

We present algorithms for the exact comparison of the real roots of two polynomials of degree
4. The algorithm precomputes Sturm sequences and isolating intervals for the representation
of the roots and, additionally, uses various invariants in order to minimize the computational
effort. In most cases, the algorithm is optimal with respect to the algebraic degree of the tested
quantities in the input coefficients. Our treatment is complete, in the sense that we handle all
special cases, including when one of the polynomials has degree smaller than 4. Our algorithms
have been implemented, and some preliminary experimental results are presented in order to
show their efficiency when compared to the CORE library.

We apply these methods to answer certain geometric predicates that arise in computing the
planar arrangement of conic arcs.

In this revised version we added a formal proof about the isolating points of the quartic,
more geometric predicates that can be used in arrangement and two sections about the solution
of a bivariate system of two equations of degree at most 2 and about the sign of a bivariate
polynomial of degree 2 over two algebraic numbers.

1 Introduction

This work continues upon [12], which settled the case of algebraic numbers of degree up to 3. New
tools are needed here, especially algorithms for computing separator points between the polyno-
mial’s real roots. The problem of finding such points of low algebraic degree (ideally rational) is a
deep question of independent interest; we only scratch the surface of this problem, which leads us
towards computational number theory.

2 The quartic polynomial

The polynomial equation of degree 4 is a well studied equation. It is one of the few polynomial

equations that can be solved explicitly with radicals, but one needs to operate with /—1 even for

computing the real roots. Several approaches exist in order to solve the quartic. Refer to [?] for the

general solution of the quartic and to [15] and [?] for a unified approach, using circulant matrices.
Consider the quartic polynomial equation, where a > 0 WLOG.

f(X) =aX*—4bX? 4+ 6cX? —4dX +e=0 (1)

In the entire report, we shall consider as input the coefficients a,b,c,d,e. Our algorithms
typically test the sign of certain polynomial quantities in these coefficients. From a complexity
viewpoint, we wish to minimize the degree of the tested quantities in the input data, namely the
coefficients a, b, ¢, d, e.

Let us discuss the invariants of f, which shall be instrumental in the computations below.
For background on invariant theory, see [28, 25]. For a more a more comprehensive view of the
invariants of cubic and quartic the reader can refer to [5, 4]. For applications in comparing real
algebraic numbers of degree up to 3, see [12]. We consider the rational invariants of f, this means
the invariants for all transformation matrices in GL(2,Q). The invariants form a graded ring [4],
generated by two invariants of degree 2 and 3, which are conventionally denoted by A and B:

A = Ws+3A,

= ae — 4bd + 3¢ (2)
B = —dW1 — GAQ — CA3
= ace + 2bed — ad® — eb® — & (3)

These invariants are algebraically independent. Every other invariant is an isobaric polynomial
in A and B, this means that every other invariant is homogeneous in the coefficients of the quartic
and occurs from combinations of powers of A and B. We will denote the invariant A% — 2782 by
A1 and we refer to it as the discriminant.

The semivariants of the quartic (which are the leading coefficients of the covariants [5, 4]) are
the invariants A and B together with:

Ay = b2 —ac
R = aW; +2bA,

= —2b% — a?d + 3abe (4)
Q = 12A3-adA

= 9a2¢? — 24ach? + 12b* — ea® + 4a%db

We shall also need the quantities, which are not necessarily invariants

Ag = C2 —bd

Ay, = d?>—ce

Wi = ad-—bec

Wy = be—cd (5)
W3 = ae—bd

T = —9W12 + 27A9 A3 — 3W3/A,

Proposition 1 Let f(X) be a quartic as in Equation (1). The following table gives the numbers
of real roots and their multiplicities in all cases ([30]).

(1) A1>0ANT>0ANA2>0 {1,1,1,1}
(2) A1>0A(T<0VA;<0) {}

(3) A; <0 {1,1}

4) AL =0AT >0 (2,1,1}
(5) A;=0AT <0 {2}

(6) Al=0ANT=0ANAy>0ANR=0 {2,2}

(7) A1=0ANT=0ANA2>0AR#0 {3,1}

(8) A1=0ANT=0NA3<0 {}

(9) Ai=0ANT=0ANA3=0 {4}

The right column of the above table describes the situation of the roots. For example, {1,1,1,1}
means four simple real roots and {2,2} means two double real roots. It is worth to say that in cases
(2) and (8) there are no real Toots, but in case (2) there are no repeated roots, while in case (8)
there are two imaginary double roots.

We have to mention that our notation differs from the one at [30] because we use the quartic
with normalized coefficients and that in [30] there is a little error in the definition of 7. Additionally,
we use Sturm sequences in order to derive Proposition 1 while [30] used a discrimination system.

3 Isolating polynomials

Theorem 1 (Isolating polynomials) Given a polynomial P(X) with two adjacent roots v and
v, and given two other polynomials B(X) and C(X), let us define:

A(X) = B(X)P'(X) + C(X)P(X),

where P'(z) is the first derivative of P(X). Then A(X) or B(X) has at least one real root in the
closed interval [y1,y2].

For a proof of the above theorem see [27]. We can use the above Theorem in order to isolate the
roots of the quartic in all cases that appear in Proposition 1. For what follows separating points
and isolating points mean the same thing.

Considering the polynomial remainder sequence of P and P’, we can obtain, as a corollary, that
deg A+ deg B < deg P — 1.

3.1 First isolating polynomial

In order to find points on the x—axis that isolate the roots of a quartic we use the Theorem of

isolating polynomials.
Let B(X) = ax — b and C(X) = —4a then

AX)=3A, X2 +3W; X — W, (6)

Since %, which is the solution of B(X) = 0, is the arithmetic mean of the four roots, it is
certainly somewhere between the roots of the quartic. The other two isolating points are the
solutions of Equation (6), which are

—3W £ \/OW? + 12A, W3
T2 = e (7)

We can easily verify that sign (f (%)) = sign (azA — 3A%) and so the order of the isolating points
is
n<t<n iff)>o0
n<n< iff2)<0&R>0; (8)
ber<nm, iff(2)<0& R<O.

If f (3) = 0 then we know exactly one root of the quartic and if we do division we can express the
other three roots as roots of a cubic. Notice that if R f (3) = 0 then the quartic has a double root.

We must mention that the discriminant of this isolating polynomial is a an invariant of the
original quartic with respect to translation.

3.2 Second isolating polynomial

We apply again the theorem about the isolating polynomials but now B(X) = dz —e and C(X) =
—4d. So we have
AX)=W3X? —3Wo X2 —3A4 X (9)

The theorem about isolating polynomials tells us that at least two of the numbers below are between
the roots of the quartic. Notice that since there is no constant term, the polynomial has zero as
root.

3Wy £ /IWZ + 124, W3
6Ws

WLOG we assume that the roots are all positive and so 0 is not an isolating point. The order

of the isolating points can be determined by a similar way. The results of this paragraph can be

obtained by the results of the previous subsection by considering the reverse polynomial X*f (%)

0,012 = (10)

3.3 Finding more isolating polynomials

We consider the quartic f(X) = S35, = ¢;X". Let B(X) = a;X — Ka;j and C(X) = L where q;
and a; are coefficients of the quartic (but they could be any rationals) and K and L are parameters.
We consider the equation

A(X) = B(X)f'(X) + C(X) f(X). (11)
The polynomial A(X) is now a quartic of the form
A(X) = by Xt 453 X3 + 02 X2 + 01 X + b (12)

where the coefficients b; are functions in K and L. We can choose to eliminate two of these
coefficients by equating them to zero. We solve the corresponding system for the parameters and
we have the isolating polynomials A(X) and B(X).

If we choose to eliminate by and b3 then we have the first isolating polynomial. If we choose to
eliminate b3 and b, then we have an isolating quartic which is

3aWizt 4+ 6(3bA3 — dAg)z? — eW — 8bA3 (13)

The smallest and the largest root of the above quartic always isolate the smallest and the largest
root of the original quartic.

At this point we have to mention that by the above method we can always find a biquadratic
that isolates the roots of every quartic.

4 Isolate the roots of every quartic
Let us now find the isolating points for all the cases of Proposition 1.
{1,1,1,1} We apply the theorem of isolating polynomials.

{} Nothing to do since the quartic has no real roots.

{1,1} We apply the theorem of the isolating polynomials in order to derive the one and only
isolating point by testing the sign of f over the isolating points. The isolating point may not
be rational.

{2,1,1} We can compute the double root from the pseudo-remainder sequence P 1.7~ The double

root is rational since it is the only root of GCD(f, f) and its value is % In theory, we could
divide it out and use the isolating points of the cubic.

When the double root is the middle root then % and —QVKT; are isolating points for the other
two roots. When the double root is the smallest or the biggest root we apply the theorem of

isolating polynomials in order to find one more isolating point in Q.

{2} We can compute the double root from the pseudo-remainder sequence ﬁf - This root is
rational since it is the only root of GCD(f, f').

{2,2} The two roots of the quartic are also roots of the derivative. To be more specific they are
the smallest and the biggest root of the derivative. So in order to encode and isolate them we
use the derivative which is a cubic. Additionally we can express the two roots as the roots of
the polynomial abX? — 2b>°X + ad. We prefer the cubic since in this case the algebraic degree
of the coefficients is one. In any case, the isolating points € Q because they are obtained
from those of a cubic.

{3,1} In this case we can compute the roots exactly, ie. as rationals. The triple root is —QWTI and
2

: s 3aW1+8bAs
the single root is =*+5LC>=2 A,

{} Nothing to do since the quartic has now real roots.
o b
{4} The one real root is 2 € Q.

We are considering the case where the quartic has 4 or 2 simple real roots exactly, since otherwise
it is clear from the previous paragraph that we can easily find rational points that isolate the roots.
The case {1,1} is easier than {1,1,1,1}, so we focus on the latter. Additionally, we assume that 0
is not a root of the quartic.

4.1 Rational points that isolate the roots of the quartic

Consider the quartic polynomial equation, where a > 0,b = 0.
f(X) =aX*+6cX? —4dX +e=0.
If we specialize Equation (7) with b = 0 we get the equations

3d++v9A4 — 3ce

= 14
71,2 6 (14)
If we specialize Equation (10) with b = 0 we get the equations
—3dc+V9Id%c? + 12 aeA
- c+v9d%c2 +12aeAy (15)

2ae

We use the following lemma

Lemma 1 For any rationals 0 < 7 < ’:LL—,/ the following inequality holds

<

m m+m m
n n+n' n’

Proof. The proof is easy by considering the inequality mn’ < m’n. O

The most difficult case is when 7; and o, 4,5 € {1,2}, isolate the same pair of adjacent roots.
Without loss of generality assume that these are 7 and 1. In order to simplify the notation let

A = 9A4—3ce

B 12aeAy + 9 d%c? (16)

So the isolating point for these two adjacent roots is %#' If we can find a rational

number £ between /A and v/B, then we are done since we can replace their sum with 2£.
We assume that the quartic has 4 real roots hence by Newton’s Theorem (see [31]), the following
inequalities hold
b2—a6202>ac§0,c2—ba2O,dz—cez(),

where the 2nd inequality gives no special information, but the first one yields a > 0 = ¢ < 0. Since
b =0, then by Descartes’ rule of signs we can conclude that there are the following cases:

e > 0, when there are 2 positive and 2 negative roots (2 sign changes).

e < 0 when there are 3 positive and one negative roots (3 changes), or vice versa (1 sign change).
e = 0 then there is exactly one zero root and d > 0 (or d < 0) depending on whether there are 2
(or 1) positive and 1 (or 2) negative roots.

Theorem 2 For every quartic with 2 distinct or 4 distinct real roots (and b=10)

\/9A4—3ce§L\/9A4—3cej+1§\/9d202—|—12aeA4 (17)

or alternatively |v/9A, — 3ce — /9 d2c% + 12aely| > 1.

Proof. Let A = 9d? — 12ce and B = 12aed? — 12ace?® + 9d?c?. It is enough to show that:

VB > 1+VA &
VE > 1+ ﬁ =
VE > 2 &
% > 4 & (18)
% — 4aed? g;il?aiifcjngC Z 4 =
daed? — dace? + 3d*c? > 12d%2 — 16ce <
daed?® — dace® + 3d%c® — 12d2 + 16ce > 0.

By letting g(a, ¢, d, e) = 4aed? —4dace? +3d*c? —12d? + 16ce, our problem is to find the minimum
of g, subject to the constraints —a < 1, ¢ < =5, —d < 0 and —e < —5 (we treat the case where

¢ > —5and e < 5 later). We introduce slack variables y1, y2 and y2 and we use Lagrange multipliers.
So our problem now is

min L(C) 67?/1)?/2))\15)\2) = g(C, 6)+
Aic+yi +5)+ (19)
Xo(—e+y3+5)
A3(—a+y3+1)
We take partial derivatives

%L = 126(d2—ce)—)\3 = 0

SL = —12ae*+18d%c+48e+ A =0

2L = 2daed+18dc* —72d =0

%L = 12a(d2—ce)—12aec+48c—)\2 =0

L = 2)\1y1 = 0

VLo~ oo -0 (20)

352 = 292 =

a—gSL == 2)\3y3 = 0

sl = c+5+uy? =0

el = —e+5+y? = 0

ol = —a+1+y;s 0

The solution of the above system is (a,c,d,e) = (1,—5,0,5) and (g(1,—5,0,5) = 300 > 0 which is
a local minimum.

If -5 <ec¢<0and0 < e <5 we substitute all the combinations to A and B and the we can see
that VA —+vB > 1.

If ¢ = 0 then v/A = 3|d|, and we have a rational isolating point. O

4.2 Isolating the roots of a cubic

In ([12]) we used a geometric proposition in order to isolate the roots of the cubic. If we use the
theorem of isolating polynomials we find the same results.

5 Sturm Sequences

Sturm sequences is a well known and useful tool for isolating the roots of any polynomial. In
[16] static Sturm sequences were used in order to compare the roots of polynomials of degree 2.
Below we give a small introduction to the Sturm sequences. For a more comprehensive view of the
definitions and the theorems below see [31] or [?].

Definition 1 (Sturm Sequence) Let P and @ € R[z] be non-zero polynomials. By a (general-
ized) Sturm sequence for P and QQ we mean any pseudo-remainder sequence (PRS)

P:(POa-Pl)"'aPn)) 7121,

such that for all i = 0,...,n, we have

;P = QiP; + B Pi1

(Qi € Rlz],a, B € R), such that o;3; < 0 and Pp11 = 0. This PRS is called Sturm sequence
or signed pseudo-remainder sequence. We usually write Pp, p, if we want to denote the first two
terms in the sequence.

Definition 2 For a number v € R and a Sturm sequence P = (Py, Py, ..., P,), V() will denote
the number of sign variations of the sequence of values of the P; at v, 0 <1 < n.

Considering the above definitions the following theorems hold

Theorem 3 (Schwartz-Sharir) Let P,Q € R[z] be square-free polynomials. If a < (3 are both
non-roots of P then

Vegla, 8] = Veg(a) — Veg(8) = Y _sign (P (1)Q(v))
Y

where v ranges over the roots of P in [, f].

Theorem 4 (Sylvester, revisited by Ben-Or, Kozen, Reif) Let P be a Sturm sequence for
P, P/Q where P is square free and P, Q) are relative prime. Then for all o < B which are non-roots

of P,
Vpla, 8] =) sign (Q(7))

where 7y ranges over the roots of P in |« (3].

It is possible to use the above theorems to order the roots of any pair of polynomials, of any
degree, but as a prerequisite we must either find combinations of Sturm sequences that distinguish
among all cases or find intervals that contain only one root of every polynomial. The former is not
always possible. As regards to isolating intervals we use them in the followings sections and we
shall see that they can leads to optimal or to nearly optimal algorithms for root comparison.

The computation of a Sturm sequence is a quite expensive computational task.

Assume that we want to compute the Sturm sequence of two polynomials P, Q € Q[z]. In order
to accelerate the computation we assume that the polynomials are P, @ € Q(ao, ..., an,bo, ..., by)[x],
where a; and b; are the coefficients of the two polynomials and now are considered as parameters.
Next we pre-compute various Sturm sequences (for various n and m) and when we want a specific
sequence we specialize the parameters. The problem now is that these sequences do not commute
with specialization.

In order to take account of all the possible signed remainder sequences that might appear by
specializing the parameters we use the definitions and the notation from [1].

Proposition 2 (Signed pseudo-remainder) Let

P=> aX', Q=Y bX', PQe¢DX] (21)
=0

J=0

where D is any subring of C. The signed pseudo-remainder is the megative remainder of the
euclidean division of b, P by Q, where d is the smallest even integer greater than or equal to
n—m+1 (we assume n > m).

® +pz+q

v

322 +p
6px+9q 9q 0
36 p> + 243 ¢ 0

Figure 1: The tree of all possible cases of P £

Proposition 3 (Truncation and set of truncations) Let

Q=> bX', Qe D[X] (22)
7=0
We define for 0 < i < m the truncation of Q at i by
TR;(Q) = b; X" 4 ... + by (23)
The set of truncations of polynomial QQ € Dby, ..., bo|[X] is a finite subset of Q € Dby, ..., bo][X]
defined by
_ /@) if b € D
TR(Q) = { {Q} UTR(TRaeg0—-1(Q)), othewise. (29)

The tree of all possible signed pseudo-remainder sequences of two polynomials
P,Q € Q(ag,...,an,bo,...,b,)[X], is tree whose root contains P. The children of the root con-
tains the elements of the set of truncations of Q. FEach node N contains a polynomial Pol(N) €
Q(ag, .-, an,bo,...,b,)[X]. A node N is a leaf if Pol(N) = 0. If N is not a leaf then the children
of N contain the truncations of PRem (Pol(p(N)), Pol(N)), where p(N) is the parent of N. (You
can refer to [1] for details).

So in order to accelerate the computation of the Sturm sequences we have to pre-compute all
the paths from the root of tree to every leaf. Now the specialization commutes with the tree of
the possible signed pseudo-remainder sequences. We will come back to this issue when we will talk
about the implementation of the comparison of roots of two quartics.

In figure 1 you can see the tree of all possible cases of a PRS with fy = f = 2% + pz + ¢ and
fi=f ". The tree enumerates all the possible cases for every specialization of the parameters p and
q.

6 Applications of the Sturm sequence

For a more comprehensive description of the applications of the Sturm sequence the reader can
refer to [31] and [12].

6.1 The sign of a real algebraic number

Suppose that we want to determine the sign of number 3 in a real number field Q(«). We assume
that (§ is represented by a square-free rational polynomial B(X) € Q[X] : f = B(a), that is
square-free. Assume that « is represented by an isolating interval representation

a = (4, [a,b])
where A(X) € Z[X] is a square-free polynomial. By using Corollary 3 we can conclude that
sign(B(a)) = sign(Va pla, b] - A'(a)).

If B(X) is not square-free then we can decompose into a product of square-free polynomials. If B
has Bi, By ... By as square-free decomposition then

k
sign(B(a)) = [[sien(Bi(a)).
=1

6.2 Comparing two real algebraic numbers

Suppose that we want to compare two algebraic numbers v and 72 and that we have an isolating
interval representation for them, that is

v = (P1($)711)7 V2 = (PQ(x)7[2)

where I = [a1,b1] and Iy = [ag, bo], then Algorithm 1 performs the comparison.

In Algorithm 1 let J be the intersection of the two isolating intervals I; and I,. When J is the
empty set, that is the case when the two isolating intervals are distinct, then can easily order the
two algebraic number by comparing the first endpoint of their isolating interval. When only ~; or
2 belong to the intersection and the other not then we can treat this case similar to the case were
they belong to distinct isolating intervals. In order to decide whether an algebraic number is in an
interval we must evaluate its corresponding polynomial to the endpoints of the interval.

As to complete the algorithm it suffices to determine exactly the Sturm Sequence that we use.
We use the Sturm sequence in the case where both algebraic numbers are in the intersection of
their isolating intervals. Assuming this, we can easily conclude that

M > & Po(m1) - Py(72) >0

We can easily obtain the sign of PQ/ (72) and from Theorem 3 we can obtain the sign of Py(71).
That is

Py(m) - Py(12) > 0 & (Ve ple,d)) - (Pu(d) — Pi(c)) - (Pa(d) — Pi(c)) > 0 (25)

The last polynomial in Sturm sequence Vp, p, is always the resultant of the two polynomials.
We have to mention that when v; = v9 < P5(y1) = 0, since both polynomials are square-free.

10

Algorithm 1 Compare two algebraic numbers
Require: 71 = (Pi(z), 1), 72 = (P2(2),]2)
Ensure: v <y or v1 > 7o
J—ILNIy=cd]
if J =0 then
RETURN a1 < ag?"}/l < Y2171 > Y2
else if (v € J) A (y2 ¢ J) then
{Assume I, — J = [m,n]}
RETURN ¢ < m7y; < Y2 : 71 > V2
else if (y1 ¢ J) A (72 € J) then
{Assume I} — J = [m,n]}
RETURN m < ¢?y1 < Y2 : Y1 > Yo
else
{Both numbers lie in J}
Evaluate a Sturm sequence on J to decide
end if

7 The Sturm sequence for two quartics

At first we consider the Sturm sequence for a quartic by letting Sy = f(X) and S; = f'(X). From
this sequence we can find the multiple roots exactly.

So(X) f/(X)
S1(X) = f(X)
So(X) = 3A:X%2+3W1X — W3 (26)
Sg(X) = T X+1Tp
Si(X) = =4
where
TI = —W3Ay —3W2+9A5A;
T, = AW, —9bB (27)

If A; = 0 then we can compute the multiple root of the quartic either from S3(X) or from Sa(X).For
the rest of the section we assume that the quartics that appear have 4 distinct real roots.
Let the two quartics be
X)) = e X' =41 XP 4661 X% —4d1 X + (28)
f2o(X) = aaX* —4by X3 +6c2X? — 4da X + €9 (29)

We consider the Sturm sequence S with Sy = fi(z) and S; = f2(X). The complete Sturm
sequence is

11

= fi(X)

fa(X)

—4J X3 +6G X% —4AM X + M;s

= S3 X2+ S31 X + Sz

Sy1 X + Sy (30)
= —8M;5(S41 — M3S31)

+32M 4 (M5S32 — MySsp)

—12M¢(S10 — 2M3S30)

+M2(M3 — 16M My — 16J Ms + 36G M)

— O
I

where
Szs = 2[4J(M +6J;) — 9G?]
S31 = 2 [GGM - J(16M1 + Mg)]
Sg() = 8JM, — 3GM3
Sy = —4S832(6Ma + My) — 16M1.S31 + 8M S3
+2 [-JMs(16My — M3) + 16M (M? — 6J Ma) — 32J2 M|
Sy = 6MgSso — (16 M1 + Ms3)Ss9 — 8M (M M3 — 6.J Mg)

We consider the Sturm sequence S with Sy = f1(X) and S; = f2(X) when J = 0. The complete
Sturm sequence is

(31)

So(z) = fi(X)

Si(z) = fa(X)

So(x) = 6GX2—4MX + Ms

S3(z) = G[S31 X + Ss0] (32)
Sy(z) = —8Ms5(Ss1 — M3S31)

+32M 4 (M5S32 — M4S30)
—12Mg(S40 — 2M3S30)
+M2(M2 — 16 M My — 16J M5 + 36G M)

Of course we must consider two more degenerate Sturm sequence. One for J = G = 0, one for
J =G = M = 0 and the trivial one when J =G =M = M3 = 0.

In order to simplify things we assume present an evaluation scheme for the complete Sturm
sequence. We can treat all possible evaluations of the Sturm sequence as a binary tree, which
has as nodes the evaluation of a term of the sequence and that branches according to the sign of
the computed quantity. We have precomputed all the possible cases and we store the cases where
we can decide the result of the sequence evaluation before we reach the bottom of the tree. In
Algorithm 2 we can see the algorithm for comparing the two largest roots of the two quartics. We
must say that this algorithm is automatically generated and that variable where allow us not to
use nested if’s. The only thing the user must do by hand is to write the functions COMPUTE.
Additionally the expression where "= number means where = where XOR number.

The maximum algebraic degree involved in the coefficients of every Sturm sequence is the
algebraic degree of the resultant of the two polynomials, which is 8. So in order to decide the
maximum algebraic degree involved in the comparison of of the roots of two quartics we must
consider the evaluation of the Sturm sequences on the endpoints of the isolating intervals of the
roots.

12

Theorem 5 There is an algorithm that compares any two roots of two quartics using Sturm se-
quences and isolating intervals from Theorem 1 while the algebraic degree of the quantities involved
is 14.

Proof. In order to compare any two roots of two quartics we use the algorithms of Section 6. If
want to use this algorithm we must provide isolating intervals for the roots of the quartics. For
this we use the Theorem of Isolating polynomials and the results from Section 3.

Now the problem is that the endpoints of the isolating intervals are not rational numbers but
algebraic ones of degree 2 in the general case, where the coefficients of the representing polynomial
are of algebraic degree 2. So we have to evaluate the Sturm sequence on an algebraic number. But
we only need the sign of this evaluation, which can be easily obtained as explained in Section 6.
Hence there is an algorithm.

As for the maximum algebraic degree involved, we consider the most difficult case, which is
to determine the sign of S4(X) over the algebraic number 71 or 75. Notice that the degree of the
coefficients of Sy(X) is 6. In order to decide the sign we must evaluate the polynomial of Equation
6 over the solution of the equation S4(X) = 0. This evaluation involves algebraic degree 14, which
is an upper bound for our algorithm.

Notice that deg Resultant = deg S5(X) = 8. O

Theorem 6 (Algebraic degree of the resultant) The resultant of two polynomials P and Q
of degree m and n respectively, is a homogeneous polynomial in the coefficients of the polynomials
with degree m + n. Additionally if the coefficients of P and @) have algebraic degree p and q, then
the algebraic degree of the resultant is pn+qm ([?7, 7, 7]).

It is well known that the algebraic degree of the resultant provides a tight lower bound in order
to find the common solutions of a system of two equations. In the case of two quartics, assume
that one of the quartics has a multiple root and additionally that this root is % (this case happens
when the quartic has one double root, see Proposition 1). The algebraic degree of this quantity is
4, but we can express it as a sum of fractions and reduce its algebraic degree to 3. In other words,
this rational number is the root of the degree one polynomial T'(X) = T X — T, whose coefficients
have algebraic degree 3.

If we form the resultant of 7'(X) and a quartic, then by Theorem 6 its algebraic degree is 13.
On the other hand the resultant of two quartics has algebraic degree 8. This lead us to the following
claim.

Claim 1 (Minimum condition of comparison) In order to compare the roots of two equations
the bound on the algebraic degree provided by their resultant is not always tight. Or in other words,
resultants are minimum conditions of solvability but resultants are not minimum conditions
of comparison.

If our claim and the above discussion is correct, then our algorithm for the comparison of the

roots of two quartics is nearly optimal, since it has algebraic degree 14, while the lower bound is
13.

13

Algorithm 2 Compare the two largest roots of two quartics

Require: Isolating interval representation of the two numbers
Find an common isolating interval of the form [g, +00)
Check if both numbers lie in a common interval

COMPUTE S2(+00)

if S3(+00) > 0 then where” = 64

COMPUTE S2(£)

if <SQ(§) > 0> then where "= 32

COMPUTE S3(+00)

if (S3(400) > 0) then where = 16

COMPUTE S3(£)

10: if (sg(g) > o) then where = 8

11: if where € {16} then

122 RETURN SMALLER;

13: end if

14: if where € {112} then

15: RETURN LARGER;

16: end if

17: COMPUTE Sy(+00)

18: if (S4(+00) > 0) then where = 4

19: if where € {4,24, 56,68} then

20: RETURN SMALLER;

21: end if

22: if where € {32,92,96,124} then

23: RETURN LARGER;

24: end if

25: COMPUTE Sy(£)

26: if <S4(§) > 0> then where "= 2

27: if where € {0,14, 30,46, 48,62, 64, 78,80,110} then
28: RETURN SMALLER;

29: end if

30: if where € {8,38,40,54,72,86,88,102,104, 120} then
31: RETURN LARGER;

32: end if

33: COMPUTE S5

34: if (S5 > 0) then where =1

35: if where € {3,11,12,28,36,43,44,51,52,60,67,75,76,83,84,91, 100, 107,108,123} then
36: RETURN SMALLER;

37: end if

38: if where € {2,10,13,29,37,42,45,50, 53, 61,66, 74, 77,82, 85,90, 101,106, 109, 122} then
39: RETURN LARGER;

40: end if

41: RETURN EQUAL;

14

8 Quartic-Quadratic

In this section we provide the Sturm sequences that we need in order to compare the roots of a
quartic and a quadratic. We assume two equations

A(X) = a1 X' —4b1 X3 +6c1 X2 —4d1 X + e
fQ(X) = CL2X2 — 20X + ¢

We consider the Sturm sequence S with Sy = f1(z) and S; = f2(X). The complete Sturm sequence
is

So(X) = fi(X)

S1(X) = fo(X)

S2(X) = SuX + Sy
S3(X) = —(¢*—16L%))

In order to reduce the computational cost, we need the quantities

N1 = agd; — by
Ny = creo —azeq
N3 = age; — bady
Ny = bibs —ascy
G = a1y — asC1
Ji = bicg —bacy
Wi = aidi — by
W2 = b1€1 — Cldl
Alg = b% — ai1cy
A13 = C% — b1d1
A14 = d% — C1€1
A5 = c% —ajeq
Alg = b% — agCy

and so the involved quantities in the Sturm sequence are:

¢ = —4byJ1 + oG + ag (3 Ny + 4N3)
Y = ax(aaAis+2bWo)
+b2 (baA15 + 2 coWh) + co (c2A12 + 2a2A13)
Y, = A
Sor = —4J(b3 4 Ag) +4a(2bsNg + asNy)

Sop = Cg(alAQQ + 3b2J) + ag(—5 co Ny + agNg).

9 Quartic-Cubic

In this section we provide the Sturm sequences that we need in order to compare the roots of a
quartic and a cubic. At this point we must say that despite the fact that the factorization of the
quantities that appear in the various Sturm sequences seams a very difficult task, there is a way to
make this procedure easier. At first we consider the Bezoutian matrix of two polynomials and then

15

we can easily verify that every coefficient in the Sturm sequences is a combination of the elements
of the Bezoutian matrix. We consider two equations

AX) = et X'+ X3+ X2 +di X +e
(X)) = X3 +hX?+euX+d

We consider the Sturm sequence S with Sy = f1(z) and S; = f2(X). The complete Sturm sequence
is

So (X) = fl (X)

S1 (X) = f2(X)

So(X) = SpX?+ SnX + Sy
S3(X) = S3X?+ Sz

S4(X) —52, 820+530(S21.531 —S530522)

2
S22

In order to reduce the computational cost, we need the quantities

SQQ = GQG—bQJ

521 == CLQM—CQJ

SQQ = ag Kl — bgM

S31 = SQQKQ_M(2321_QQM)+C%(b1J_a1G)
S0 = —S90 (J1 + M) —bye1(Sa + as G) — do G?
M = a d2 — ag d1

G = a1ty —agC

J = a1 b2 — ag b1

J1 = bicg—bacy

Ky = dyby—erag—diby

Ky = cicg—bady+b1da —aze

10 Representations for the arrangement of conic arcs

Our representations are those developed for the Curved Kernel, see [21]. We consider conic sections
in the general form:
flr,y)=ra® +sy* +tey+ur+vy+w. (33)

More particularly:

e A conic section is a curve, provided by the Curved Kernel, represented by a polynomial in 2
variables as in (33). We assume that this is polynomial always contains at least one quadratic
term. At certain points below, we may consider only the case of ellipses, but generalizing to
arbitrary conic sections should be straightforward.

e A conic arc is z-monotone, unless it is the input to make_x_monotone. It is represented
by a supporting conic section and, in the former case, a boolean indicating whether it lies on
the upper or lower part of the curve.

16

e An arc’s endpoint is represented as the intersection of 2 conic arcs and its x,y coordinates.
These correspond to algebraic numbers of degree 4 expressed by Root-Of-4 structures; this
does not preclude the possibility to have rational or quadratic numbers, whenever possible.
The ordinate y may be expressed parametrically by a univariate polynomial in y, namely
A(z)y + B(x), whose coefficients are themselves polynomials in x of degrees 1 and 2 resp. At
present, we assume that only x is always given as a Root-Of-4, while y has either parametric
or Root-Of-4 expression.

It might be possible to alternate between the 2 representations of y, given that of x, but for
now it does not seem straightforward in all cases. One example of the parametric representation
is given at (40) and (41). Remark, that it is not always to obtain a linear polynomial in y: for
orthogonal ellipses with one tangential intersection, there are 2 double roots for the resultant in x.
The resultant in y has one double root and two simple roots. For the simple roots, the parametric
expression is of the form Ay? + B(z), where A is a constant and B(z) is linear.

11 Predicates for arrangements of conic arcs

In this section we will use the results from Section 6 in order to derive certain important predicates
that we need for the arrangement of conic arcs. Our strategy is to reduce certain predicates to
others, so as to reduce the number of predicates that must be implemented from scratch. The
paradigm we have in mind is the sweep-algorithm with a vertical sweepline. We plan a CGAL-like
implementation of these predicates, aiming at integrating them with the Curved Kernel.

11.1 compare_x and compare_y

If the ordinate is represented by Ay? + B(x), then we need a comparison of quadratic roots in an
extension field.

If we assume that the two ordinates are given by Ay + B = 0, A’y + B’ = 0, the comparison
of 2 ordinates reduces to determining the signs of A, A’ and testing the sign of AB’ — A’B at the
proper real value of x. If either of A, A’ equals 0, then there are infinite solutions for y and the
conics of the geometric problem are overlapping.

Polynomial AB’ — A’B is univariate and has degree (at most) 3 in x, because deg A(z) =
1,deg B(x) = 2. Since z is a root of a quartic, the sign computation can be solved by the
above methods, in particular those of comparing roots of a quartic and a cubic. If the degrees
of A, A’, B, B' are smaller than 1 and 2, respectively, then the sign computation is simplified ac-
cordingly. The smallest degrees occur when A or A’ is constant and B or B’ is zero.

The comparison of abscissae reduces to comparing specific roots of polynomials of degree at
most 4, which is solved above.

11.2 make_x_monotone

In order to cut a conic to monotone arcs we must find its points where the tangent is a vertical
line. We take the derivatives with respect to x and y. These are:

fo = 2rx+ty+u,
fy = 2sy+tx+o.

17

The common points of f and f, are the points of the conic that have vertical tangents. In order
to specify the abscissae of these points we take the resultant of f and f, by eliminating y.

R, = Resy(f, fy) = s(Ay2? — 2By + C) (34)
where
A = 4dsr—1t?
By = vt—2su (35)
Ci, = —v’+4sw

We can forget the s factor if we are considering only ellipses, so always s # 0.
In order to specify the ordinates of the points of interest we consider the resultant of f and f,
by eliminating x. This is

Ry = Resy(f, fz) = r(A2y® — 2Bay + Cs) (36)
Ay = A
By, = —2rv+tu (37)
Cy = 4rw—u?

We might assume that r # 0 if we restricted attention to ellipses.

From the two resultants, we obtain the abscissae and the ordinates of the tangential points, but
we have to find the correspondence between them. This can be done easily if we consider the slope
of the line f, = 0. The slope is —2%. There are 3 cases:

e Ifthe slope is negative, i.e. st > 0 in the case of ellipses, then the biggest root of R, corresponds
to the biggest root of I,.

e If the slope is positive, i.e. st < 0, then the biggest root of R, corresponds to the smallest
root of I,.

e If it is zero, i.e. £ = 0, then this means that f, = 0 is a horizontal line and that R, has one

double root, which is —4~.

Now that we specified the two tangential points we can split the ellipse to two monotone arcs,
the upper and the lower part.

11.3 nearest_intersection_to_right

Given are two conic arcs and a point I'. We wish to find the first intersection of the arcs to the
right of I". Special cases include that I be an intersection, in which case we return itself. When
the two arcs overlap, we return their common arc, defined by two endpoints. These are identified
by straightforward tests, similar to those in the case of circular arcs.

Let us take the general case, and regard curves instead of arcs, for now. We construct all of
their intersections by applying solve, then apply comparisons between I' and these roots.

We have solved the problem concerning 2 conic curves, but we still need to limit our search
among the intersection points of the arcs. The constructor of intersections as endpoints may assign
the information on whether this point lies on the upper or lower part of the curve, so it would
suffice to call in_x_range. Otherwise, we apply is_on_arc.

18

The comparisons of 7y, with the abscissae of the intersections shall, internally, optimize execution by
using the isolating (also called “separating”) points between the roots of the resultant. These are algebraic
numbers of degree up to 2 and, in practice, rational points. If we were to do this explicitly by hand, we
would apply binary search of I' among the isolating points, where the basic test is a comparison between the
x-coordinates of an isolating point and ~y,. Let the isolating points be sg < s1 < sa, let the real roots be r;,
and let us consider the case of 4 real roots, so i =0,...,3. In summary, we would need two comparisons of
Yz with isolating points, and one comparison between v, and the abscissa of some root of the resultant. Hence
two comparisons between algebraic numbers of degree 4 and 2, and one comparison between two algebraic
numbers of degree 4. All of these comparisons have been described in the algorithms above.

Algorithm 3 Minor subroutine for nearest_intersection_to_right: Position v, among roots
using isolating points, where ro < sop <71 < 51 < 19 < S9 < 13.
if v, < s1 then
if v, < sg then
if v, < rg then RETURN 7 else RETURN 7
else
if v, < ry then RETURN r; else RETURN 7y
end if
else
if v, < s9 then
if v, < ro then RETURN r9 else RETURN 73
else
if 7, < r3 then RETURN r3 else RETURN No intersection to the right
end if
end if

11.4 1is_on_arc

Given an arc of curve f and a point on f, decide whether the point lies on the arc. First, check
in_x_range. Then, the problem reduces to deciding whether the point lies on the upper or lower
part of f, i.e. comparing specific y roots of fy(vz,y) = tyz+2sy—+wv, and Ry(y), defining the ordinate
of y. This is a comparison of algebraic numbers of degrees 1 and 4 over Q[vy,]. The heaviest test is
a call of sign_at on Ry, (—(ty,/2s) — v/2s); which is a polynomial of degree 4 in 7,. So we apply
compare on two polynomials of degree 4, the second one being R, (7,) defining ~,.

Alternatively, we may use the representation of intersection points by a pair of a quartic root, for the
abscissa, and an expression Ay + B for the ordinate, where A, B are z-polynomials of degree 1 and 2
respectively. The question is to decide, given such a point, whether it lies on the given arc or not. Once we
decide whether the point lies on the upper or lower part of the conic, it suffices to test the x-range of the
arc. So, our problem is reduced to deciding whether a point of the form [Root-of-4, Ay + B] lies on the upper
or lower part of a conic with equation f(x,y). Fquivalently, we must compare the root of A(y.)y + B(vx)
against the root of fy(vz,y), which is linear in y and . If we write fy(vz,y) = Cy + D(vz), we know that
C' is a constant and D(v,) is linear. Hence, it suffices to test the sign of B(v.)C — A(Vz)D(vx), which is
(at most) quadratic in v,, at the proper root of the quartic expressing .. This is similar to comparing the
root of a quartic and a quadratic, presented in section 8.

19

11.5 compare_y_to_right

Given are two conic arcs on curves gi, go, and one of their intersection points I'. Point I' may be
defined as the intersection of two other curves. The predicate decides which arc is above and which
is below, immediately to the right of I'. Our method is to test the vertical ordering of the 2 arcs at
some convenient test point to the right of the given intersection, see figure 2.

This test point must also be to the left of the next intersection, if any, between the two given
arcs, so it must lie to the left of the next intersection between the two given conic curves. This is
equivalent to picking a point between I' and the next real root, to the right, of the resultant R, of
the two conics. In other words, we search for a point whose abscissa isolates the abscissae of I' and
the next root of the resultant, provided there is another root to the right.

If such a root does not exist, we have no guarantee that the isolating point will be useful. In
this case, we can use one endpoint of some arc and call compare_y_at_x on the other arc and this
endpoint. In the rest of this discussion, we assume a valid isolating point exists.

Figure 2: Predicate compare_y_to_right, with the given point marked by v and the test point marked
by a longer vertical segment.

Since the resultant is a polynomial in x of degree at most 4, we have described how to compute
isolating points in the previous sections. Let s be an adequate isolating point, and L the line y — s.
It is possible to define the intersection point, call it ¢, of L with one of the curves, say go, using
the algorithms implementing make_x_monotone. The abscissa of ¢ is the root of a quadratic or
linear polynomial. Assuming that its ordinate is expressed by a linear polynomial in (Q[x])[y] (ie.
with coefficients which are polynomials in x), it remains to apply compare_y_at_x on ¢ and g;.

An alternative method specializes the equations of g1, gs with x +— s, thus yielding quadratic
polynomials in y. Their coefficients are rational, assuming any isolating point is rational. By
considering whether the given arcs lie on the upper or lower part of g;, we can focus on the larger
or smaller root of the respective quadratic equation. It now suffices to compare these roots of
the two quadratics, using some known algorithm, e.g. see [12]. In short, this method requires 2
specializations and a single comparison of quadratic roots.

11.6 compare_y_at x

In this predicate we need to decide whether a given conic arc is above or below a given point,
which is defined as a specific intersection of two other conic arcs g1, go. Denote the given point by
I'(v2,7y), where its coordinates can be expressed by roots of quartics.

20

The supporting conic of the conic arc is of the form of Equation (33). We know in advance if
the arc is on the upper or the lower part. Suppose that the arc is on the upper part. See, e.g.,
figure 3.

Figure 3: Predicate compare_y_at_x with the given point marked by ~ and the query (red) arc
denoted by gs.

If we set z = 7, to Equation (33), this becomes

9y) = Ay’ +By+C (38)
where

A = s

B = ty,+v

C = r+uy+w

Since we consider only the upper part we can infer that the ordinate of the arc’s point with abscissa
vz is the largest root (hence with index 1) of the polynomial g. We denote this by

Y1 = (g’ 1)

If the given arc were on the lower part, we would use (g,0).

Now, there are two possibilities concerning the representation of v,. The first is to use its
representation as a root of a quartic. Then, we are led to compare specific roots of a quartic and
a quadratic, as in section 8. However, the quadratic polynomial, namely ¢, has coefficients in the
extension field containing .. So, every sign test involving =, shall reduce to computing the sign
of a polynomial over the rationals at the root of the quartic polynomial defining +,. This can be
done with the Sturm-based techniques of Section 6.

In what follows, we use the following representation for I': [Root-of-4, Ay + B]. Suppose that
the intersecting conics are:

g = 7"11'2 + s1y2 + iy + uix + vy + wq
g2 = rox’ 4 soy® + taxy + ugx + voy + wo (39)

Then ~, is represented by the resultant of g; and g, with respect to y, which is a quartic polynomial,
and an index that denotes which root of the quartic we need. Assume that the resultant is

R, = Res(g1,92,y) = dax* + dza® + doa® + dyz + do

21

The coefficients of the resultant are of algebraic degree 4. In order to find the ordinate of the
intersection point, we let x =+, in Equations (39) and form the equation

Qi(y) = 52010V Y) — 5192(Va» V)
= Aw+ B (40)
where
A = (sit2 — sat1) vz + s1v2 — S201 (41)
By = (sirg — sor1) 'Y:z:2 + (s1u2 — S2u1) Yz + S1W2 — Sawy

In order to find vy, we must solve Q1(y) = 0, which is of degree 1, with respect to y. By our notation
this is
Ty = (Ql’ 0)'

In order to decide the predicate we compare y; and 7,. The equation that represents y; is of
degree 2 and the equation that represents v, is of degree 1 (the reader can refer to [12] in order
to see the treatment of such a case). The first thing to do is to compare 7, with the apex of the
Equation (38), which is —%. This is equivalent to testing the sign of the quantity

= koV2 + k17e + ko

where
ko = 2ss9ri+tsitg—tsogt; —28817T9,
ki = —2ssius+2s8sgu; —tsovy +v81ty —vsgty + ts1vg,
ko = vSyv1 +28Ss9wi — 2881wy + U 81 Vs.

In order to test the sign of J we find the sign of the polynomial J(z) over the algebraic number ~,.
This can be done as explained at Section 6.

If J <0 we are done (y; is ABOVE). If J > 0 then we must test the sign of g(v,). This is
equivalent to testing the sign of the quantity

F = Lyvs + Lv2 + Lov2 + L1, + Lo

22

where

Ly = 8812T22 — t8227“1t1 + 7“512t22 + 7“522t12 — 25881198911 + 8822T12
—t8127“2t2 + t817“282t1 — 27“81t282t1 + t827“181t2
Lz = tsorisivy + 2889%r1u; — 2 ssarisius — ts92r vy

+2 7“522t1’01 — t822u1t1 + 2 T812t22}2 — 27rs51tasouy
+itsouis1ty — 1)8227“1t1 — t812UQt2 + ts1uos9ty
—278911 8109 + 2 881 2r9us + us12ty? + use3ty?
+vsorisite + vs11r282t1 — t8127“2?)2 + 1517198201
—2 S§81T9S2U1 — 2 u51t282t1 — 1)812T2t2

Lo = 2ss1%rows + 2 ss9°r1wy — ts12ugvy — tse’uivy
*75812102752 — t822’w1t1 — ’08127“21}2 + T512U22
+1r592v12 + ws12te? + wsot1? + 551%us>
+5592u12 — 28817989w] — 2 SS9T1S1We — 2 $81U2S2UT
—v812usty + tS US89V — VS92 1U] + tSow S ta
+v811982V1 + t82u18102 + t81’u}282t1 + U81UQ82t1
—vs22uit] + vSar1S1Us — 27TS1V2820] — 2ws;tasaty
+2us12tavy + 2uso?t v1 + vsguisity — 2usitasavy
-2 u52t1812}2

L1 = —vsi2ugue — 2881u9Sow; — 2uS 098901 — 2wSot1S109
+vs1uU989v1 + tSowiS1v9 + 2 5512u2w2 + us22v12
+2wso%t1v1 — vslwity + us2ve? + tsiwasavy
—2ws1ta89v1 + 2 $S92ujwi — 2 $Sou S W — tSo2wivy
+vsiwasot] + 2w312t202 + vsowiS1ta — 1)812’[1)2752

70522u101 — t512w202 + vS2U1S81V3
Ly = —vs12wayvs — 2 s51wWaSow] — 2 WS v2890] + SS9°wq 2
+v81Ww282vV1 + w322012 + w312v22 + VS2W181V2
2 2,2

—V82°W1V1 + 8S1°Wwo”.

In order to find the sign of F' we must find the sign of the quartic L(z) = Lyz* 4 L3z + Loz? +
Lix + Lo over the algebraic number ~,. This can be done as explained at Section 6.

To summarize the results for this predicate, we can decide it using two comparisons of roots,
in the most difficult case. Considering the respective polynomials, we have one comparison of a
quartic and a quadratic and one comparison of two quartics.

12 Functions for solving

12.1 solve

Given 2 conics, we wish to express all real intersection points using Root-Of coordinates. It is
straightforward to obtain the abscissae and ordinates as Root-Of-4 coordinates, by computing
the univariate resultants in x and y, respectively. The main problem is matching these algebraic
numbers.

Currently we are working in an efficient implementation of this function that treats all the cases
in a unified way.

This procedure may also decide whether the endpoints lie on the upper or lower part of the
curve. This is possible precisely when more than one intersections have the same z-root. If so, this

23

information is stored with the endpoint.

Let us denote the different cases by the multiplicity of real roots of the resultants in x and
y. For instance, the case (2,1,1;2,2) corresponds to one double and two simple z-roots, and two
double y-roots. Notice that multiple roots may be due to an intersection of high multiplicity to
simple intersections with the same coordinate, or to both things happening at the same time. A
star (%) indicates any valid integer. Since z and y are interchangeable, we discuss only have of the
actual cases.

Case of some complex roots. If all roots are complex, there is nothing to be done. Assume there
exists a pair of complex roots. The cases (2;2) and (2;1, 1) are trivial. In the second case, we also
decide the (upper or lower) part of the curve. The case (1,1;1,1) shall be solved by subroutine
solve_simple. We cannot decide the part of the curve. In the rest, we assume all roots are real.

Case of a root with multiplicity 4, namely (4;2,2): Trivial. It also decides the upper / lower
part of the curve.

Case of one triple root, say in the resultant R(x). The case (3,1;1,1,1,1) is infeasible because
it implies that the vertical line yielding the triple root of the resultant in x intersects each conic at
3 simple points.

Case (3,1;3,1): This case corresponds to the following two subcases

1
5 (42)

1]1
312
1

W= O
Wl w O

1
0
13 1

It is sufficient to test the upper right box in order to deduce the intersection points.

(3,1;2,1,1) The case is shown above in the 2nd table in (42). The vertical line at x = -3 intersects
each conic at most twice, hence we are certain to have a double and two simple intersections.
We have k € {0,1} so that exactly two k values equal 1, either on the diagonal or the anti-
diagonal. Since every conic has at most two intersections with the vertical line x = 73, it
suffices to test whether the specialization of one of the given conics, say f(73,y), vanishes
at some candidate simple root. This decision reduces to calling sign_at on f(v3,y) and a
fourth-degree algebraic number. !

(3,1;2,2) It is shown in the 3rd table in (42). Notice that f(v1,),9(71,y) have at most one root in each
y-interval. It suffices to call two times sign_at, namely on f(y1,v), R(y) and on g(71,y), R(y),
for some particular root of R(y) (either root can be used here) where R is quadratic. 2

Case of 4 simple z-roots. This implies there are 4 simple intersections; there are 3 cases. In
none of these cases can we decide the upper / lower part of the curve.

e Cases (1,1,1,1;1,1,1,1) and (1,1,1,1;2,2). Solved by repeated application of solve_simple
on the two given conics.

! Alternatively, placing the k values reduces to calling solve_simple on any one of the candidate simple roots.
2 Alternatively, we decide with one call to solve_simple applied to any one of the candidate roots projecting to

71-

24

e Case (1,1,1,1;2,1,1). One can use the fact that the double y-root is rational, call it ,, and
apply sign_at on f(z,7,), R(x), then on g(x,7,), R(z). This test applies to at most three
of the candidate roots projecting to «y,. Then, one application of solve_simple is needed to
completely decide the simple roots (like in the cases above where we had to find the two 0
values of k).

Case of at least one double z-root. When there is exactly one double root and, hence, another
two simple roots in R(z), it is possible to express the double root as a rational 7,. There are three
cases shown below:

212/0 0/1 0/1

211/2/0 k/0/1 k/0/1 110/1 k/0 k/O 2|1/m 1/m (43)
2|1/0/2 k/1/0 k/1/0 1/0/1 k/0 k/O 2|1/m 1/m
| 2 1 1 2 1 1 | 2 2

(2,1,1;2,2) This case is shown in the first table above. We need to examine at most three candidate roots
with the same y-coordinate. First, apply sign_at on f(v.,vy), R(y) and g(7.,), R(y), where
R is quadratic. If either is nonzero, then the matching is solved. Repeat with sign_at on
f(vz,v), R(y) and g(7z,y), R(y), using the other y-root expressed by R. If either application
yields nonzero, then the matching is solved.

Otherwise, there are two simple roots projecting to v,. It suffices now to call solve_simple
on any one candidate simple root. in order to decide the k values, where exactly two k values
are 1.

(2,1,1;2,1,1) Exploit the double rational y-root, denoted by +,, and test whether f(v.,vy) = 9(72,7) =0
on Q. If not, the matching is trivial. Otherwise, apply solve_simple to one of the candidate
simple roots.

(2,2;2,2) This is the last shown table above. In order to decide whether we are in the case involving
m or not, we can use solve_simple on one of the four squares. If we find no simple root
there, then we consider m € {0,2}, where there are precisely two nonzero values either on
the diagonal or on the anti-diagonal. To choose between the two possibilities, we may apply
a new function

sign_at (f(z,y),a, 3),

which is stronger than the function with the same name used above (overloading). It shall be
applied on f, g, the two conics, using each time the algebraic numbers that represent the x-
and y-coordinates of some candidate point. The candidate match is a root iff both function
calls return 0.

In the implementation, we use the fact that all (double) roots of both resultants can be
expressed as quadratic algebraic numbers; let them be denoted by «, 3. Moreover, we can
use the defining polynomial R(«) to substitute a? by a linear function in o in f. Similarly
for § and, therefore, f(a,) becomes linear in both algebraic numbers.

So, function sign_at can be implemented with the available Sturm sequences. The overall
computation is equivalent to comparing roots of polynomials of degree 1 and 2, of f(«,y) with
a specified root of quadratic polynomial Ry(y). Both quantities in the Sturm sequence lie in
Qla], so each sign can be computed with the previous, lighter version of sign_at(¢(z), R1(z)),

25

where R;(z) is a quadratic polynomial. In fact, we encounter a linear ¢ and another quadratic
¢: since the highest degree in the overall sequence is quadratic in the (algebraic) coefficients
of f, and they are themselves linear in «, then the most expensive sign computation involves
polynomials of degrees 2 and 2.

Recall that an alternative approach [?, 7] uses the Jacobi curve to decide this case.

12.2 solve_simple

This function, given two bivariate polynomials of total degree at most 2 and a square in Q2, decides
whether these polynomials have a common real root inside the square or not. It is assumed that
the given polynomials have at most one real intersection in the box. This intersection can be either
simple or double.

Intersections with the square’s corners can be ignored. We shall consider the intersections of
each polynomial with the boundary of the square, and shall use any sequence of these intersections
around the square.

Lemma 2 Consider two bivariate polynomials of degree < 2, with at most one real common root
inside a given square. Then, they have a simple common root iff their intersections with the square
boundary alternate exactly once, when ordered around the square, starting at any point on the
boundary. If there are no alternations, then there is either a double root or no root at all.

A single alternation means that, if we delete all successive intersections of the same conic with
the boundary, then what remains is the pattern e, 0, e o, where the e and o stand for the intersec-
tions of each conic with the boundary. In the opposite case (double or no root), the intersections
have a pattern of the type e,0,0,0, 0 0,0 0.

It is clear that testing the lemma for a given square is straightforward with the tools we
have developed before. In particular, we may apply the constructor of each root of quadratic
f(z,vy) € Q[z], then keep those lying on the interval z € (a,b). Alternatively, a Sturm sequence
of f(x,vy), f'(xz,vy) € Qz] on (a,b) yields the intersections on the edge defined by vertices (a,~,)
and (b,7y) of the square.

For edges containing intersections of both conics, it is enough to apply stl::sort on the corre-
sponding algebraic numbers, represented as Root-Of. The reason is that the compare function,
detailed in previous sections, has enabled the implementation of the inequality operators. Now we
have complete information on the intersection points with the 4 edges, which allows us to decide
whether there is any alternation or not.

13 Sign_at functions

Using the results of Subsection 6.1 we can easily implement function sign_at(Poly f, RootOf
a), which computes the sign of a function f evaluated over an algebraic number a.
Assume that we want to compute the sign of of a univariate polynomial f(X) evaluated over

FXY)=rX?+sY2 4+t XY +uX +0Y +w. (44)

evaluated over two algebraic numbers v, and v,, where at least one of them is of algebraic degree at
most 4 and the other of algebraic degree at most 4. Without loss of generality, let v, be of degree

26

2 and v, of degree 4. Further v, and ~, are represented by polynomials P, and P, and isolating
intervals I, and I, respectively.

We consider the univariate polynomial F'(X) = f(X,~,). So the problem now is to find the
sign of the polynomial F'(X) evaluated over the algebraic number v,. This can be done similar to
the evaluation scheme of sign at(Poly f, RootOf a), by computing the Sturm sequence of P,
and F'(X) and evaluate this sequence on the rational endpoints of I,. In order to decide the sign
of each such evaluation we must test the sign of polynomials, of degree up to 4, evaluated over the
algebraic number 7,. This can be done easily by direct calls to

The main difference is that the quantities that we have to test, in order to decide the sign,
involve «,. This can be done with direct calls to sign_at(Poly f, RootOf a) function.

As an example suppose

Yy = [Py, 1]
Pu(X) =as X% + a1 X + ag (45)
Py(Y)= baY 4+ b3Y3 +b Y2401 Y + by
The Sturm sequence of P, and F is
So(X) = P
S1(X) F
46
SQ(X) = Sng-i-SQO ()
S3(X) = —r(Ssa7yy + S337; + Ss2v2 + S317y + S30)
where
So1 = r(agtyy +asu—ra)
Sog = r(ags'ygg —rag+azvyy, +aw)
Say = ag?s?
S33 = —ajasts+2a3sv (47)
Sz = a0a2t2 — ajastv — ajasus + rai;s + ag?v? — 2 assrag + 2 as?sw
S31 = —2agragy — aitrag — ajastw — ajasuv + ra>v + 2 agastu + 2 as*vw
S30 = —2agragw — ajasuw + ralzw —ajurag + a22w2 + 7“20,02 + a0a2u2

In order to find the sign of the evaluation of the Sturm sequence evaluated at the endpoints of I,
we must find the sign of polynomials, of degree at most 4, evaluated at the algebraic number -, .

14 Preliminary Experiments

We have implemented 4 classes to handle algebraic numbers of respective degrees from 1 to 4.
We encode an algebraic number as a root of a polynomial of degree up to four. So, we store the
coeflicients of the polynomial and an index that denotes which root we are interesting in. For
algebraic numbers of degree up to 2 we have implemented addition, subtraction and multiplication.
Additionally, we provide methods to compare any two algebraic numbers of degree up to 4.

We did some preliminaries tests, in order to estimate the efficiency of our method. These tests
are by no means complete.

In order to find isolating intervals for quartics polynomials we use the sqrt function. In a new
version of our code, we will not have this restriction since we plan to approximate to any level of

27

accuracy this square root by continued fractions. We tested our algorithm against CORE ([7].
Our implementation uses SYNAPS [?] as a wrapper for the GMP-Float arithmetic type, while
CORE uses its own type BigInt. The tests were performed on a 2.6 MHz Pentium with 512 MB
memory, using g++ 3.2. One can see the results on Table 1, where the column STURM refers to
our implementation. We mention that the rootOf operator in CORE cannot handle polynomials
with multiple roots at present. On the other hand, our algorithm is faster on such degenerate
polynomials, since in most of these cases we can find the roots exactly.

Sturm | CORE
4-4 108 7889
4-8 105 8499
4-1 99 9476
2- 107 8543

Table 1: Running times for various comparisons of the roots of two quartics. The left column
indicates the indices of the roots of the two polynomials. The timings are in psec.

Acknowledgments

Both authors would like to thank Arno Eigenwilling for pointing out a error in solve function and
for productive discussions about the multiplicities of the intersection points.

The second author acknowledges productive discussions and inspirational comments by Profes-
sor Nikos Tzanakis about the bounds of continued fractions and Fibbonacci numbers.

Both authors partially supported by INRIA’s project “CALAMATA”, a bilateral collaboration
with National Kapodistrian University of Athens. The first author is partially supported by the
IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-
2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces).

References

[1] S. Basu, R. Pollack, and M.F.Roy. Algorithms in Real Algebraic Geometry, volume 10 of
Algorithms and Computation in Mathematics. Springer-Verlag, 2003.

[2] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and E. Schomer. A computa-
tional basis for conic arcs and boolean operations on conic polygons. In Furopean Symposium
on Algorithms, volume 2461 of Lecture Notes of Computer Science, pages 174—186. Springer-
Verlag, 2002.

[3] P. Bikker and A. Y. Uteshev. On the Bézout construction of the resultant. J. Symbolic
Computation, 28(1-2):45-88, July/Aug. 1999.

[4] J. E. Cremona. Reduction of binary cubic and quartic forms. LMS J. Computation and
Mathematics, 2:62-92, 1999.

28

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. E. Cremona. Classical invariants and 2-descent on elliptic curves. J. Symbolic Computation,
31(1/2):71-87, 2001.

T. Decker and W. Krandick. Parallel real root isolation using the Descartes method. In
P. Banerjee, V. Prasanna, and B. Sinha, editors, Proc. High Performance Computing, Calcutta,
India, 1999, volume 1745 of Lect. Notes Comp. Science, pages 261-268. Springer, 1999.

O. Deviller, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods and arithmetic
filtering for exact predicates on circle arcs. Comp. Geom: Theory & Appl., Spec. Issue, 22:119—
142, 2002.

G. Dos Reis, B. Mourrain, R. Rouillier, and P. Trébuchet. An environment for symbolic and
numeric computation. In Proc. of the International Conference on Mathematical Software
2002, World Scientific, pages 239-249, 2002.

L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parameterization of the
intersection of quadrics. In Proc. Annual ACM Symp. on Comp. Geometry, pages 246-255.
ACM, Jun 2003.

I. Emiris, A. Kakargias, M. Teillaud, E. Tsigaridas, and S. Pion. Towards an open curved
kernel. 2003. Submitted for publication.

I. Z. Emiris and E. P. Tsigaridas. Comparison of fourth-degree algebraic numbers and applica-
tions to geometric predicates. Technical Report ECG-TR-302206-03, INRIA Sophia-Antipolis,
2003.

I. Z. Emiris and E. P. Tsigaridas. Methods to compare real roots of polynomials of small
degree. Technical Report ECG-TR-242200-01, INRIA Sophia-Antipolis, 2003.

L. Guibas, M. Karavelas, and D. Russel. A computational framework for handling mo-
tion. In Proc. 6th Workshop Algor. Engin. € Experim. (ALENEX), Jan. 2004. To appear:
www.siam.org/meetings/alenex04/abstacts/lguibas-bin.pdf.

M. Hemmer, E. Schémer, and N. Wolpert. Computing a 3-dimensional cell in an arrangement
of quadrics: Exactly and actually! In Proc. Annual ACM Symp. Comput. Geometry, pages
264-273, 2001.

D. Kaplan and J. White. Polynomial equations and circulant matrices. The Mathematical
Association of America (Monthly), 108:821-840, November 2001.

M. Karavelas and I. Emiris. Root comparison techniques applied to the planar additively
weighted Voronoi diagram. In Proc. Symp. on Discrete Algorithms (SODA-03), pages 320—
329, Jan. 2003.

J. Keyser, T. Culver, D. Manocha, and S. .Krishnan. MAPC: A library for efficient and exact
manipulation of algebraic points and curves. In Proc. Annual ACM Symp. Comput. Geometry,
pages 360-369, New York, N.Y., June 1999. ACM Press.

J. Keyser, T. Culver, D. Manocha, and S. Krishnan. ESOLID: A system for exact boundary
evaluation. Comp. Aided Design, 36(2):175-193, 2004.

29

[19]

[20]

[21]

22]

D. Lazard. Quantifier elimination: optimal solution for two classical examples. J. Symb.
Comput., 5(1-2):261-266, 1988.

B. Mourrain, M. Vrahatis, and J. Yakoubshon. On the complexity of isolating real roots and
computing with certainty the topological degree. J. Complezity, 18(2), 2002.

S. Pion and M. Teillaud. Towards a cgal-like kernel for curves. Technical Report ECG-TR-
302206-01, MPI Saarbriicken, INRIA Sophia-Antipolis, 2003.

R. Rioboo. Real algebraic closure of an ordered field: implementation in axiom. In Proc.
Annual ACM ISSAC, pages 206-215. ACM Press, 1992.

R. Rioboo. Towards faster real algebraic numbers. In T. Mora, editor, Proc. Annual ACM
ISSAC, pages 221-228, New York, NY 10036, USA, 2002. ACM Press.

F. Rouillier and P. Zimmermann. Efficient isolation of a polynomial real roots. Technical
Report 4113, INRIA-Lorraine, 2001.

G. Salmon. Modern Higher Algebra. G.E. Stechert and Co., New York, 1885. Reprinted 1924.

S. Schmitt. Common subexpression search in leda_reals. Technical Report ECG-TR-243105-01,
MPI Saarbriicken, 2003.

T. W. Sederberg and G.-Z. Chang. Isolating the real roots of polynomials using isolator
polynomials. In C. Bajaj, editor, Algebraic Geometry and Applications, Special Issue. Springer
Verlag, 1993.

B. Sturmfels. Algorithms in Invariant Theory. RISC Series on Symbolic Computation. Springer
Verlag, Vienna, 1993.

V. Weispfenning. Quantifier elimination for real algebra—the cubic case. In Proc. Annual ACM
ISSAC, pages 258-263. ACM Press, 1994.

L. Yang. Recent advances on determining the number of real roots of parametric polynomials.
J. Symbolic Computation, 28:225-242, 1999.

C. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York,
2000.

30

