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Abstract

We present algorithmic, complexity and implementation results concerning real root isola-
tion of integer univariate polynomials using the continued fraction expansion of real algebraic
numbers. One motivation is to explain the method’s good performance in practice. We im-
prove the previously known bound by a factor of dτ , where d is the polynomial degree and
τ bounds the coefficient bitsize, thus matching the current record complexity for real root
isolation by exact methods. Namely, the complexity bound is eOB(d4

τ
2) using the standard

bound on the expected bitsize of the integers in the continued fraction expansion. We show
how to compute the multiplicities within the same complexity and extend the algorithm to
non square-free polynomials. Finally, we present an efficient open-source C++ implementation
in the algebraic library synaps, and illustrate its efficiency as compared to other available
software. We use polynomials with coefficient bitsize up to 8000 and degree up to 1000.

1 Introduction

In this paper we deal with real root isolation of univariate integer polynomials, a fundamental
problem in computer algebra as well as in many applications ranging from computational geometry
to quantifier elimination. The problem consists in computing intervals with rational endpoints
which contain exactly one real root of the polynomial. We use the continued fraction expansion
of real algebraic numbers. Recall that such a number is a real root of an integer polynomial.

Another motivation is to explain the method’s good performance in implementations, albeit
the higher complexity bounds which was known until now. Indeed, we show that continued
fractions lead to asymptotic bit complexity bounds that match those recently proven for other
exact methods, such as Sturm sequences and Descartes’ subdivision.

1.1 Notation

In what follows OB means bit complexity and the ÕB-notation means that we are ignoring loga-
rithmic factors. For a polynomial A =

∑d
i=1 aiX

i ∈ Z[X ], deg (A) denotes its degree. We consider
square-free polynomials except if explicitly stated otherwise. By L (A) we denote an upper bound
on the bit size of the coefficients of A (including a bit for the sign). For a ∈ Q, L (a) ≥ 1 is the
maximum bit size of the numerator and the denominator. Let M (τ) denote the bit complexity
of multiplying two integers of bit size at most τ . Using FFT, M (τ) = OB(τ lgc τ) for a suitable
constant c. V ar(A) denotes the sign variations in the coefficient list of A ignoring zero terms and
∆ the separation bound of A, that is the smallest distance between two (complex) roots of A.
Finally N = max {d, τ}.
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1.2 Previous work and our results

Real root isolation of univariate integer polynomials is a well known problem and various algo-
rithms exist for it. Moreover, there is a huge bibliography on the problem so we have to mention
that we only scratch the surface of the existing literature and we encourage the reader to refer to
the references.

Exact subdivision based algorithms for real root isolation are based either on Descartes’ rule of
sign or on Sturm sequences. Roughly speaking, the idea behind both approaches is to subdivide a
given interval that initially contains all the real roots until it is certified that none or one root is
contained. Descartes’ approach achieves this by repeatedly transforming the original polynomial
and counting the sign variations in the coefficients’ list, while Sturm’s approach computes a signed
polynomial remainder sequence and evaluates it over the endpoints of the interval of interest.
Quite recently it was proven (cf [16, 17] and references therein) that both approaches, the one
based on Descartes’ rule of sign (where the polynomials are represented either in the monomial
or in the Bernstein basis) and the one based on Sturm sequences achieve the same bit complexity

bound, namely ÕB(d4τ2) or ÕB(N6). Moreover using Sturm sequences in a pre-processing and a
post-processing step [21] the bound holds for the non square-free case and the multiplicities of the
roots can also be computed.

The continued fraction algorithm (from now on called CF) differs from the subdivision based
algorithms in that instead of bisecting a given initial interval it computes the continued fraction
expansions of the real roots of the polynomial. The first formulation of the algorithm is due
to Vincent [40], see also [2] for historical references, based on his theorem (Th. 4 without the
terminating condition) where it was stated that repeated transformations of the polynomial will
eventually yield a polynomial with zero (or one) sign variation, thus Descartes’ rule implies the
transformed polynomial has zero (resp. one) real root in (0,∞). If one sign variation is attained
then the inverse transformation can be applied in order to compute an isolating interval for the real
root that corresponds to the original polynomial and moreover the ci’s appear in the transformation
correspond to the partial quotients of the continued fraction expansion of the real root. However
Vincent’s algorithm is exponential [13]. He computed the ci’s in the transformation of Th. 4 by
repeated shift operations of the form X 7→ X + 1, thus if one of the ci’s (or even the sum of all)
is of magnitude, say, 2τ then an exponential number of steps must be performed.

Uspensky [37] extended Vincent’s theorem by computing an upper bound on the number of
transformations so as to isolate the real roots, but failed to deal with its exponential behavior. See
also [12, 32] where the problem of approximating a real algebraic number is also considered. Using
Vincent’s theorem, Collins and Akritas [13] derived a polynomial subdivision-based algorithm using
Descartes’ rule of sign. Akritas [3, 1] dealt with the exponential behavior of the CF algorithm,
by computing the ci’s in the transformations as positive lower bounds of the positive real roots,
via Cauchy’s bound (for details, see sec. 3). He achieved a complexity of ÕB(d5τ3) or ÕB(N8),
without using fast Taylor shifts [41]. However, it is not clear how this approach accounts for the
increased coefficient size in the transformed polynomial after applying X 7→ b + X . Another issue
is to bound the size of the ci. Refer to Eq. (1) which indicates that the magnitude of the partial
quotients is unbounded. CF is the standard real root isolation function in Mathematica [4] and
for some experiments against subdivision-based algorithms, also in Mathematica, the reader
may refer to [5].

Another class of univariate solvers are numerical solvers, e.g. [30, 8, 9] that compute an
approximation of all the roots (real and complex) of a polynomial up to a desired accuracy.

The contributions of this paper are the following: First, we improve the bound of the number
of steps (transformations) that the algorithm performs. This is basically achieved through Th. 6.
Second, we bound the bitsize of the partial quotients and thus the growth of the transformed
polynomials which appear during the algorithm. For this we use the theory of the continued
fraction expansion of real numbers and a standard average case analysis. We revisit the proof of
[3, 1] so as to improve the overall bit complexity bound of the algorithm to ÕB(N6), thus matching
the current record complexity for real root isolation. The extension to the non square-free case
uses the techniques from [18]. Third, we present our efficient open-source C++ implementation
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and illustrate it on various data sets, including polynomials of degree up to 1000 and coefficients
of 8000 bits. Our software seems faster than the root-isolation implementations that we tested,
including rs. We also tested a numeric solver, namely aberth, which has comparable efficiency
and, on many instances, is slower. We believe that our software contributes towards reducing the
gap between rational and numeric computation, the latter being usually perceived as faster.

The rest of the paper is structured as follows. The next section sketches the theory behind
continued fractions. Sec. 3 presents the CF algorithm and Sec. 4 its analysis. We conclude with
experiments using our implementation, along with comparisons against other available software
for univariate equation solving.

2 Continued fractions

We present a short introduction to continued fractions, following [38] which although is far from
complete suffices for our purposes. The reader may refer to e.g [3, 42, 10, 38]. In general a simple
(regular) continued fraction is a (possibly infinite) expression of the form

c0 +
1

c1 +
1

c2 + . . .

= [c0, c1, c2, . . . ]

where the numbers ci are called partial quotients, ci ∈ Z and ci ≥ 1 for i > 0. Notice that c0 may
have any sign, however in our real root isolation algorithm c0 ≥ 0. By considering the recurrent
relations

P−1 = 1, P0 = c0, Pn+1 = cn+1 Pn + Pn−1

Q−1 = 0, Q0 = 1, Qn+1 = cn+1 Qn + Qn−1

it can be shown by induction that Rn = Pn

Qn
= [c0, c1, . . . , cn], for n = 0, 1, 2, . . . and moreover

that
Pn Qn+1 − Pn+1 Qn = (−1)n+1

Pn Qn+2 − Pn+2 Qn = (−1)n+1cn+2

If γ = [c0, c1, . . . ] then γ = c0 + 1
Q0Q1

− 1
Q1Q2

+ · · · = c0 +
∑∞

n=1
(−1)n−1

Qn−1Qn
and since this

is a series of decreasing alternating terms it converges to some real number γ. A finite section
Rn = Pn

Qn
= [c0, c1, . . . , cn] is called the n−th convergent (or approximant) of γ and the tails

γn+1 = [cn+1, cn+2, . . . ] are known as its complete quotients. That is γ = [c0, c1, . . . , cn, γn+1] for
n = 0, 1, 2, . . . . There is a one to one correspondence between the real numbers and the continued
fractions, where evidently the finite continued fractions correspond to rational numbers.

It is known that Qn ≥ Fn+1 and that Fn+1 < φn < Fn+2, where Fn is the n−th Fibonacci num-

ber and φ = 1+
√

5
2 is the golden ratio. Continued fractions are the best (for a given denominator

size), approximations, i.e

1

Qn(Qn+1 + Qn)
≤

∣∣∣∣γ −
Pn

Qn

∣∣∣∣ ≤
1

QnQn+1
≤ 1

Q2
n

< φ−2n

Let γ = [c0, c1, . . . ] be the continued fraction expansion of a real number. The Gauss-Kuzmin
distribution [10, 31] states that for almost all real numbers γ (meaning that the set of exceptions
has measure zero) the probability for a positive integer δ to appear as an element in the continued
fraction expansion of γ is

Prob[ci = δ] = lg
(δ + 1)2

δ(δ + 2)
, i > 0 (1)

The Gauss-Kuzmin law induces that we can not bound the mean value of the partial quotients
or in other words that the expected value (arithmetic mean) of the partial quotients is diverging,
E[ci] =

∑∞
δ=1 δ Prob[ci = δ] = ∞, i > 0. Surprisingly enough the geometric (and the harmonic)
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Algorithm 1: CF(A, M)

Input: A ∈ Z[X ], M(X) = kX+l
mX+n , k, l, m, n ∈ Z

Output: A list of isolating intervals

if A(0) = 0 then1

OUTPUT Interval( M(0), M(0)) ;2

A← A(X)/X ;3

CF(A, M);4

V ← Var(A);5

if V = 0 then return ;6

if V = 1 then7

OUTPUT Interval( M(0), M(∞));8

return ;9

b← PLB(A) // PLB ≡ PositiveLowerBound ;10

if b > 1 then A← A(b + X), M ←M(b + X) ;11

A1 ← A(1 + X), M1 ←M(1 + X) ;12

CF(A1, M1) // Looking for real roots in (1, +∞);13

A2 ← A( 1
1+X ), M2 ←M( 1

1+X ) ;14

CF(A2, M2) // Looking for real roots in (0, 1) ;15

return ;16

mean is not only asymptotically bounded, but is bounded by a constant. For the geometric mean
this is the famous Khintchine’s constant [23], i.e.

lim
n→∞

n

√√√√
n∏

i=1

ci = K = 2.685452001...

which is an irrational number. The reader may refer to [6] for a comprehensive treatment of
Khintchine’s means. The expected value of the bitsize of the partial quotients is a constant for
almost all real numbers, when n→∞ or n sufficiently big [23, 31]. Following closely [31], we have:
E[ln ci] = 1

n

∑n
i=1 ln ci = lnK = 0.98785..., as n→∞, ∀i > 0. Let L (ci) , bi, then

E[bi] = O(1) (2)

A real number has an (eventually) periodic continued fraction expansion if and only if it is a root
of an irreducible quadratic polynomial. “There is no reason to believe that the continued fraction
expansions of non-quadratic algebraic irrationals generally do anything other than faithfully follow
Khintchine’s law“ [11], and also various experimental results [10, 31, 32] suggest so. For the largest
digit that can appear in the partial quotients of a rational number the reader may refer to [22].

3 The CF algorithm

Theorem 1 (Descartes’ rule of sign) The number R of real roots of A(X) in (0,∞) is bounded
by V ar(A) and we have R ≡ V ar(A) mod 2.

Remark 2 In general Descartes’ rule of sign obtains an overestimation of the number of the
positive real roots. However if we know that A is hyperbolic, i.e has only real roots or when the
number of sign variations is 0 or 1 then it counts exactly.

Theorem 3 (Budan) [26, 3] Let a polynomial A, such that deg(A) = d and let a < b, where
a, b ∈ R. Let Aa, resp. Ab, be the polynomial produced after we apply the map X 7→ X + a, resp.
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X 7→ X + b, to A. Then the followings hold: (i) V ar(Aa) ≥ V ar(Ab), (ii) #{γ ∈ (a, b)|A(γ) =
0} ≤ V ar(Aa)− V ar(Ab) and (iii) #{γ ∈ (a, b)|A(γ) = 0} ≡ V ar(Aa)− V ar(Ab) mod 2.

The CF algorithm depends on the following theorem, which dates back to Vincent’s theorem
in 1836 [40]. The inverse of Th. 4 that proves the termination of CF can be found in [3, 14, 26].
It is a very interesting question whether the one and two circle theorems (c.f [25] and references
therein), employed in the analysis of the subdivision-based real-root isolation algorithm [13], can
also be applied and possibly improve the complexity of the CF algorithm.

Theorem 4 [3, 37] Let A ∈ Z[X ], with deg(A) = d and let ∆ > 0 be the separation bound. Let
n be the smallest index such that

Fn−1∆ > 2 and Fn−1Fn∆ > 1 +
1

ǫd

where Fn is the n-th Fibonnaci number and ǫd = (1+ 1
d )

1
d−1−1. Then the map X 7→ [c0, c1, . . . , cn, X ],

where c0, c1, . . . , cn is an arbitrary sequence of positive integers, transforms A(X) to An(X), which
has no more than one sign variation.

Remark 5 Since 3
4d2 < ǫd < 4

d2 [14] we conclude that 1
ǫd

+ 1 < 2d2 for d ≥ 2. Thus, if d ≥ 2 we

can replace the two conditions of Th. 4 by Fn−1∆ ≥ 2d2, since Fn ≥ Fn−1 ≥ 1 and Fn−1Fn∆ ≥
Fn−1∆ ≥ 2d2 > 2.

Th. 4 can be used to isolate the positive real roots of a square-free polynomial A. In order to
isolate the negative roots we perform the transformation X 7→ −X , so in what follows we will
consider only the positive real roots of A.

Vincent’s variant of the CF algorithm goes as follows: A polynomial A is transformed to A1 by
the transformation X 7→ 1+X and if V ar(A1) = 0 or V ar(A1) = 1 then A has 0, resp. 1, real root
greater than 1 (Th. 1). If V ar(A1) < V ar(A) then (possibly) there are real roots of A in (0, 1), due
to Budan’s theorem (Th. 3). A2 is produced by applying the transformation X 7→ 1/(1 + X) to
A, if V ar(A2) = 0 or V ar(A2) = 1 then A has 0, resp. 1, real root less than 1 (Th. 1). Uspensky’s
[37] variant of the algorithm (see also [32]) at every step produces both polynomials A1 and A2.
probably, as Akritas states [2], because he was unaware of Budan’s theorem (Th. 3). In both
variants, if the transformed polynomial has more than one sign variations, we repeat the process.

We may consider the process of the algorithm as an infinite binary tree in which the root
corresponds to the original polynomial A. The branch from a node to a right child corresponds
to the map X 7→ X + 1, while to the left child to the map X 7→ 1

1+X . Notice that a sequence of
c transformations X 7→ 1 + X followed by one of the type X 7→ 1/(1 + X) is equivalent to two
transformations, one of the type X 7→ c + 1/X followed by X 7→ 1 + X . Thus Vincent’s algorithm
(and Uspensky’s) results to a sequence of transformations like the one described in Th. 4, and
so the leaves of the binary tree that we considered hold (transformed) polynomials that have no
more than one sign variations, if Th. 4 holds. Akritas [1, 3] replaced a series of X 7→ X + 1
transformations by X 7→ X + b, where b is the positive lower bound (PLB) on the positive roots of
the tested polynomial. This was computed by Cauchy’s bound [3, 26, 42]. This way, the number

of steps is polynomial and the complexity is in ÕB(d5τ3). However, it is not clear whether or how
the analysis takes into account that the coefficient bitsize increases after a shift. Another issue is
to bound the size of the ci.

For these polynomials that have one sign variation we still have to find the interval where the
real root of the initial polynomial A lies. Consider a polynomial An that corresponds to a leaf
of the binary tree that has one sign variation. Notice that An is produced after a transformation
as in Th. 4, using positive integers c0, c1, . . . , cn. This transformation can be written in a more
compact form using the convergents

M : X 7→ PnX + Pn−1

QnX + Qn−1
(3)
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where Pn−1

Qn−1
and Pn

Qn
are consecutive convergents of the continued fraction [c0, c1, . . . , cn]. Notice

that (3) is a Möbius transformation, see [3, 42] for more details. Since An has one sign variation
it has one and only one real root in (0,∞), so in order to obtain the isolating interval for the
corresponding real root of A we evaluate the right part of Eq. (3) once over 0 and once over ∞.

The (unordered) endpoints of the isolating interval are Pn−1

Qn−1
and Pn

Qn
.

The pseudo-code of the CF algorithm is presented in Alg. 1. Notice that the Interval function
orders the endpoints of the computed isolating interval and that PLB(A) computes a lower bound
on the positive roots of A. The initial input of the algorithm is a polynomial A(X) and the
trivial transformation M(X) = X . We need the functional M in order to keep track of the
transformations that we perform so that to derive the isolating intervals. Notice that Lines 14
and 15 are to be executed only when V ar(A1) < V ar(A2), but in order to simplify the analysis
we omit this, since it only doubles the complexity.

4 The complexity of the CF algorithm

The complexity of the algorithm depends on the number of transformations and the cost of each.
However special care should be taken since after each transformation the bit size of the polynomial
increases.

Let disc(A) be the discriminant and lead (A) the leading coefficient of A. Mahler’s measure

of a polynomial A is M(A) = | lead (A) |
∏d

i=1 max {1, |γi|}, where γi are all the (complex) roots
of A [7, 42, 26, 27]. MoreoverM(A) < 2τ

√
d + 1. We prove the following theorem, which is based

on a theorem by Mignotte [26], thus extending [15, 17].

Theorem 6 Let A ∈ Z[X ], with deg(A) = d and L (A) = τ . Let Ω be any set of k couples of
indices (i, j) such that 1 ≤ i < j ≤ d and let the non-zero (complex) roots of A be 0 < |γ1| ≤ |γ2| ≤
· · · ≤ |γd|. Then

2kM(A)k ≥
∏

(i,j)∈Ω

|γi − γj | ≥ 2k− d(d−1)
2 M(A)

1−d−k
√
disc(A)

Proof. Let Ω be the multiset Ω = {j|(i, j) ∈ Ω} and |Ω| = k. We use the inequality |a − b| ≤
2 max {|a|, |b|} (∗) a, b ∈ C and the fact [26, 27] that for any root of A, 1

M(A) ≤ |γi| <M(A).

In order to prove the left inequality

∏

(i,j)∈Ω

|γi − γj | ≤ 2k
∏

j∈Ω

|γj | ≤ 2k max
j∈Ω
|γj |k ≤ 2kM(A)k.

Recall [7, 42, 26] that disc(A) = lead (A)
2d−2 ∏

i<j (γi − γj)
2. For the right inequality we

consider the absolute value of the discriminant of A:

| disc(A)| = | lead (A) |2d−2
∏

i<j |γi − γj |2
= | lead (A) |2d−2

∏
(i,j)∈Ω |γi − γj |2

∏
(i,j)/∈Ω |γi − γj |2 ⇔√

| disc(A)| = | lead (A) |d−1
∏

(i,j)∈Ω |γi − γj |
∏

(i,j)/∈Ω |γi − γj |

We consider the product
∏

(i,j)/∈Ω |γi − γj | and we apply d(d−1)
2 − k times inequality (∗), thus

∏
(i,j)/∈Ω |γi − γj | ≤ 2

d(d−1)
2 −k |γ1|0|γ2|1 · · · |γd|d−1 (

∏
j∈Ω |γj |)−1

≤ 2
d(d−1)

2 −kM(A)d−1| lead (A) |1−dM(A)k
(4)

where we used the inequality |γ1|0|γ2|1 · · · |γd|d−1 ≤ |M(A)/ lead (A) |d−1, and the fact [26] that,
since ∀i, |γi| ≥ M(A)−1, we have

∏
j∈Ω |γj | ≥ |γ1|k ≥M(A)−k. Thus we conclude that

∏
(i,j)∈Ω |γi − γj | ≥ 2k− d(d−1)

2 M(A)1−d−k
√
| disc(A)|
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A similar theorem but with more strict hypotheses on the roots first appeared in [15] and the
conditions were generalized in [17]; namely in order for the bound [15, 17] to hold the sets of
indices i and j should be rearranged such that they form an acyclic graph where each node has
out-degree at most one. The bound of Th. 6 has an additional factor of 2d2

wrt [15, 17], which
plays no role when d = O(τ) or when notation with N is used. Moreover we loosen the hypotheses
of the theorem and thus all the proofs concerning the number of steps of the subdivision-based
solvers [17, 21] are dramatically simplified. Possibly a more involved proof of Th. 6 may eliminate
this factor1.

Remark 7 There are two simple however crucial observations about Th. 4. When the transformed
polynomial has one sign variation, then the interval with endpoints Pn−1

Qn−1
= [c0, c1, . . . , cn−1] and

Pn

Qn
= [c0, c1, . . . , cn] (possibly unordered) isolates a positive real root of A, say γi. Then, in order

for Th. 4 to hold, it suffices to consider, instead of the separation bound ∆, the quantity |γi− γci
|,

where γci
is the (complex) root of A closest to γi. When the transformed polynomial has no sign

variation and [c0, c1, . . . , cn] is the continued fraction expansion of the (positive) real part of a
complex root of A, say γi, then again it suffices to replace ∆ by |γi − γci

|.

Theorem 8 The CF algorithm performs at most O(d2 + dτ) steps.

Proof. Let 0 < |γ1| ≤ |γ2| ≤ · · · ≤ |γk|, k ≤ d be the (complex) roots of A with positive real part
and let γci

denote the root of A that is closest to γi.
We consider the binary tree T generated during the execution of the CF algorithm. The number

of steps of the CF algorithm corresponds to the number of nodes in T , which we denote by #(T ).
We use some arguments and the notation from [17] in order to prune the tree.

With each node v of T we associate a Möbius transformation Mv : X 7→ kX+l
mX+n , a polynomial

Av and implicitly an interval Iv whose unordered endpoints can be found if we evaluate Mv on 0
and on ∞. Recall that Av is produced after Mv is applied to A. The root of T is associated with
A, M(X) = X (i.e k = n = 1, l = m = 0) and implicitly with the interval (0,∞).

Let a leaf u of T be of type-i if its interval Iu contains i ≥ 0 real roots. Since the algorithm
terminates the leaves are of type-0 or type-1. We will prune certain leaves of T so as to obtain
a certain subtree T ′ where it is easy to count the number of nodes. We remove every leaf that
has a sibling that is not a leaf. Now we consider the leaves that have a sibling that is also a leaf.
If both leaves are of type-1, we arbitrary prune one of them. If one of them is of type-1 then we
prune the other. If both leaves are of type-0, this means that the polynomial on the parent node
has at least two sign variations and thus that we are trying to isolate the (positive) real part of
some complex root. We keep the leaf that contains the (positive) real part of this root. And so
#(T ) < 2 #(T ′).

Now we consider the leaves of T ′. All are of type-0 or type-1. In both cases they hold the
positive real part of a root of A, the associated interval is |Iv| ≥ |γi−γci

| (Rem. 7) and the number
of nodes from a leaf to the root is ni, which is such that the conditions of Rem. 5 are satisfied.
Since ni is the smallest index such that the condition of Rem. 5 hold, if we reduce ni by one then
the inequality does not hold. Thus

Fni−2|γi − γci
| ≤ 2d2 ⇒ φni−3|γi − γci

| < 2d2 ⇒ ni < 4 + 2 lg d− lg |γi − γci
|

We sum over all ni to bound the nodes of T ′, thus

#(T ′) ≤
k∑

i=1

ni ≤ 2k(2 + lg d)−
k∑

i=1

log |γi − γci
| ≤ 2k(2 + lg d)− log

k∏

i=1

|γi − γci
| (5)

In order to apply Th. 6 we should rearrange
∏k

i=1 |γi − γci
| so that the requirements on the

indices of roots are fulfilled. This can not be achieved when symmetric products occur and thus the

1Personal communication with M. Mignotte
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worst case is when the product consists only of symmetric products i.e
∏k/2

i=1 |(γj − γcj
)(γcj

− γj)|.
Thus we consider the square of the inequality of Th. 6 taking k

2 instead of k and disc(A) ≥ 1
(since A is square-free), thus

∏k
i=1 |γi − γci

| ≥
(
2

k
2−

d(d−1)
2 M(A)1−d− k

2

)2

− log
∏d

i=1 |γi − γci
| ≤ d2 − d− k + (2d + k − 2) lgM(A)

(6)

Eq. (5) becomes #(T ′) ≤ 2k(2 + lg d) + d2 − d − k + (2d + k − 2) lgM(A). However for
Mahler’s measure it is known that M(A) ≤ 2τ

√
d + 1 ⇒ lgM(A) ≤ τ + lg d, for d ≥ 2, thus

#(T ′) ≤ 2k(2 + lg d) + d2 − d − k + (2d + k − 2)(τ + lg d). Since #(T ) < 2 #(T ′) and k ≤ d, we
conclude that #(T ) = O(d2 + d τ + d lg d). 2

4.1 Real root isolation

To complete the analysis of the CF algorithm we have to compute the cost of every step that the
algorithm performs. In the worst case every step consists of a computation of a positive lower
bound b (Line 10) and three transformations, X 7→ b + X , X 7→ 1 + X and X 7→ 1

1+X (Lines
11, 12 and 14 in Alg. 1). Recall, that inversion can be performed in O(d). Thus the complexity
is dominated by the cost of the shift operation (Line 11 in Alg. 1) if a small number of calls to
PLB is needed in order to compute a partial quotient. We will justify this in Sec. 4.2. In order to
compute this cost a bound on L (ck) , bk, 0 ≤ k ≤ mi is needed, see Eq. (2).

For the analysis of the CF algorithm we will need the following:

Theorem 9 (Fast Taylor shift) [41] Let A ∈ Z[X ], with deg(A) = d and L (A) = τ and let a ∈
Z, such that L (a) = σ. Then the cost of computing B = A(a+X) ∈ Z[X ] is OB(M

(
d2 lg d + d2σ + dτ

)
).

Moreover L (B) = O(τ + dσ).

Initially A has degree d and bitsize τ . Evidently the degree does not change after a shift
operation. Each shift operation by a number of bitsize bh increases the bit size of the polynomial
by an additive factor d bh, in the worst case (Th. 9). At the h−th step of the algorithm the

polynomial has bit size O(τ + d
∑h

i=1 bi) and we perform a shift operation by a number of bit

size bh+1. Th. 9 states that this can be done in OB

(
M

(
d2 lg d + d2bh+1 + d(τ + d

∑h
i=1 bi)

))
or

OB

(
M

(
d2 lg d + dτ + d2

∑h+1
i=1 bi

))
.

Now we have to bound
∑h+1

i=1 bi. For this we use Eq. (2), which bounds E[bi]. By linearity

of expectation it follows that E[
∑h+1

i=1 bi] = O(h) Since h ≤ #(T ) = O(d2 + dτ) (Th. 8), the

(expected) worst case cost of step h is OB(M
(
d2 lg d + dτ + d2(d2 + dτ)

)
) or ÕB(d2(d2 + dτ)).

Finally, multiplying by the number of steps, #(T ), we conclude that the overall complexity is

ÕB(d6 + d5τ + d4τ2), or ÕB(d4τ2) if d = O(τ), or ÕB(N6), where N = max {d, τ}.
Now let us isolate, and compute the multiplicities, of the real roots of Ain ∈ Z[X ], which is not

necessarily square-free, with deg(Ain) = d and L (Ain) = τ . We use the technique from [21] and

compute the square-free part A of Ain using Sturm-Habicht sequences in ÕB(d2τ). The bit size
of A is L (A) = O(d + τ). Using the CF algorithm we isolate the positive real root of A and then,
by applying the map X 7→ −X , we isolate the negative real roots. Finally, using the square-free
factorization of Ain, which can be computed in ÕB(d3τ), it is possible to find the multiplicities in

ÕB(d3τ).
The previous discussion leads to the following theorem.

Theorem 10 Let A ∈ Z[X ] (not necessarily square-free) such that deg(A) = d > 2 and L (A) = τ .

We can isolate the real roots of A and compute their multiplicities in expected time ÕB(d6 +d4τ2),

or ÕB(N6), where N = max {d, τ}.
Remark 11 The hypothesis d > 2 may be replaced by d > 4, since real solving of polynomials of
degree up to 4 can be performed in O(1) or ÕB(τ) [19].

8



4.2 Rational roots and PLB (Positive Lower Bound) realization

This section studies a way to compute a lower bound on the positive roots and presents its efficiency
and accuracy. It seems that this is the standard approach in CF algorithms, though it is seldom
discussed.

Let us consider the special case of rational roots. Their continued fraction expansion does
not follow Khintchine’s law, even though there are results [22] on the largest digit in such an
expansion. However, recall that if p

q is a root of A then p divides a0 and q divides ad, thus in

the worst case L (p/q) = O(τ) and so the rational roots are isolated fast. Treating them as real
algebraic numbers leads to an overestimation of the number of iterations.

There is one exception to this good behavior of rational roots, namely when they are very large,
well separated, and we are interested in practical complexity [4]. This is due to the fact that PLB
must be applied many times. In [31], the authors performed a small number of Newton iterations
in order to have a good approximation of a partial quotient. In [4, 5], this problem was solved
by performing a homothetic transformation, X 7→ bX , where b is the computed bound whenever
b ≥ 16. We follow the latter approach so, after Line 11 in Alg. 1, if b = PLB(A) ≥ 16, we apply
X 7→ bX . The cost of applying X 7→ bX is in the worst case the same as doing a shift.

Now, let us see how PLB(A) is obtained in general. It is computed as the inverse of an upper
bound on the roots of XdA( 1

X ). In general PLB(A) is applied more than once in order to compute
some ci. However this number is very small [3, 1]. Eq. (1) implies that the probability that a
partial quotient is ≤ 10 is ∼ 0.87, thus in general the partial quotients are of small magnitude.

Moreover it is known [10, 38] that
∣∣∣γ − Pn

Qn

∣∣∣ < 1
cn+1 Q2

n
, which means that an extremely big value of

a partial quotient indicates that the previous approximation of the algebraic number was extremely
good, thus it will need a small number of steps to isolate it.

This is how we implement PLB: Let U = {j ∈ N | j < d ∧ aj < 0} and assume ad > 0. Now let
C = adx

d +
∑

i∈U aix
j ∈ Z[X ]. Then C has exactly one nonnegative root, say t, which is an upper

bound on the roots of A. We set PLB(A) = 2 maxai∈U | ai

an
|1/j , which is nearly optimal [24], or to

be more specific t ≤ PLB(A) < 2t. Actually this bound “[...] is to be recommended among all” [39],
since it provides a very good approximation and is easily implementable. In our implementation
we compute PLB only as powers of 2 so that we can take advantage of fast operations as in [33].
Notice that the cost of computing PLB is small, namely O(d) [3].

We can improve the computed bound by applying a small number of a modified Newton’s
iteration [35, 34] to C, that is guaranteed to converge rapidly. Notice that PLB is not a general
bound on the roots, like e.g. [42, 26, 28, 27, 34], but a bound on the positive roots only, see [24, 36].
Moreover, when the number of negative coefficients is even then a bound due to Stefanescu [36]
can be used which is much better.

5 Implementation and experiments

We have implemented the cf algorithm in synaps 2 [29], which is a C++ library for symbolic-
numeric computations that provides data-structures, classes and operations for univariate and
multivariate polynomials, vector, matrices, ... Our code will be included in the next public release
of synaps. The implementation is based on the integer arithmetic of gmp3 (v. 4.1.4) and uses
only transformations of the form X 7→ 2βX and X 7→ X + 1 to benefit from the fast implemen-
tations that are available in gmp. However, our implementation follows the generic programming
paradigm, thus any library that provides arbitrary precision integer arithmetic can be used instead
of gmp.

We restrict ourselves to square-free polynomials of degree ∈ {100, 200, . . . , 1000}. Following
[33], the first class of experiments concerns well-known ill-conditioned polynomials namely: La-
guerre (L), first (C1) and second (C2) kind Chebyshev, and Wilkinson (W) polynomials. We also
consider Mignotte (M1) polynomials Xd − 2(101X − 1)2, that have 4 real roots but two of them

2www-sop.inria.fr/galaad/logiciels/synaps/
3www.swox.com/gmp/
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very close together, and a product
(
Xd − 2(101X − 1)2

) (
Xd − 2((101 + 1

101 )X − 1)2
)

of two such
polynomials (M2) that has 8 real roots. Finally, we consider polynomials with random coefficients
(R1), and monic polynomials with random coefficients (R2) in the range [-1000, 1000], produced
by maple, using 101 as a seed for the pseudo-random number generator.

We performed experiments against rs 4, which seems to be one of the fastest available software
for exact real root isolation. It implements a subdivision-based algorithm using Descartes’ rule of
sign with several optimizations and symbolic-numeric techniques [33]. Note that we had to use rs

through its maple interface. Timings were reported by its internal function rs_time().
We also test aberth [8, 9], which a numerical solver with unknown (bit) complexity but very

efficient in practice, available through synaps. In particular, it uses multi-precision floats and
provides a floating-point approximation of all complex roots. Unfortunately, we were not always
able to tune its behavior in order to produce the correct number of real roots in all the cases, i.e.
to specify the input and the output precision.

In synaps, there are several univariate solvers, based on Sturm sequences, Descartes’ rule of
sign, Bernstein basis, etc (see [18] for details and experimental results). cf is clearly faster than
all these solvers, therefore we do not report on these experiments. In particular, the large inputs
used here are not tractable by the Sturm-sequence solver in synaps, and this is also the case for
another implementation of the Sturm-sequence solver in core 5.

So, in Table 1, we report experiments with cf, rs, aberth, where the timings are in seconds.
The asterisk (*) denotes that the computation did not finish after 12000s and the question-mark
(?) that we were not able to tune the aberth solver. The experiments were performed on a
2.6 GHz Pentium with 1 GB RAM, and our code was compiled using g++ 3.3 with options -O3
-DNDEBUG.

For (M1) and (M2), there are rational numbers with a very simple continued fraction expansion
that isolate the real roots which are close. These experiments are extremely hard for rs. On (M1),
aberth is the fastest and correctly computes all real roots, but on (M2), which has 4 real roots
close together, it is slower than cf. cf is advantageous on (W) since, as soon as a real root is
found, transformations of the form X 7→ X + 1 rapidly produce the other real roots. We were
not able to tune aberth on (W). For (L), (C1) and (C2), cf is clearly faster than rs, while we
were not able to appropriately tune aberth to produce the correct number of real roots. The
polynomials in (R1) and (R2) have few and well separated real roots, thus the semi-numerical
techniques in rs are very effective. To be more specific, rs isolates all roots using only 63 bits of
accuracy (this information was extracted using the function rs_verbose( 1)). aberth is even
faster on these experiments. However, even in this case, cf is faster than rs; it is a little slower
than aberth (see Table 1).

We finally tested a univariate polynomial that appears in the Voronoi diagram of ellipses [20].
The polynomial has degree 184, coefficient bitsize 903, and 8 real roots. cf solves it in 0.12s, rs

in 0.3s and aberth in 1.7s.
There are ways to improve our solver. First, instead of exact integer arithmetic we may

use semi-numerical techniques like those in rs [33]. These techniques may be based on interval
arithmetic.
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