
Real solving of bivariate polynomial systems

Ioannis Z. Emiris and Elias P. Tsigaridas

Department of Informatics and Telecommunications, National University of Athens,
HELLAS

{emiris,et}@di.uoa.gr,
http://www.di.uoa.gr/~{emiris,et}

Abstract. We propose exact, complete and efficient methods for 2 prob-
lems: First, the real solving of systems of two bivariate rational polynomi-
als of arbitrary degree. This means isolating all common real solutions in
rational rectangles and calculating the respective multiplicities. Second,
the computation of the sign of bivariate polynomials evaluated at two
algebraic numbers of arbitrary degree. Our main motivation comes from
nonlinear computational geometry and computer-aided design, where bi-
variate polynomials lie at the inner loop of many algorithms. The meth-
ods employed are based on Sturm-Habicht sequences, univariate resul-
tants and rational univariate representation. We have implemented them
very carefully, using advanced object-oriented programming techniques,
so as to achieve high practical performance. The algorithms are inte-
grated in the public-domain C++ software library synaps, and their
efficiency is illustrated by 9 experiments against existing implementa-
tions. Our code is faster in most cases; sometimes it is even faster than
numerical approaches.

1 Introduction

Our motivation comes from computer-aided geometric design and computational
geometry on curved objects, where predicates rely on the real solving of small
algebraic systems and on computing the sign of polynomials evaluated at solu-
tions of such systems. These are crucial in software libraries such as esolid [15],
exacus (eg. [12]), and CGAL (eg. [8]). Predicates must be decided exactly in
all cases, including degeneracies. We focus on bivariate polynomial systems of
arbitrary degree. Efficiency is critical because such systems appear in the inner
loop of most algorithms, including those for computing the arrangement of alge-
braic curves or surfaces, the Voronoi diagrams of curved objects, e.g. [6, 12] and
kinetic data-structures ([11]).

Solving polynomial systems in a real field is an active area of research. There
are several algorithms that tackle this problem, cf. e.g. [1, 25] and the refer-
ences therein. Every method designed for the real-solving of algebraic systems
could be compared against ours. We focus on those that, in the best of our
knowledge, have efficient implementations, enumerated below, and perform ex-
periments against them. Note that we aim at fully accurate computation, in the
sense that we avoid any numerical computation and thus we do not compare



against software based on homotopies, interval arithmetic or Newton-like meth-
ods. Besides our software, only GbRs achieves this goal completely, among the
examined implementations. Of course many generalizations of Gröbner bases
can lead to solution of this problem, but we chose GbRs and normal forms
(solver newmac below) as representatives of them. We also do not test against
computer algebra systems, like maple or reduce, or against algorithms for the
related but different question on parametric polynomials ([23]).

Our methods are exact, in the sense that they provide rational isolating rect-
angles for all common roots and calculate their multiplicity. We concentrate on
solvers that output this representation. Our methods are also complete, since
they can handle all cases, including degeneracies. And they are efficient as tes-
tified by their implementation and experiments.

In an earlier paper ([7]), in order to solve quadratic bivariate systems, without
assuming generic position, we precomputed resultants and static Sturm-Habicht
sequences in two variables ([9]) and we combined the rational isolating points
with a simple version of rational univariate representation. Here we generalize
that approach and use Sturm-Habicht sequences, in a dynamic setting since the
polynomial degree is not bounded. Our approach is based on projecting the roots
along the two coordinates axes using univariate resultants. We again combine
the rational isolating points, computed around the resultants’ roots, using a
specialized version of rational univariate representation, in order to lift them to
two dimensions.

Additionally we compute the ordinates of the solutions as algebraic numbers
in isolating interval representation, avoiding computations of minimal polynomi-
als. This is important since further computations with the solutions of a system
is often required. For example in [13], where computations of Eggers singularities
and Milnor numbers are required, or [24], where projections of the roots on three
lines are computed, as well as interval refinement in order to compute the criti-
cal points of a curve. Our approach allows us to compute the sign of a bivariate
polynomial function evaluated over algebraic numbers, all of arbitrary degree.
Our approach is similar to [22] and can be easily extended to polynomials with
an arbitrary number of variables. However, our approach is more efficient since
we use Sturm-Habicht sequences.

The main contribution of this paper is a package for solving bivariate systems
and computing the sign of bivariate polynomials evaluated at algebraic numbers,
as part of the synaps software library [5], which is developed in C++. For
this we use modern object-oriented programming techniques, such as partial
specialization and traits classes, so as to achieve high performance in practice.

We performed experiments against existing methods and implementations.
mapc [14] had used Sturm sequences, but did not handle degeneracies. Since
mapc is no longer maintained, we do not compare against it. In our tests, we
compared against other solvers in synaps 1, namely newmac, which is based
on normal forms [19], sth, which also uses Sturm-Habicht sequences but uses a
double approximation in order to compute the second coordinate of the solutions

1 www-sop.inria.fr/galaad/logiciels

2



and is based on the work of [10], and res, which is based on computing the
generalized eigenvalues of a Bézoutian matrix [2]. Additionally, we test against
GbRs 2, through its maple interface, which uses Gröbner bases and rational
univariate representation [21].

A more recent work is the one of [16], where sparse resultant, rational uni-
variate representation and certified numerical approximations are used so as to
solve polynomial systems, with arbitrary number of variables and equations.
Their code is not yet freely available. From the running times that they provide
it seems that our approach for bivariate systems is faster.

We show that our code compares favourably with other software on most
instances. Sometimes it is even faster than methods using some numerical com-
putation; such methods may compromise the accuracy of the output. This shows
that for specific instances of real solving, namely when the problem dimension
is small, a careful implementation of the Sturm-Habicht approach can be very
competitive and even the method of choice.

This paper is organized as follows. The next two sections survey some neces-
sary notions on root multiplicity, and on the theory of Sturm-Habicht sequences.
Section 4 presents computations with real algebraic numbers. Section 5 presents
our two variants for solving bivariate polynomial system. The following section
describes our implementation and experiments. We conclude with open ques-
tions.

2 Root multiplicity

The results of this section can be found for example in [3, 1, 25]. We follow the
approach and the terminology of [13] and [2].

In what follows F is a commutative field of characteristic zero and F its al-
gebraic closure. Typically F = Q and F = Q. Moreover, f, g are bivariate poly-
nomials in F[X, Y ] and Cf and Cg are the corresponding affine algebraic plane
curves. By deg(f) we denote the total degree of f , while by degX (f) (respec-
tively degY (f)) denotes the degree of f considered as a univariate polynomial
in X (resp. Y ) with coefficients in F[Y ] (resp. F[X ]).

Let f, g ∈ F[X, Y ] be two coprime polynomials and Cf , Cg be their corre-
sponding affine algebraic plane curves, over the field F, defined by the equa-
tions (Σ) : f(X, Y ) = g(X, Y ) = 0. Let I =< f, g > the ideal that they
generate in F[X, Y ] and so the associated quotient ring is A = F[X, Y ]/I.
Let the distinct intersection points, which are the distinct roots of (Σ), be

Cf ∩ Cg = {ζi = (αi, βi)}1≤i≤r, where ζi ∈ F
2
.

The multiplicity of a point ζi is

mult(ζi : Cf ∩ Cg) = dim
F
Aζi

< ∞

where Aζi
is the local ring obtained by localizing A at the maximal ideal I =<

X − αi, Y − βi > ([3]).

2 http://fgbrs.lip6.fr

3



If Aζi
is a finite dimensional vector space over F, then ζi = (αi, βi) is an

isolated zero of I and its multiplicity is called the intersection number of the
two curves. The finite F-algebra A can be decomposed as a direct sum A =
Aζ1 ⊕Aζ2 ⊕ · · · ⊕ Aζr

and thus dim
F
A =

∑r
i=1 mult(ζi : Cf ∩ Cg).

A polynomial f ∈ F[X, Y ] or a curve Cf , is called y−regular if deg(f) =
degY (f).

Proposition 1. Let f, g ∈ F[X, Y ] be two coprime curves, and let p ∈ F
2

be a
point. Then

mult (p : fg) ≥ mult (p : f)mult (p : g)

where equality holds if and only if Cf and Cg have no common tangents at p.

Real-solving of (Σ) is equivalent to finding the intersections of Cf and Cg

in the real plane. We assume that Cf and Cg are y−regular and that (Σ) is
in generic position, meaning that every solution has a distinct x−coordinate.
This is without loss of generality, since we can achieve this by a linear change
of coordinates. A generic linear transformation (shear) of coordinates puts the
points of Cg ∩ Cg in one to one correspondence with roots of the resultant of f
and g with respect to Y .

3 Sturm–Habicht sequences

In this section we present some results for Sturm-Habicht sequences. For more
information the reader may refer to [1, 10, 25].

Let P, Q ∈ Z[X ] such that deg(P ) = p and deg Q = q and P =
∑p

k=0 akXk, Q =
∑q

k=0 bkXk. If i ∈ {0, . . . , inf (p, q)} we define the polynomial subresultant asso-
ciated to P and Q of index i, as follows:

Sresi(P, Q) =

i
∑

j=0

M j
i xj

where every M j
i is the determinant of the matrix built with columns 1, 2, . . . , p+

q − 2i − 1 and p + q − i − j in the matrix:

mi =





















ap . . . a0

. . .
. . .

ap . . . a0

bp . . . b0

. . .
. . .

bp . . . b0





















where the coefficients of P and Q are repeated q− i and p− i times respectively.
The determinant M i

j(P, Q) is called the i−th principal subresultant coefficient
and denoted by sresi.

4



Definition 1. Let P be polynomials in Z[X ] with p = deg(P ). If we write

δk = (−1)
k(k+1)

2

for every integer k, the Sturm-Habicht sequence associated to P is defined as in
the list of polynomials {StHaj(P )}j=0,...,p, where StHap(P ) = P,StHap−1(P ) =
P ′, and for every j ∈ {0, . . . , p − 2}:

StHaj(P ) = δp−j−1Sresj(P, P ′)

For every j ∈ {0, . . . , p} the principal j−th Sturm-Habicht coefficient is de-
fined as:

sthaj(P ) = coeff
j

(StHaj(P )),

i.e. the coefficient of xj in the polynomial StHaj(P ).

It is important to mention that the polynomial stha0, modulo its sign is the
discriminant of P .

Moreover the greatest common divisor of P and P ′ is obtained as a by-
product of the Sturm-Habicht sequence, together with the following equivalence:

StHai(P ) = gcd(P, P ′) ⇔

{

stha0(P ) = · · · = sthai−1(P ) = 0
sthai(P ) 6= 0

The Sturm-Habicht sequence has very nice specialization properties. Let P
and Q be two polynomials with parametric coefficients, such that their degree
does not change after a specialization in the parameters. If we compute their
Sturm-Habicht sequence before we specialize the coefficients, the obtained se-
quence is guaranteed to be valid under every specialization. We use this property
so as to compute such a sequence for polynomials in Z[X, Y ], regarding them
either as polynomials in (Z[X ])[Y ] or in (Z[Y ])[X ]. The last polynomial in the
sequence is the resultant with respect to X or Y , respectively.

Theorem 1. [1, 10] Let f, g square-free and coprime polynomials, such that Cf

and Cg are in generic position. If

Hj(X, Y ) = StHaj(f, g) = hj(X)Y j + hj,j−1(X)Y j−1 + · · · + hj,0(X)

then if ζ = (α, β) ∈ Cf ∩ Cg then there exists k, such that

h0(α) = · · · = hk−1(α) = 0, hk(α) 6= 0, β = −
1

k

hk,k−1(α)

hk(α)

5



4 Real algebraic numbers and sign evaluation

The real algebraic numbers, i.e. those real numbers that satisfy a polynomial
equation with integer coefficients, form a real closed field denoted by Ralg = Q.
From all integer polynomials that have an algebraic number α as root, the one
with the minimum degree is called minimal polynomial. The minimal polynomial
is unique, primitive and irreducible ([25]). In our approach, since we use Sturm-
Habicht sequences, it suffices to deal with algebraic numbers, as roots of any
square-free polynomial and not as roots of their minimal ones.

In order to represent a real algebraic number we chose the isolating interval
representation.

Definition 2. The isolating-interval representation of real algebraic number α ∈
F is α ∼= (P (X), I), where P (X) ∈ D[X ] is square-free and P (α) = 0, I = [a, b],
a, b,∈ Q and P has no other root in I.

Let P denote the Sturm-Habicht sequence of P and P ′. For a Sturm-Habicht
sequence P , VP (p) denotes the number of sign variations of the evaluation of the
sequence at p. By VP,Q(a) we denote the sign variations of the Sturm-Habicht
sequence of P and Q, evaluated over a.

Theorem 2. [25] Let P, Q ∈ D[x] be relatively prime polynomials and P square-
free. If a < b are both non-roots of P and γ ranges over the roots of P in [a, b],
then

VP,Q[a, b] := VP,Q(a) − VP,Q(b) =
∑

γ

sign (P
′

(γ)Q(γ)).

where P
′

is the derivative of P .

We can use Sturm-Habicht sequences in order to find the sign of a univariate
polynomial, evaluated over a real algebraic number (cf. [9] for degree ≤ 4).

Corollary 1. Let Q(X) ∈ D[X ] and a real algebraic number where α ∼= (P, [a, b]).
By th. 2, sign(Q(α)) = sign(VP,Q[a, b] · Q

′

(α)).

Corollary 2. Th. 2 holds if in place of Q we use R = prem(Q, P ), where
prem(Q, P ), stands for the pseudo-remainder of Q divided by P .

Corollary 3. Using th. 2 we can compare two real algebraic numbers in isolating
interval representation.

Proof. Let two algebraic numbers γ1
∼= (P1(x), I1) and γ2

∼= (P2(x), I2) where
I1 = [a1, b1], I2 = [a2, b2]. Let J = I1 ∩ I2. When J = ∅, or only one of γ1 and
γ2 belong to J , we can easily order the 2 algebraic numbers. If γ1, γ2 ∈ J , then
γ1 ≥ γ2 ⇔ P2(γ1) ·P

′

2(γ2) ≥ 0. We can easily obtain the sign of P
′

2(γ2), and from
th. 2, we obtain the sign of P2(γ1). ⊓⊔

The previous tools suffice to compute the sign of a bivariate polynomial
function evaluated over two algebraic numbers. Consider F ∈ D[X, Y ] and α ∼=
(A(x), I1) and β ∼= (B(X), I2) where I1 = [a1, b1], I2 = [a2, b2]. We wish to
compute the sign of F (α, β).

6



– Consider F as a univariate polynomial with respect to X and compute the
Sturm-Habicht sequence of A and F . Note that the polynomials in the se-
quence are bivariate.

– Taking advantage of the good specialization properties of Sturm-Habicht
sequences, specialize X in the sequence by a1 and b1, thus producing two
sequences, that contain univariate polynomials.

– For each sequence, for every polynomial in each, compute its sign evaluated
at β.

– Finally, count the sign variations for each sequence and the required sign is
the difference of these sign variations.

We can extend this approach to polynomials with arbitrary numbers of vari-
ables, similar to [22]. However the usage of Sturm-Habicht sequences, instead
of generalized Sturm sequences, improves both the theoretical (cf. [1]) and the
practical complexity (cf. [4, 25]).

5 Two variants of bivariate real solving

We can make use of th.1, following [10], so as to compute the solution of bivariate
polynomial systems. We consider polynomials f, g ∈ Q[X, Y ], such that Cf , Cg

are in generic position and we compute the resultant of f, g with respect to Y ,
which is a polynomial in X . The real solutions of the polynomial correspond
to the x− coordinates of the solution of the system. Then, using th.1, we lift
these solutions in order to determine the y−coordinates, as a rational univariate
function evaluated over an algebraic number.

Even though the previous approach is straightforward, it has one main dis-
advantage. The y-coordinates are computed implicitly. If this is all that we want
then this is not a problem. However in most cases we want to further manipulate
the solutions of the system, i.e. to compare two y−coordinates or to count the
number of branches of each curve above or below this ordinate. Of course we
can always find the minimal polynomial of these algebraic numbers, but this is
quite expensive. Thus we chose an alternatively way.

We compute the resultant, using the Sturm-Habicht Sequence, both with
respect to Y and X , Rx and Ry respectively. We solve the univariate polynomials
Rx and Ry using Sturm sequences (a faster solver like the one in [20], may also
be used). Let α1 < · · · < αk and β1 < · · · < βl be the real roots of Rx and Ry,
respectively. For the real roots of Ry we compute rational intermediate points,
q0 < β1 < q1 < · · · < ql−1 < βl < ql where qj ∈ Q, 0 ≤ j ≤ l. We can easily
compute the intermediate points, since the algebraic numbers are in isolating
interval representation.

For every root αi, 1 ≤ i ≤ l, using th.1, we compute a rational univariate
representation of the corresponding y-coordinate, which is without loss of gen-

erality, of the form γi = A(αi)
B(αi)

. Since have already computed the real solutions

of Ry, it suffices to determine to which βj , γi equals to, that is to find an index

7



j such that

qj <
A(αi)

B(αi)
< qj+1

or, if we assume that A(αi) > 0, this can be checked using cor. 1, then

qjA(αi) < B(αi) < qj+1A(αi)

Actually what we really want is to determine the sign of univariate poly-
nomials of the form U(X) = qjA(X) − B(X) evaluated over the real algebraic
numbers that are solutions of Rx = 0. This can be done with cor. 1.

However the previous approach works only with the assumption of generic
position. This is without loss of generality, since we can apply a transformation of
the form (X, Y ) 7→ (X+aY, Y ), where a is a random number before the execution
of the algorithm, or we can detect non-generic position during the execution
([10, 1]), then apply a transformation of the form (X, Y ) 7→ (X + Y, Y ) and
start the algorithm recursively. However if such a transformation is performed
then it is a very hard computational task to apply the inverse transformation so
as to represent the solutions to the original coordinate system. Moreover such
transformations destroy the sparsity of the system.

In order to overcome such barriers we suggest one more variant for bivariate
polynomial system solving. As before we compute the two resultants Rx and
Ry and their real solutions αj and βj , 1 ≤ i ≤ k, 1 ≤ j ≤ k, respectively.
Then for every pair (ai, bj) we test if both f and g vanish. If so, then this pair
is the solution. Actually, we do not need to test every pair, since we can take
into account the multiplicities of αi and βj . The sign of a bivariate polynomial
evaluated over two algebraic numbers can be computed using the results of the
previous section. This variant is more generic than the previous one, but as one
can easily imagine, in most of the cases it is clearly slower. However, it is useful,
since a combination of both variants can be used, for example when a non-generic
position is detected.

6 Implementation and experimentation

6.1 Implementation

We have implemented a software package in C++, as part of library synaps

[5, 18] inside the namespace ALGEBRAIC, for dealing with algebraic numbers and
bivariate polynomial system solving, which is optimized for small degree. Our
implementation is generic in the sense that it can be used with any number
type and any polynomial class that supports elementary operations and eval-
uations and can handle all degenerate cases. We used various advanced C++

programming techniques, such as template specialization, traits classes for num-
ber types, etc. Additionally we have precomputed various quantities, and factor
several common expressions so as to minimize the computational effort.

In what follows root of<RT> is a class that represents real algebraic numbers,
computed as roots of polynomial in isolating interval representation. UPoly<RT>

8



is a class for univariate polynomial while BPoly<RT> is a class for multivariate
polynomials (for our approach we need only the bivariate ones). All classes are
parametrized by a ring number type (RT).

We present a portion of the functionality that we provide. Actually the pre-
sentation is very abstract since various parameters can be determined. For ex-
ample the univariate solver that can be used and operations between algebraic
numbers are not presented here (see [18]). The full description of the function-
ality, as well as various design and optimization techniques, will be part of a
future presentation. The interesting reader may refer to the documentation of
synaps for additional details.

– Seq<root of<RT> > solve(UPoly<RT> f)
Solves a univariate polynomial and returns a sorted sequence of real alge-
braic numbers. For degree up to 4 all the quantities are precomputed using
the algorithms of [9]. For higher degrees we use an algorithm for real root
isolation based on Sturm-Habicht sequences [4, 1, 25].

– int compare(root of<RT> α, root of<RT> β)
Compares two algebraic numbers and returns −1, 0 or +1, depending on the
order. For degree up to 4 we use precomputed sequences ([9]). For higher de-
gree we use dynamic (that is computed on the fly) Sturm-Habicht sequences.
We use cor. 3 in order to compare them.

– int sign at(UPoly<RT> f, root of<RT> α)
Computes the sign of a univariate polynomial evaluated over an algebraic
number returns −1, 0 or +1. Both the polynomial and the real algebraic
number can be of arbitrary degree. We implemented this by using cor. 3.

– int sign at(BPoly<RT> f, root of<RT> γx, root of<RT> <RT> γy)
Computes the sign of a bivariate polynomial evaluated over two real alge-
braic numbers and returns −1, 0 or +1. The total degree of the bivariate
polynomial, as well as the degree of the algebraic number may be arbitrary.
We use cascaded Sturm-Habicht sequences. For total degree of the bivariate
polynomial up to 2 and if at least one of the algebraic numbers is of degree
less than 5 we use precomputed sequences ([9]).

– Seq < pair<root of<RT> > > solve(BPoly<RT> f3, BPoly<RT> f2)
Computes the real solutions of a bivariate polynomial system and returns a
sequence of pairs of real algebraic numbers sorted lexicographically. If the
total degree of the polynomials is less than 3, we use precomputed sequences
([9]). In all the other cases we use the algorithm described in sec. 5.

6.2 Experiments

In order to test our implementation we solved the following systems:

(R1)

{

1 + 2X − 2X2Y − 5XY + X2 + 3X2Y = 0
2 + 6X − 6X2Y − 11XY + 4X2 + 5X3Y = 0

(R2)

{

X3 + 3X2 + 3X − Y 2 + 2Y − 2 = 0
2X + Y − 3 = 0

(R3)

{

X3 − 3X2 − 3XY + 6X + Y 3 − 3Y 2 + 6Y − 5 = 0
X + Y − 2 = 0

9



(M1)

{

Y 2 − X2 + X3 = 0
Y 2 − X3 + 2X2 − X = 0

(M2)

{

X4 − 2X2Y + Y 2 + Y 4 − Y 3 = 0
Y − 2X2 = 0

(M3)

{

X6 + 3X4Y 2 + 3X2Y 4 + Y 6 − 4X2Y 2 = 0
Y 2 − X2 + X3 = 0

(M4)

{

X9 − Y 9 − 1 = 0
X10 + Y 10 − 1 = 0

(D1)

{

X4 − Y 4 − 1 = 0
X5 + Y 5 − 1 = 0

(D1)

{

−312960− 2640X2 − 4800XY − 2880Y 2 + 58080X + 58560Y = 0
−584640− 20880X2 + 1740XY + 1740Y + 274920X − 59160Y = 0

where systems R{1,2,3} are from [16] and systems M{1,2,3,4} are from [2]. The
results are on table 6.2, where times presented are in msec and are the average
of 100 runs. We performed all tests on a 2.6GHz Pentium with 512MB memory,
running Linux, with kernel version 2.6.10. We compiled the programs with g++,
v. 3.3.5, with option -O3.

We test against newmac [19]. It is a general purpose polynomial system
solver. sth, in synaps, is based on Sturm-Habicht sequences and subresultants,
following [10]. res is a bivariate polynomial solver based on the Bézoutian ma-
trix and lapack [2]. For GbRs [21] we use its maple interface with 10 digits
accuracy, since the source code is not available. S2 refers to our solver using only
the sign at functions, S2-rur is our algorithm based the on rational univariate
representation.

We have to emphasize that our approach is exact, i.e. it outputs isolating
boxes with rational endpoints containing a unique root whose multiplicity is
also calculated. This is not the case for sth and res. sth, uses a double ap-
proximation in order to compute the ordinate of the solution. res works only
with doubles, since it has to compute generalized eigenvalues and eigenvectors.
These approximations is the reason why they both failed on some tests. newmac

also relies on the computation of eigenvalues but in addition computes all the
complex solutions of the system.

S2 is competitive on all data sets, while S2-rur is almost always faster than
any other solver, even from those that they use double arithmetic. However the
system of interest is system M4. Note that this system is very sparse. Sturm-
Habicht sequences do not take advantage of the sparsity of a problem. This
particular system, is not in generic position, so a linear transformation is applied.
Then, at one hand, the sparsity is destroyed and, on the other, the Sturm-
Habicht sequences become quite long. We noticed that most of the time is spent
for the real solution of the two resultants. This is a strong indication, that a
more sophisticated solver for univariate polynomials, like the one in [20], must
be adopted.

As for the approach of [16], they quote that, on a faster machine with 3GHz
CPU, the timings for solving system R1, R2 and R3 are 2590, 86.5 and 103 msec

10



respectively. So it seems that our approach for bivariate systems is faster. Of
course all these are only indications and a more subtle study is required.

msec R1 R2 R3 M1 M2 M3 M4 D1 D2

S
2 10 1 1 2 3 433 5010 50 1

S
2
-rur 1 1 0.1 1 1 44 1010 11 1

newmac 6 2 3 3 3 20 1020 20 20

res 0.3 0.3 0.6 0.6 01.2 8.4 150 - 0.5

sth 1 0.2 0.2 0.5 0.4 1.3 - 280 0.4

GbRs 24 22 21 18 23 28 25 25 27
Table 1. Experiments on bivariate system solving

7 Conclusions and future work

We are currently working on better bounds on the bit complexity of our algo-
rithms. We expect this investigation to identify possible bottlenecks and lead
to better performance in practice. We plan to apply our tools in computing the
topology of algebraic curves in 2D and 3D, as well as the topology of surfaces in
3D. Other possible approaches, to be implemented and compared at a practical
level, include the adoption of fast Cauchy-index computations ([17]) and Thom’s
encoding ([1]). Last but not least, we intend to use arithmetic filtering to handle
cases that are far from degenerate, so as to improve the speed of our software
for generic inputs.

Acknowledgements: The second author thanks Bernard Mourrain, for his continuing help during

the implementation of the package. Both authors acknowledge partial support by Kapodistrias,

project 70/4/6452 of the Research Council of National University of Athens, by PYTHAGORAS,

project 70/3/7392 under the EPEAEK program funded by the Greek Ministry of Educational Affairs

and EU, and IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract

No IST-006413-2 (ACS - Algorithms for Complex Shapes).

References

1. S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic Geometry, vol-
ume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, 2003.

2. L. Busé, B. Mourrain, and H. Khalil. Resultant-based methods for curves inter-
section problems. Manuscript, 2005.

3. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Number 185 in
Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.

4. J.H. Davenport, Y. Siret, and E. Tournier. Computer Algebra. Academic Press,
London, 1988.

11



5. G. Dos Reis, B. Mourrain, R. Rouillier, and P. Trébuchet. An environment for
symbolic and numeric computation. In Proc. Int. Conf. Math. Software, World
Scientific, pages 239–249, 2002.

6. L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parameterization
of the intersection of quadrics. In Proc. ACM SoCG, pages 246–255., June 2003.

7. I. Z. Emiris and E. P. Tsigaridas. Real algebraic numbers and polynomial systems
of small degree. manuscript, 2005. (www.di.uoa.gr/˜et)

8. I.Z. Emiris, A.V. Kakargias, M. Teillaud, E.P. Tsigaridas, and S. Pion. Towards
an open curved kernel. In Proc. ACM SoCGpages 438–446, New York, 2004.

9. I.Z. Emiris and E.P. Tsigaridas. Computing with real algebraic numbers of small
degree. In Proc. ESA, LNCS, pages 652–663. Springer Verlag, 2004.

10. L. Gonzalez-Vega and I. Necula. Efficient topology determination of implicitly
defined algebraic plane curves. Comp. Aided Geom. Design, 19(9):719–743, 2002.

11. L.J. Guibas, M.I. Karavelas, and D. Russel. A computational framework for han-
dling motion. In Proc. 6th Work. Algor. Engin. & Experim. (ALENEX), 2004.

12. M. Hemmer, E. Schömer, and N. Wolpert. Computing a 3-dimensional cell in
an arrangement of quadrics: Exactly and actually! In Proc. Annual ACM Symp.
Comput. Geometry, pages 264–273, 2001.

13. M. El Kahoui. Computing with algebraic curves in generic position. submitted,
2005.(www.mpi-sb.mpg.de/˜elkahoui)

14. J. Keyser, T. Culver, D. Manocha, and S .Krishnan. MAPC: A library for efficient
and exact manipulation of algebraic points and curves. In Proc. Annual ACM
Symp. Comput. Geometry, pages 360–369, New York, N.Y., June 1999. ACM Press.

15. J. Keyser, T. Culver, D. Manocha, and S. Krishnan. ESOLID: A system for exact
boundary evaluation. Comp. Aided Design, 36(2):175–193, 2004.

16. J. Keyser, K. Ouchi, and M. Rojas. The Exact Rational Univariate Representa-
tion for Detecting Degeneracies. In DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science. AMS Press, 2004. to appear.

17. T. Lickteig and M.-F. Roy. Semi-algebraic complexity of quotients and sign deter-
mination of remainders. J. Complexity, 12(4):545–571, December 1996.

18. B. Mourrain, J. P. Pavone, P. Trébuchet, and E. Tsigaridas. SYNAPS, a library
for symbolic-numeric computation. In 8th Int. Symp. on Effective Methods in
Algebraic Geometry, MEGA, Italy, May 2005. Software presentation, to appear.

19. B. Mourrain and Ph. Trébuchet. Algebraic methods for numerical solving. In
Proc. of the 3rd International Workshop on Symbolic and Numeric Algorithms for
Scientific Computing’01 (Timisoara, Romania), pages 42–57, 2002.

20. B. Mourrain, M. Vrahatis, and J.C. Yakoubsohn. On the complexity of isolating
real roots and computing with certainty the topological degree. J. Complexity,
18(2), 2002.

21. F. Rouillier. Solving zero-dimensional systems through the rational univariate
representation. Journal of Applicable Algebra in Engineering, Communication and
Computing, 9(5):433–461, 1999.

22. T. Sakkalis. Signs of algebraic numbers. Computers and Mathematics, pages 131–
134, 1989.

23. V. Weispfenning. Solving parametric polynomial equations and inequalities by
symbolic algorithms. In Proc. Computer Algebra in Science and Engineering World
Scientific, 1995

24. N. Wolpert and Seidel. On the Exact Computation of the Topology of Real Alge-
braic Curves. In Symposium of Computational Geometry. ACM, 2005. to appear.

25. C.K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press,
New York, 2000.

12


