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Abstract

We present exact and complete algorithms based on precomputed Sturm-Habicht
sequences, discriminants and invariants, that classify, isolate with rational points
and compare the real roots of polynomials of degree up to 4. We have closed formulas
for all isolating points. Moreover we combine these results with a simple version of
rational univariate representation so as to isolate and compute the multiplicity of all
common real roots of a bivariate system of integer polynomials of total degree ≤ 2.
We present our implementation within synaps and we perform experimentation
and comparison with all available software. Our package is 2–10 times faster, even
when compared to inexact software or to sofware with intrinsic filtering.

Key words: algebraic number, real solving, bivariate polynomial, quartic, Sturm
sequence, discriminant

1 Introduction

Lazard (1988) derived the necessary condition under which a quartic polyno-
mial takes only positive values and the necessary condition under which an
ellipse lies inside a unit circle. That paper, by providing optimal solutions,
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showed that general purpose algorithms do not always provide optimal solu-
tions (algorithms) to specific problems. Inspired by the approach of D. Lazard,
we tackle the problem of enumerating, isolating and comparing the real roots
of integer polynomials of degree up to 4, in an efficient way leading to the best
available implementation. Moreover, using these results, we derive an efficient
algorithm (and implementation) for isolating in rational boxes all common
real roots of systems of bivariate integer polynomials of total degree up to 2.
For each root we also output its multiplicity.

An important application of these special-purpose algorithms comes from
computer-aided geometric design and nonlinear computational geometry, where
predicates rely on real algebraic numbers of small degree. These are crucial
in software libraries such as esolid (Keyser et al., 2004), exacus (Hem-
mer et al., 2001; Eigenwillig et al., 2004), and the upcoming curved kernel of
cgal (Emiris et al., 2004). Predicates must be decided exactly in all cases,
including degeneracies. Efficiency is critical because comparisons of algebraic
numbers and solution of polynomial systems of small degree, lie in the in-
ner loop of several geometric algorithms, including those for computing the
arrangement of algebraic curves, arcs or surfaces, the Voronoi diagrams of
curved objects, eg. (Eigenwillig et al., 2004; Dupont et al., 2003; Lazard
et al., 2004; Hemmer et al., 2001; Karavelas and Emiris, 2003) and related
kinetic data-structures (Guibas et al., 2004).

Our work also provides a special-purpose quantifier elimination method for
one or two variables and for parametric polynomial equalities and inequalities
of low degree. Our approach extends the one of Weispfenning (1994) because
the rational isolating points eliminate the need of multiple sign evaluations in
determining the sign of a univariate polynomial over an algebraic number of
degree ≤ 4. We also extend the existing approaches so as to solve quadratic
bivariate polynomial systems (sec. 6).

Our method is based on pre-computed (static) Sturm sequences; essentially,
we implement straight-line programs for each computation. One contribution
is finding isolating points of low algebraic degree (and rational for polynomials
of degree ≤ 4) which is a problem of independent interest. It provides start-
ing points for iterative algorithms and has direct applications, e.g. (Dupont
et al., 2003; Lazard et al., 2004). The isolating points are given as functions
of the coefficients of the polynomial. Our Sturm-based algorithms rely on iso-
lating points in order to avoid iterative methods (which depend on separation
bounds) and the explosion of the algebraic degree of the tested quantities. In
order to reduce the computational effort, we factorize the various quantities
by the use of invariants and/or by the elements of the Bezoutian matrix; for
our implementation, this is done in an automated way, via maple.

We have implemented a package of algebraic numbers and bivariate polyno-
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mial system solving and show that it compares favorably with other software.
Our implementation is part of the synaps 2 v2.1 library (Dos Reis et al.,
2002), which is an open source library for symbolic and numeric computa-
tions. We call our implementation S3 which stands for Static Sturm Sequences
(or Salmon-Sturm-Sylvester).

The following section overviews some of the most relevant existing work as
well as our main contributions. Next, we formalize Sturm sequences, the rep-
resentation of algebraic numbers and the algorithms for comparison. Sect. 4
studies discrimination systems, their connection to the invariants of the poly-
nomial and to root classification. Sect. 5 obtains rational isolating points for
polynomials of degree ≤ 4 and bounds the algebraic degree and the number
of operations for the comparison. Sect. 6 applies our tools to solve a system of
bivariate polynomials of total degree up to 2. Sect. 7 sketches our implemen-
tation and sect. 8 illustrates our implementation with experimental results.
Future work is mentioned throughout.

2 Previous work and contribution

Although the roots of rational polynomials of degree up to 4 can be expressed
explicitly with radicals, the computation of the real roots requires square and
cubic roots of complex numbers. Even if only the smallest (or largest) root
is needed, one has to compute all real roots (Kaplan and White, 2001). Our
approach allows us to isolate and determine the multiplicity of a specific root
of a polynomial, without computing all the roots. Another critical issue is
that there is no formula that provides isolating rational points between the
real roots of polynomials: this problem is solved in this paper for degree ≤ 4.

In quantifier elimination, there are seminal works that optimize low level, oper-
ations, eg. (Lazard, 1988; Weispfenning, 1994). However, by those approaches,
the comparison of real algebraic numbers requires multiple Sturm sequences.
By our approach, we need to evaluate only one Sturm sequence in order to
decide the sign of a polynomial over a cubic or quartic algebraic number, or
to compare two such numbers.

Rioboo (1992), implemented real closure in axiom, an arithmetic of real al-
gebraic numbers of arbitrary degree with coefficients from a real closed field,
which is the only package that can handle non-trivial examples. The exten-
sion, Rioboo (2002), proposed for the sign evaluation, is essentially the same
as theorem 1.

2 www-sop.inria.fr/galaad/logiciels/synaps/
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Iterative methods based on the approach of Descartes / Uspensky seem to
be the fastest means of isolating real roots, in general (Rouillier and Zimmer-
mann, 2003). Such a method, based on the Bernstein basis, is implemented in
synaps 2.1 (Mourrain et al., 2002). An iterative method that uses subdivi-
sion and Sturm sequences, has been implemented by Guibas et al. (2004). The
latter two methods are tested in Sec. 8, since their source code is available.

leda and core 3 evaluate expression trees built recursively from integer oper-
ations and k

√
, and rely on separation bounds. leda treats arbitrary algebraic

numbers, by the diamond operator, based on Descartes/Uspensky iteration
and Netwon’s method (Schmitt, 2003). But it faces efficiency problems in com-
puting isolating intervals for degree 3 and 4, since Newton’s iteration cannot
always be applied with interval coefficients. core recently provided a rootOf

operator for dealing with algebraic numbers using Sturm sequences.

Precomputed quantities for the comparison of quadratic algebraic numbers
were used by Karavelas and Emiris (2003), with static Sturm sequences. In
generalizing these methods to higher degree, it is not obvious how to determine
the (invariant) quantities to be tested in order to minimize the bit complexity.
Another major issue is the isolating points as well as the need of several Sturm
sequences. Here we settle these problems.

The basis of our work are the discrimination systems, which are the same as
in (Yang, 1999), but they are derived differently and we also correct a small
typographical error concerning the quartic. For a polynomial of degree up
to 4, we use the quantities involved in its discrimination system not only to
determine the number of its roots, but also to compute their multiplicity, to
express them as rationals when this is possible, to compute the polynomial’s
square-free part and to provide rational points that isolate its roots. The
derivation of rational isolating points, allows us to compare two algebraic
numbers using a single Sturm-Habicht sequence (see theorem 1).

For quadratic numbers and for the efficiency of our implementation see (Emiris
et al., 2004). For algebraic numbers of degree 3 and 4, preliminary results are
in (Emiris and Tsigaridas, 2003, 2004a,b), where details can be found, which
cannot fit here for reasons of space. Here we compare our software with the
univariate solver of synaps (Mourrain et al., 2002), gkr of (Guibas et al.,
2004), rs (Rouillier and Zimmermann, 2003) 4 , core, and NiX, the polyno-
mial library of exacus 5 . Our software is 2–10 times faster, even compared
to software packages that have intrinsic filtering.

Solving polynomial systems in a real field is an active area of research. There

3 www.algorithmic-solutions.com/enleda.htm, www.cs.nyu.edu/exact/core
4 http://fgbrs.lip6.fr/∼rouillie/Software/RS
5 www.mpi-sb.mpg.de/projects/EXACUS/
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are several algorithms that tackle this problem, c.f. Basu et al. (2003) and
references therein. In order to solve exactly and efficiently quadratic bivariate
polynomial systems, without the assumption of generic position, we precom-
pute resultants and Sturm-Habicht sequences in two variables and we combine
the rational isolating points with a simple version of rational univariate rep-
resentation.

For real-solving of bivariate systems, we performed experiments against ex-
isting solvers in synaps, that is NewMac, which is based on normal forms
(Mourrain and Trébuchet, 2002), sth, which is based on the work of Gonza-
lez Vega and Necula (2002), res, which is based on computing the generalized
eigenvalues of a Bézoutian matrix (Busé et al., 2005). Additionally we test
against GbRs

6 , through its maple interface, which uses Groebner bases
and rational univariate representation (Rouillier, 1999). In short, our software
is 2–10 times faster, even compared to inexact software.

3 Sturm Sequences and real algebraic numbers

Sturm sequences is a well known and useful tool for isolating the roots of any
polynomial. Additionally, the reader can refer to (Karavelas and Emiris, 2003)
where Sturm sequences are used for comparing algebraic numbers of degree 2.
In the sequel D is a ring, Q is its fraction field and Q the algebraic closure
of Q. Typically D = Z and Q = Q. Let VP1,P2

(a) denote the number of sign
variations of the evaluation of the Sturm sequence of polynomials P1 and P2,
over a.

Theorem 1 Let P, Q ∈ D[x] be relatively prime polynomials and P square-
free. If a < b are both non-roots of P and γ ranges over the roots of P in [a, b],
then

VP,Q[a, b] := VP,Q(a) − VP,Q(b) =
∑

γ

sign (P
′

(γ)Q(γ)).

where P
′

is the derivative of P . The theorem also holds if we replace Q by
R = PRem(Q, P ), where PRem(Q, P ), stands for the pseudo-remainder of Q

divided by P .

For a proof see (Basu et al., 2003) or (Rioboo, 2002). Actually th. 1 expresses
the computation of the Cauchy index of P and Q, over the interval [a, b].

The isolating-interval representation of real algebraic number α ∈ Q is α ∼=
(A(X), I), where A(X) ∈ D[X] is square-free and A(α) = 0, I = [a, b], a, b,∈
Q and A has no other root in I.

6 http://fgbrs.lip6.fr
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Let B(X) ∈ D[X] and a real algebraic number β = B(α), where α ∼=
(A, [a, b]). By theorem 1, sign(B(α)) = sign(VA,B[a, b] · A′

(α)).

Here is our method to compare two algebraic numbers γ1
∼= (P1(x), I1) and

γ2
∼= (P2(x), I2) where I1 = [a1, b1] and I2 = [a2, b2]. Let J = I1 ∩ I2. When

J = ∅, or only one of γ1 and γ2 belong to J , we can easily order the 2 algebraic
numbers. All these tests are implemented by theorem 1. If γ1, γ2 ∈ J , then
γ1 ≥ γ2 ⇔ P2(γ1) · P ′

2(γ2) ≥ 0. We can easily obtain the sign of P
′

2(γ2), and
from theorem 1, we obtain the sign of P2(γ1). This approach is similar to
(Rioboo, 2002).

4 Root classification

We analyze each given polynomial by determining the number and the mul-
tiplicities of its real roots. For this, we use a system of discriminants. For the
quadratic polynomial the discrimination system is trivial. For the cubic, it is
well known (Weispfenning, 1994). We study the quartic by Sturm-Habicht se-
quences, while Yang (1999) used a resultant-like matrix. For background refer
to Basu et al. (2003). We use invariants in order to provide square-free poly-
nomials defining the algebraic numbers, to compute the algebraic numbers as
rationals if this is possible and finally to provide isolating rationals.

Consider the quartic polynomial equation, where a, b, c, d, e ∈ D and a > 0:

f(X) = aX4 − 4bX3 + 6cX2 − 4dX + e. (1)

For background on invariants see Cremona (1999) and Salmon (1885). We
consider the rational invariants of f , i.e the invariants in GL(2, Q). They
form a graded ring (Cremona, 1999), generated by, A = W3 + 3∆3 and B =
−dW1−e∆2−c∆3. Every other invariant is an isobaric polynomial in A and B,
i.e. it is homogeneous in the coefficients of the quartic. Let ∆1 = A3−27B2 be
the discriminant. The semivariants (which are the leading coefficients of the
covariants) are A, B and ∆2 = b2 −ac, R = aW1 +2b∆2 and Q = 12∆2

2 −a2A.
We also derived the following quantities, which are not necessarily invariants
but they are elements of the Bézoutian matrix of f and f

′

.

∆3 = c2 − bd W1 = ad − bc T = −9W 2

1
+ 27∆2∆3 − 3W3∆2

∆4 = d2 − ce W2 = be − cd T1 = −W3∆2 − 3 W 2

1
+ 9∆2∆3

W3 = ae − bd T2 = AW1 − 9 bB

(2)

Since our discrimination system is based on Sturm-Habicht sequence, basically
on the principal subresultant coefficients, we use the Bézoutian matrix to
compute them in a symbolic way, because its size is smaller than the Sylvester
matrix. Extending this approach to higher degree is a work in progress.
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In (Yang, 1999) there is a small typographical error in defining T .

Proposition 2 (Yang, 1999) Let f(X) be as in (1). The table gives the real
roots and their multiplicities. In case (2) there are 4 complex roots, while in
case (8) there are 2 complex double roots

(1) ∆1 > 0 ∧ T > 0 ∧ ∆2 > 0 {1, 1, 1, 1}
(2) ∆1 > 0 ∧ (T ≤ 0 ∨ ∆2 ≤ 0) {}
(3) ∆1 < 0 {1, 1}
(4) ∆1 = 0 ∧ T > 0 {2, 1, 1}
(5) ∆1 = 0 ∧ T < 0 {2}
(6) ∆1 = 0 ∧ T = 0 ∧ ∆2 > 0 ∧ R = 0 {2, 2}
(7) ∆1 = 0 ∧ T = 0 ∧ ∆2 > 0 ∧ R 6= 0 {3, 1}
(8) ∆1 = 0 ∧ T = 0 ∧ ∆2 < 0 {}
(9) ∆1 = 0 ∧ T = 0 ∧ ∆2 = 0 {4}

5 Rational isolating points and bit complexity of comparison

In what follows, f ∈ Z[X] and a > 0 in Eq. (1); the same methods work for any
computable real subfield D. In this section we provide rational isolating points
for polynomials of degree up to 4. For the quadratic f(X) = a X2 − 2 bX + c,
the rational number b

a
, isolates the real roots.

Theorem 3 (Emiris and Tsigaridas, 2004a) Consider the cubic f(X) = a X3−
3 bX2 + 3 c X − d. The rational numbers b

a
and − W1

2∆2
isolate the real roots.

We now study the quartic and derive rational isolating points.

Theorem 4 (Sederberg and Chang, 1993) Given a polynomial P (X) with
adjacent real roots γ1, γ2, and any two other polynomials B(X), C(X), let
A(X) := B(X)P ′(X) + C(X)P (X) where P ′ is the derivative of P . Then
A(X) or B(X) are called isolating polynomials because at least one of them
has at least one real root in the closed interval [γ1, γ2]. In addition, it is always
possible to have deg A + deg B ≤ deg P − 1.

By theorem 4 it is clear how to isolate the roots by 2 quadratic algebraic
numbers and a rational. In order to obtain an isolating polynomial, let B(X) =
ax − b and C(X) = −4a then

A(X) = 3 ∆2 X2 + 3 W1 X − W3. (3)

Since b
a

is the arithmetic mean of the 4 roots, it is certainly somewhere between
the roots. The other two isolating points are the solutions of (3), denoted by
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σ1,2. We verify that sign
(

f( b
b
)
)

= sign (a2A − 3∆2
2), so











σ1 < b

a
< σ2, if f( b

a
) > 0;

σ1 < σ2 < b

a
, if f( b

a
) < 0 ∧ R > 0;

b

a
< σ1 < σ2, if f( b

a
) < 0 ∧ R < 0;

(4)

where R is a seminvariant defined previously. If f( b
a
) = 0 then we know

exactly one root and can express the other three roots as roots of a cubic. To
obtain another isolating polynomial, we use B(X) = dx − e, C(X) = −4d,
and now

A(X) = W3 X3 − 3 W2 X2 − 3 ∆4 X. (5)

By the theorem at least 2 of {0, τ1, τ2} separate the roots, where τ1,2 are the
non-zero roots of A(X). Wlog we assume that the roots of Eq. (1) are > 0,
so 0 is not an isolating point. The order of the isolating points, τ1 and τ2, is
determined similarly as in (4). Hence we have determined quadratic isolating
points. Let us now find rational isolating points for all relevant cases of prop. 2.

{1, 1, 1, 1} Treated below.
{1, 1} Subsumed by case {1, 1, 1, 1}, so we do not examine it explicitly.
{2, 1, 1} The double root is rational since it is the only root of GCD(f, f ′)

and its value is T1

T2

, see eq (2). In theory, we could divide it out and use
the isolating points of the cubic, but in practice we avoid division. When
the double root is the middle root then b

a
and − W1

2∆2
are isolating points,

otherwise we use theorem 4 to find one more isolating point in Q.
{2} Compute the double root from P f,f

′ ; it is rational as a root of GCD(f, f ′).

If ∆2 = 0 then the root is W3

3W1

, else it is − T2

3T1

.
{2, 2} The roots are the smallest and largest root of the derivative i.e. a cubic.

Alternatively, we express them as the roots of 3∆2X
2 + 3W1X − W3.

{3, 1} The triple root is − W1

2∆2

and the single root is 3 aW1+8 b∆2

2 a∆2

.

{4} The root is b
a
∈ Q.

It remains to consider the case where the quartic has 4 simple real roots. We
assume that 0 is not a root (otherwise we deal with a cubic), therefore, e 6= 0.
Wlog, we may consider equation (1) with b = 0. Then, specialize equations
(3) and (5) using b = 0. The only difficult case is when τi and σj , i, j ∈ {1, 2},
isolate the same pair of adjacent roots. Wlog, assume that these are τ1, σ1. We
combine them by the following lemma.

Lemma 5 For any m, n, m′, n′ ∈ N∗, 0 < m
n

< m′

n′
⇒ m

n
< m+m′

n+n′
< m′

n′
.

In order to derive rational isolating points for proving th. 7 we set:

A := 9∆4 − 3 ce, B := 12 ae∆4 + 9 d2c2 (6)
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then, an isolating point is 3d−3dc+
√
A+

√
B

6c+2ae
. If we find an integer K ∈ [

√
A,

√
B],

then it suffices to replace
√
A+

√
B by 2K and we denote the resulting rational

by σi ⊕ τj ; notice it has degree 2 in the input coefficients. By prop. 2, ∆2 > 0
⇒ c < 0. Descartes’ rule implies that, if e > 0, then there are 2 positive and 2
negative roots, while e < 0 means there are 3 positive and one negative root
or vice versa. We set K = d

√
Ae to prove theorem 7, provided the following

holds:

Lemma 6 For every quartic in Z[X] with 4 distinct real roots and b = 0, we
have

√
B −

√
A ≥ 1, using notation (6).

PROOF.

√
B ≥ 1 +

√
A ⇔

√

B
A ≥ 1 + 1√

A ⇐
√

B
A ≥ 2 ⇔

g := 4aed2 − 4ace2 + 3d2c2 − 12d2 + 16ce ≥ 0.

First we show that the minimum of g(a, c, d, e) is positive, subject to −a ≤ 1,
c ≤ −5, and −e ≤ −5; we treat the case where c > −5 and e < 5 later.
We introduce slack variables y1, y2, y3 and use Lagrange multipliers. So our
problem now is

min L(a, c, d, e, y1, y2, y3, λ1, λ2, λ3) :=

min [g(c, e) + λ1(c + y2
1 + 5)λ2(−e + y2

2 + 5) + λ3(−a + y2
3 + 1)]

(7)

We take partial derivatives, equate them to zero and the solution of the system,
by maple 9, is (a, c, d, e) = (1,−5, 0, 5) and g(1,−5, 0, 5) = 300 > 0 which is
a local minimum. If −5 < c < 0 and 0 < e < 5 we check exhaustively that√
B −

√
A ≥ 1. If e < 0 then we use again Lagrange multipliers but with the

constraint e + 1 − y2
2. 2

Theorem 7 Consider a quartic as in (1), with four distinct real roots. At least
three of the rational numbers {0, b

a
, e

d
, σi⊕τj} isolate the real roots, i, j ∈ {1, 2}.

We measure complexity by the degree of the tested quantities in terms of the
input polynomial’s coefficients; assume a univariate polynomial of degree d.
A lower bound is the degree of the resultant coefficients, which is 2 d, and is
an open question if a better lower bound exists. There is a straightforward
algorithm for the comparison of quadratic algebraic numbers, with maximum
algebraic degree 4, hence optimal, e.g (Karavelas and Emiris, 2003).

Theorem 8 (Emiris and Tsigaridas, 2003) There is an algorithm for the com-
parison of algebraic cubic numbers (including all degenerate cases), with max-
imum algebraic degree 6, hence optimal.
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Theorem 9 (Emiris and Tsigaridas, 2004a) There is an algorithm that com-
pares any two roots of two square-free quartics with algebraic degree 8 or 9,
depending on the degree of the isolating points. When the quartics are not
square-free, the algebraic degree is between 8 and 13. The algorithm needs
at most 172 additions and multiplications. These bounds cover all degenerate
cases, including when one polynomial drops degree.

6 Real solution of a bivariate quadratic polynomial system

We consider the system f1 = f2 = 0, where f1,2 ∈ D[X, Y ] are bivariate
polynomials of total degree at most 2. In what follows we assume that the
system is 0−dimensional (we can easily detect if it is not, since then the
resultants that we compute below would not be univariate polynomials). The

real solution of the system are points in Q
2
.

In order to compute the real solutions of the system, we compute the resultants
Rx, Ry of f1, f2 by eliminating Y and X respectively, thus obtaining degree-
4 polynomials in X and Y . We find the real solutions of Rx, Ry and their
isolating points, define a grid of boxes, where the common roots of f1 and f2

are located. The grid has 1 to 4 rows and 1 to 4 columns in R2. It remains to
decide, for boxes, whether they are empty and, if not, whether they contain a
simple or multiple root, that is to match the algebraic numbers, computed as
solutions of the resultants.

The hardest (computational) cases are when Rx and Ry do not have multiple
roots. However in this case f1 and f2 are in generic position (the intersection
points have distinct x−coordinates) and thus we can solve the system using
a simple version of rational univariate representation, e.g (Rouillier, 1999;
Gonzalez Vega and Necula, 2002). Now the y−coordinate is the solution of
the first subresultant, which is univariate with respect to Y and its coefficients
are univariate polynomials evaluated over the solutions of Rx, that is γy =

F (γx) = −B(γx)
A(γx)

. This implicit representation of γy is complicated and thus in
order to have an isolating interval representation of it, we use the following
trick. Since we have the solutions of Ry and their isolating points, we find the
isolating interval at which each F (γx) lies. This can be done with testing the
signs of univariate polynomials evaluated over algebraic numbers.

In our case the computation of the two resultants is an easy computational
task, since the degree is small and we have precomputed the appropriate quan-
tities. Unlike e.g (Eigenwillig et al., 2004), where the boxes cannot contain any
critical points of f1 and f2, our algorithm does not make any such assump-
tion, hence there is no need to refine them. Our approach can be extended
in order to compute intersection points of bivariate polynomials of arbitrary

10



degree, provided that we obtain isolating points for the roots of the two resul-
tants, either statically (as above) or dynamically. This is being implemented
in synaps.

7 Implementation

We have implemented a software package, S3, as part of library synaps (v2.1)
(Dos Reis et al., 2002), for dealing with algebraic numbers and bivariate poly-
nomial system solving, which is optimized for small degree. Our implementa-
tion is generic in the sense that it can be used with any number type and any
polynomial class that supports elementary operations and evaluations and can
handle all degenerate cases. We developed programs that produce all possible
sign combinations of the tested quantities, so as to test as few quantities as
possible, and produce both C++ code and pseudo-code for solving, comparison
and sign determination functions. In what follows root of is a class that rep-
resents real algebraic numbers, computed as roots of polynomial, UPoly and
BPoly are classes for univariate and multivariate polynomial. All classes are
parametrized by the ring number type (RT); the reader may refer to the docu-
mentation of synaps for more details. We provide the following functionality:

Seq<root of<RT> > solve(UPoly<RT> f) Solves a univariate polynomial f .

int compare(root of<RT> α, root of<RT> β) Compares two algebraic num-
bers. For degree up to 4 we use static Sturm sequences. For higher degree we
use Sturm-Habicht sequences, computed on the fly.

int sign at(UPoly<RT> f, root of<RT> α) Computes the sign of a uni-
variate polynomial evaluated over an algebraic number.

int sign at(BPoly<RT> f, root of<RT> γx, root of<RT> γy) Computes
the sign of a bivariate polynomial evaluated over two real algebraic numbers.
We use cascaded Stum-Habicht sequences.

Seq < pair<root of<RT> > > solve(BPoly<RT> f3, BPoly<RT> f2) Com-
putes the real solutions of a bivariate polynomial system.

8 Experimental results

We performed all tests on a 2.6GHz Pentium with 512MB memory, running
Linux, with kernel version 2.6.10. We compiled the programs with g++, v.
3.3.5, with option -O3. Competitive algorithms are described in Sec. 2.
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Table 1
Univariate root comparison

msec A B C D

f-S3 0.142 0.153 0.150 0.177

S3 0.291 0.320 0.142 0.112

rs 5.240 6.320 4.930 5.180

synaps 1.058 1.011 0.717 1.850

core 3.050 3.520 2.240 1.470

gkr 2.287 2.973 2.212 1.595

NiX 0.358 0.362 0.215 0.377

Table 2
Bivariate real-solving

msec A B

f-S3 0.17 0.18

S3 0.14 0.54

GbRs 6.40 6.90

sth 0.51 0.57

res 0.36 -

NewMac 3.19 3.26

Univariate case We perform four kinds of tests concerning the solution of
quartic univariate polynomials and comparison of real algebraic numbers of
degree up to 4. For every polynomial we ”compute” all its real roots, with
every package, since except S3, no other package can compute a specific root
only. We performed each test 10000 times. Column A refers to polynomials
with exactly 4 distinct rational roots in [−1, 1], the bit size of the coefficients
is 40 bits. Column B refers to random polynomials, produced by interpolation
in [−1, 1] × [−1, 1], the bit size of the coefficients is 90 bits. Column C refers
to Mignotte polynomials, of the form a(x4 − 2(Lx− 1)2), where the bit size of
a and L is 40 bits. Finally, Column D, refers to degenerate polynomials, that
is polynomials with at least one multiple root. All the roots are in [−1, 1] and
the bit size of the coefficients is 30 bits. The results are on table 1.

gkr is the package of Guibas et al. (2004) NiX is the polynomial library of
exacus that has intristic filtering, since it is based on leda. core is version
1.7 and rs is the package of Rouillier and Zimmermann (2003) used through
its maple interface. synaps refers to the algorithm of Mourrain et al. (2002)
in synaps. We have also tested maple and axiom, but we do not show their
timings here, since they are too slow, see (Emiris and Tsigaridas, 2004a) for
details. S3 is our code implemented in synaps 2.1 and f-S3, is our code using
the filtered number type Lazy exact nt from cgal 7 .

synaps has some problems when the roots are endpoints of a subdivision,
while core has some problems with subdivision, since it uses Newton’s method
for refinement. By considering table 1, the exact version of our code (S3), is
clearly faster than core, synaps and gkr, even when we do not use filtering.
Also, in the case of filtering (NiX) S3 is faster. Special attention must be paid
to column D, where our code is remarkably faster, since it handles degenerate
cases fast. The slow times of rs are due to the fact that we use its maple

7 www.cgal.org
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interface in order to call the appropriate functions, since the source code is
not available.

Now consider the first row of Table 1. The adoption of a filtered number type
improves the running times in most cases, otherwise it leaves them essentially
unchanged. Even in the hardest case, which is Column B, due to the big bit
size of the coefficients, f-S3 is 2 times faster than the next fastest software
NiX, which has intrinsic filtering. We are planning to use more sophisticated
filtering techniques in the next version of S3.

Bivariate case We performed two kinds of experiments concerning real
solving of bivariate polynomial systems of degree ≤ 2, and the results are on
table 2. For every test we picked 2 polynomial at random and solve them;
we repeat this 10000 times. Column A refers to 1000 bivariate polynomialas,
with integer coefficients sampled in [−10, 10], with not many intersections on
average (every polynomial has common real roots with 135 others in the list, on
average). Column B refers to 1000 conics sampled by 5 random integer points
in [−10, 10]× [−10, 10], where 2 random conics probably intersect (every conic
has common real roots with 970 others in the list, on average).

We test against NewMac (Mourrain and Trébuchet, 2002). It is a general
purpose polynomial system solver, based on normal forms. sth, refers to a code
in synaps, based on Sturm-Habicht sequences and subresultants, following
Gonzalez Vega and Necula (2002). res is a bivariate polynomial solver based
on the Bézoutian matrix and the eigensolver of lapack, see (Busé et al., 2005).
GbRs, uses Gröbner bases and rational univariate representation (Rouillier,
1999). We use its maple interface, since the source code is not freely available,
which explains the slow times of this package. S3 refers to our code, while f-S3

is our code based on Lazy exact nt.

We have to emphasize that our approach is exact, i.e it outputs isolating
boxes with rational endpoints containing a unique root whose multiplicity is
also calculated. On the other hand sth, uses a double approximation in order
to compute the ordinate of the solution. res works only with doubles, since
it has to compute the generalized eigenvalues and the eigenvectors based on
lapack and that is why it cannnot perform the tests of Column B. NewMac,
also relies on the computation of eigenvalues and computes also the complex
solutions of the system. S3 is considerably faster on both data sets, and always
produces the correct results. This is not always the case for sth and res.
When we use filtering, then our code is at least 3 times faster than any other
approach. We have also done some preliminary experiments with exacus, but
since we do not have yet a permission to present the code and the running
times, we do not present the results here. However, our code seems to be faster.

13



Acknowledgments: We thank M-F. Roy for discussions with the 2nd author during
ICPSS 2004 and B. Mourrain for his help with the implementation and experiments.

References

Basu, S., Pollack, R., M-F.Roy, 2003. Algorithms in Real Algebraic Geometry.
Vol. 10 of Algorithms and Computation in Mathematics. Springer-Verlag.
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Hemmer, M., Schömer, E., Wolpert, N., 2001. Computing a 3-dimensional cell in
an arrangement of quadrics: Exactly and actually! In: Proc. SoCG, pp. 264–273.

Kaplan, D., White, J., 2001. Polynomial equations and circulant matrices. The
Mathematical Association of America (Monthly) 108, 821–840.

Karavelas, M., Emiris, I., 2003. Root comparison techniques applied to the planar
additively weighted Voronoi diagram. In: Proc. SODA. pp. 320–329.

Keyser, J., Culver, T., Manocha, D., Krishnan, S., 2004. ESOLID: A system for
exact boundary evaluation. Comp. Aided Design 36 (2), 175–193.

Lazard, D., 1988. Quantifier elimination: optimal solution for two classical examples.
J. Symb. Comput. 5 (1-2), 261–266.
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