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Abstract

This paper examines the computation of the Voronoi diagram
of a set of ellipses in the Euclidean plane. We propose the first
complete algorithms, under the exact computation paradigm,
for the predicates of an incremental algorithm: κ1 decides
which one of 2 given ellipses is closest to a given exterior point;
κ2 decides the position of a query ellipse relative to an external
bitangent line of 2 given ellipses; κ3 decides the position of a
query ellipse relative to a Voronoi circle of 3 given ellipses; κ4

determines the type of conflict between a Voronoi edge, defined
by 4 given ellipses, and a query ellipse. The paper is restricted
to non-intersecting ellipses, but the extension to arbitrary ones
is possible.

The ellipses are input in parametric representation or con-
structively in terms of their axes, center and rotation. For κ1

and κ2 we derive optimal algebraic conditions, solve them ex-
actly and provide efficient implementations in C++. For κ3

we compute a tight bound on the number of complex tritan-
gent circles and use the parametric form of the ellipses in order
to design an exact subdivision-based algorithm, which is im-
plemented on Maple. This approach essentially answers κ4 as
well. We conclude with current work on optimizing κ3 and
implementing it in C++.

1 Introduction

Computational geometry for curved objects relies on
predicates implemented by algebraic operations. In
this paper we study the Voronoi diagram of ellipses in
the exact computation paradigm. The distance of an
exterior point to an ellipse is defined to be the min-
imum Euclidean distance to any point of the ellipse.
We design and implement exact and complete algo-
rithms for the predicates needed in the framework
of abstract Voronoi diagrams [22] and, more particu-
larly, the incremental algorithm in [20]. To be more
precise, the algorithm computes the Delaunay graph,
since no computation of Voronoi vertices or edges is
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necessary. Still, if one wishes to draw the diagram
with fixed precision, the algorithm and our methods
provides sufficient information.

Our final goal is CGAL1 software for constructing
the Voronoi diagram of ellipses, based on the CGAL
implementation for circles [12], which uses the same
incremental algorithm. Hence the crucial question is
to analyze and implement the predicates for ellipses.
Some of the presented predicates are also needed in
computing the visibility complex and the convex hull
of ellipses.

Voronoi diagrams have been studied extensively,
however the bulk of the existing work in the plane
concerns point or linear sites. One relevant work com-
putes the diagram of convex polygons [23], with an
approach similar to ours, since the algorithm “moves”
on the objects’ boundary using pruning techniques.
Recent efforts have extended Voronoi diagrams to the
case where the sites are curves (e.g. [1, 3]) or have
non-empty interior [8]. In particular, the diagram of
circles has been implemented in CGAL [12]; see also
[4, 21]. Anton [3] examines κ3 for the diagram of el-
lipses but his algebraic system’s mixed volume is too
large, hence leading to high complexity. His matrix
methods for solving the system seem slower than ours
and do not guarantee exactness.

In [19], an optimal combinatorial algorithm is de-
rived for constructing Voronoi diagrams of strictly
convex rounded sites in R3, but the predicates are not
considered. In [7], a dynamic algorithm is described
for constructing the power diagrams of points in Rd.
This specializes to the diagram of circles or spheres,
but does not seem to cover ellipses. Another line of
work, which has been quite successful, is to approx-
imate the curved sites by polygons, e.g. [5]. In [6]
the authors compute a polygonal approximation of a
Voronoi diagram at different levels of detail. We ex-
pect that applications, such as navigation among ob-
jects, shall benefit from an exact diagram of ellipses,
given the ability of ellipses to model, quite accurately,
different kinds of obstacles.

Perhaps the work coming closest to ours is [18].

1www.cgal.org
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The authors essentially trace the bisectors in order
to compute the Voronoi cells of arbitrary curves up
to machine precision. Their algorithm uses floating
point arithmetic; they claim that their software works
well in practice. Although they argue that their algo-
rithm can be extended to exact arithmetic, they do
not explain how. For instance, they do not discuss
degenerate configurations. Our implementations are
exact but can also run with any prescribed precision.

A second motivation comes from visibility prob-
lems among ellipses [17], or pairwise disjoint bounded
convex sets of constant complexity [2]. In particular,
the computation and characterization (as external or
internal) of all bitangents of two ellipses is of inde-
pendent interest. Our approach obtains this charac-
terization and hence also answers κ2. The additional
information is used by subsequent calls to κ2.

A sketch of our work on the Voronoi circle of 3
ellipses and κ3 appeared in [15]. Presently, we of-
fer a full investigation of the problem dealing with
both degenerate and non-degenerate configurations.
We study the case of non-intersecting ellipses, which
is straightforward to generalize to arbitrary ellipses
and even pseudo-circles [20]. We assume that the in-
put ellipses are given parametrically, or constructively
in terms of their axes, center and rotation, all being
rational (see next section). This permits to switch to
an implicit representation.

The 4 predicates of the incremental algorithm in
[20] are:
• (κ1) given two ellipses and a point outside of both,

decide which is the ellipse closest to the point,
• (κ2) given 2 ellipses, decide the position of a third

one relative to a specific external bitangent of the first
two,
• (κ3) given 3 ellipses, decide the position of a fourth

one relative to the (external tritangent) Voronoi cir-
cle of the first 3; this is the InCircle predicate,
• (κ4) given 4 ellipses, compute the part of the bisec-

tor that changes due to the insertion of a 5th ellipse.

Our first contribution are algorithms for κ1 and
κ2 that are optimal in terms of algebraic degree. In
fact, for κ2, we compute and characterize all bitan-
gents of two ellipses which provides additional infor-
mation. Both algorithms are exact, complete and im-
plemented in C++. The tangency points are or are
not computed depending on whether we deal with the
parametric or the implicit representation.

Using the implicit representation, we obtain the
first tight bound on the number of complex tritan-
gent circles to 3 ellipses, namely 184. The number
of real tritangent circles remains open. However, this
approach did not lead to an efficient algorithm. Hence
we turned to parametric representation. The Voronoi
circle is specified by the intersection of bisectors, at
any desired accuracy. This is achieved by refining

the interval expressing the 3 tangency points until
the predicate can be decided; in fact, all tangency
points are expressed as a function of one of them.
Exactness is guaranteed by root separation bounds
from the equations of the implicit representation of
the problem.

We present and implement in Maple a customized
subdivision-based algorithm for κ3, which “moves”
on the border of parametrically defined ellipses. This
exploits the underlying geometry and avoids comput-
ing the Voronoi circle. Hence, our code is faster than
applying generic state-of-the-art software to approx-
imate the Voronoi circle. Our dedicated solver con-
tains univariate root isolation and comparison, as well
as sign evaluation of polynomials in up to 2 variables.

The subdivision-based algorithm essentially an-
swers κ4, as well. This is the first complete solution
of how to implement the Voronoi diagram of ellipses
(via the Delaunay graph) in the exact computation
paradigm.

The paper is organized as follows. The next sec-
tion discusses representation issues. In sec. 3 we give
algorithms to decide predicates κ1 and κ2. Sec. 4
studies the Voronoi circle from the implicit represen-
tation viewpoint. The parametric representation is
considered in sec. 5 in order to yield an algorithm for
κ3. Predicate κ4 is settled in sec. 6. Sec. 7 illustrates
our implementations with various tests and the last
section concludes with future work.

2 Representation

An ellipse has the following implicit equation:

E(x, y) := ax2 +2bxy+ cy2 +2dx+2ey+ f ∈ Q[x, y]
(1)

Let the length of the major and minor axes be 2α, 2β,
respectively. Let (xc, yc) be its (rational) center.
Throughout this paper, we use the following para-
metric representation:

x(t) = xc + α
“

1−w2

1+w2

”“

1−t2

1+t2

”

− β
“

2w

1+w2

”“

2t

1+t2

”

= xc + −α(1−w2)t2−4βwt+α(1−w2)

(1+w2)(1+t2)

y(t) = yc + α
“

2w

1+w2

”“

1−t2

1+t2

”

+ β
“

1−w2

1+w2

”“

2t

1+t2

”

= yc + 2−αwt2+β(1−w2)t+αw

(1+w2)(1+t2)
,

(2)

where t = tan(θ/2) ∈ (−∞,∞), θ is the angle that
traces the ellipse, w = tan(ω/2), and ω is the ro-
tation angle between the major and horizontal axes.
This representation leaves out of the boundary a sin-
gle point, called the i-point.

The symmetric ellipse (with respect to its center)
is x̄(t) = −x(−t) + 2xc and ȳ(t) = −y(t) + 2yc. We
call it the twin ellipse. Every point of an ellipse is dif-
ferent from its twin point, including the i-point. We
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Figure 1: Left: Voronoi diagram of 5 ellipses. Right:
an example of a point with 4 normals.

denote by Et(α, β,w, xc, yc) or simply Et, an ellipse
parameterized by t and by Ēt its twin ellipse. The
coefficients of (1) are polynomials in the coefficients
of (2):

χ = ycw
2 + 2xcw − yc

ψ = xcw
2
− 2ycw − xc

(1 + w2)2a = 4w2α2 + (w − 1)2(w + 1)2β2

(1 + w2)2b = 2(α− β)(α+ β)w(w − 1)(w + 1)
(1 + w2)2c = 4w2β2 + (w − 1)2(w + 1)2α2

(1 + w2)2d = −2wχα2
− (w − 1)(w + 1)ψβ2

(1 + w2)2e = +2wψβ2
− (w − 1)(w + 1)χα2

(1 + w2)2f = χ2α2 + ψ2β2
− (1 + w2)2α2β2

(3)

Note that χ, ψ express the equations of the major and
minor axes evaluated at (xc, yc). The following quan-
tities are invariant under rotation and translation:
J1 = a + c = α2 + β2, J2 = ac − b2 = α2β2, while
J4 = J2(x

2
c + y2

c − J1) is invariant under rotation.
Now, xc = (be− dc)/J2, yc = (bd− ae)/J2.

Since the ellipse is given in parametric form, or con-
structively (rational axes, center and w), the above
equations transform it to an implicit form.

3 Predicates κ1 and κ2

For κ1, we are given 2 ellipses and a point outside
of both, and we wish to find the one closest to the
point, under the Euclidean metric. To lower bound
the inherent algebraic complexity, take a point V out-
side an ellipse; it may have up to 4 normals to the
ellipse, depending on its position relative to the evo-
lute curve (which is a stretched astroid). There are
4, 3 or 2 normals if V lies inside the evolute, on the
evolute but not at a cusp or, respectively, V is a cusp
or outside the evolute.

Consider an ellipse E, represented algebraically,
and point V = (v1, v2) outside E. We denote by
C(V,

√
s) a circle centered at V with radius equal to√

s, s > 0. We express the Euclidean distance δ(V,E)
between V and E by the smallest positive value of

√
s

for which C is tangent to E. In comparing distances,
it is sufficient to consider the squared distance s.

Let us express a conic as [x, y, 1]M [x, y, 1]T , for an

appropriate matrix M . Then E,C correspond to

A =

0

@

a b d

b c e

d e f

1

A , B(s) =

0

@

1 0 −v1
0 1 −v2

−v1 −v2 v2
1 + v2

2 − s

1

A .

Their pencil is λA+B, and their characteristic poly-
nomial is

ϕ(λ) = det(λA+B(s)) = J2
2λ

3 +c2(s)λ
2 +c1(s)λ+s,

(4)
where c2(s) = J2s−T (v1, v2), c1(s) = J1s−E(v1, v2)
and T (v1, v2) = J2[(v1−xc)

2 +(v2−yc)
2−J1]. Using

E and T for E(v1, v2) and T (v1, v2), its discriminant
is:

∆(s) = J2
2 (J2

1 − 4J2) s
4+

2J2(9J1J
2
2 − J2

1T + 6J2T − 2J3
1J2 − J1J2E) s3+

(−18J3
2E + 4J1J2ET − 27J4

2 + J2
1T

2
− 18J1J

2
2T

+J2
2E

2 + 12J2
1J

2
2E − 12J2T

2) s2+
2(2T 3

− J1ET
2
− 6J1J

2
2E

2 + 9J2
2ET − J2E

2T ) s+
E2(T 2 + 4J2

2E)
(5)

A circle is externally tangent to an ellipse iff ϕ(λ) has
a positive double root [25, thm.8], [16, sec.4]. This is
recognized by the vanishing of ∆, which is a univari-
ate polynomial (in s) of degree 4.

Now δ(V,E) is the square-root of the smallest pos-
itive zero of ∆(s). The degree of the coefficients of
∆(s), in v1, v2 and the parameters of E, is 6, 8, 10,
12, and 14, in order of decreasing power in s. The de-
gree of every coefficient of ∆(v1, v2, s) (when viewed
as a trivariate polynomial) in the parameters of E is
6.

Proposition 3.1 Given ellipses E1, E2 and V out-
side both of them, we decide which ellipse is closest
to V by comparing two algebraic numbers of degree 4.

This degree is optimal with respect to the alge-
braic numbers compared. Optimality follows since
the worst case requires us to work with algebraic
numbers of 4th degree. In sec. 7 we report on our
exact implementation in C++.

If we restrict ourselves to the parametric represen-
tation we need to compare two algebraic numbers of
degree 8.

Now we examine κ2. This predicate decides the
position of a query ellipse relative to one bitangent
line to 2 given ellipses. In fact, our algorithm pro-
vides additional information on the characterization
of the bitangent lines, which allows us to answer fu-
ture predicates.

Consider a (non-vertical) line L : y = ux + v and
ellipse E represented in implicit form. Let us sub-
stitute y in E; then, for L to be tangent to E, its
discriminant Λ must vanish: The bitangent line is
expressed by system Λ1 = Λ2 = 0, where Λi corre-
sponds to the i-th ellipse. The system has ≤ 4 real
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roots corresponding to the 4 bitangents. A vertical
bitangent line is treated in an easier way.

Now we can answer κ2 as follows. Given an exter-
nal bitangent L̄ : y = ūx + v̄, we can determine the
relative position of a query ellipse E3 with respect to
this line by computing the discriminant of L̄ and E3,
Λ3(ū, v̄). Λ3 is negative, zero, or positive iff E3 has 0,
1 or 2 common points with L̄ respectively. In the first
2 cases, the sign of L̄(x, y), evaluated at the center
of E3, specifies the side of L̄ on which E3 lies. The
predicate is implemented in C++, see timings in sec.
7.

Now, let us consider the tangent at point
(x(t), y(t)) of the parametric ellipse Et. The implicit
equation of this line is (y−y(t))x′(t)−(x−x(t))y′(t) =
0. If we replace x(t) and y(t) from (2) we obtain
a polynomial of degree 2 with respect to t. We re-
place x, y with x(r), y(r) from ellipse Er and obtain
a quadratic polynomial with respect to r the solutions
of which correspond to the points where the tangent
line of Et intersects Er. For this line to be tangent
to both ellipses, the discriminant Λtr(t) of the poly-
nomial should vanish. A bitangent line is external to
both ellipses iff its equation yields the same sign when
evaluated at an interior point of each ellipse. For Et,
the sign is always positive, because the equation eval-
uates to 2αβ(1 + w2)(1 + t2). Hence, to determine
the type of a bitangent line, it suffices to compute
the sign of a quadratic polynomial, evaluated at an
algebraic number of degree 4. This degree is optimal
with respect to the algebraic numbers employed.

Now let t1 < t2 < t3 < t4 be the solutions of Λtr(t).
Let µ correspond to an internal bitangent and ε to
an external one. Then (t1, t2, t3, t4) correspond to a
cyclic permutation of (µεεµ). Given 2 ellipses, in or-
der to determine the permutation of their bitangents,
it suffices to determine the type of exactly two bitan-
gents. Hence, we arrive at the following:

Theorem 3.2 The relative position of Es with re-
spect to an external bitangent of ellipses Et, Er re-
duces to the sign of Λts(t), which has degree 4, over
t̂, which is a root of Λtr(t) (also of degree 4). Now
sign(Λts(t̂)) = −1, 0, or 1 iff Es does not intersect,

is tangent to, or intersects the bitangent respectively.

4 Implicit approach to κ3

Given 3 ellipses, we consider their external tritangent
circle, known as their Voronoi circle. If there are two
such circles, we assume that one is specified. We wish
to decide the position of a fourth ellipse relative to
this circle. This section considers all ellipses in im-
plicit form and applies certain algebraic techniques,
discussed in [11].

Let
√
s be the radius of the tritangent circle and

(v1, v2) its center. Using the discriminant as above
for each of the 3 ellipses, we get

∆1(v1, v2, s) = ∆2(v1, v2, s) = ∆3(v1, v2, s) = 0. (6)

Lemma 4.1 A solution (v̄1, v̄2, s̄) of system (6) cor-
responds to an external tritangent circle iff s̄ is the
smallest positive root of all ∆i(v̄1, v̄2, s), i = 1, 2, 3.
If s−0 , s

+
0 are the smallest and largest positive roots of

∆0(v̄1, v̄2, s), where ∆0 corresponds to the query el-
lipse, then:
• s̄ ≤ s−0 ⇔ the query ellipse is outside the circle and
is tangent iff s̄ = s−0 ,
• s̄ ∈ (s−0 , s

+
0 ) ⇔ the query ellipse intersects the cir-

cle,
• s̄ ≥ s+0 ⇔ the query ellipse is inside the circle and
is tangent iff s̄ = s+0 .

Proof. Let (v̄1, v̄2, s̄) be a solution of the system.
(⇒): Let s̄ be the smallest positive root of all
∆i(v̄1, v̄2, s), i = 1, 2, 3. Then the circle (v̄1, v̄2, s̄)
is externally tangent to all three ellipses, therefore it
is an external tritangent circle. (⇐): Let the circle
(v̄1, v̄2, s̄) be an external tritangent circle to all three
ellipses. Since this cirlce is externally tangent to each
one of the ellipses, s̄ will be the smallest positive root
of each ∆i(v̄1, v̄2, s), i = 1, 2, 3.

Now consider all circles C(v̄1, v̄2, s), as s grows from
zero to infinity, assuming that point (v̄1, v̄2) lies out-
side a query ellipse E0. When s = 0, C is a point
outside E0. When s is at infinity, C becomes an in-
finite circle enclosing E0. As s grows from zero, it
passes from the roots of ∆0(v̄1, v̄2, s). At each one
of these (at most four) points, C is tangent to E0.
When s < s−0 , C is outside E0, and when s > s+0 , C
encloses E0. In all other cases, it intersects E0 due
to the topology of the two closed curves C and E0.
2 Among the solutions of this system, the external
tritangent circle of interest may or may not have the
smallest radius.

To reduce the mixed volume of system (6), we re-
move solutions at infinity by setting

q = v2
1 + v2

2 − s. (7)

Now the discriminant system becomes

∆1(v1, v2, q) = ∆2(v1, v2, q) = ∆3(v1, v2, q) = 0, (8)

and has mixed volume 184. We have computed the
resultant as a polynomial of degree 184 in q. Adding
eq. (7) to this system yields a system in v1, v2, q, s
with mixed volume 184.

Since each ∆i is a discriminant, an equivalent sys-
tem to (8), with the same mixed volume, contains
ϕi = 0, ∂

∂λi

ϕi = 0, for i = 1, 2, 3, where ϕi is the
characteristic polynomial of ellipse i and the Voronoi
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circle. This system has substantially smaller coeffi-
cients than (8). We solved this system numerically
with PHCpack 2 which implements homotopy contin-
uation, and found up to 22 real solutions3. The total
number of complex solutions was 184.

Theorem 4.2 Three ellipses admit at most 184 com-
plex tritangent circles. This is tight since there are
triplets attaining this number.

Proof. The mixed volume provides an upper bound
while the degree of the resultant (of our example)
gives a lower bound. 2

Recall that in the case of 3 circles, the number of
tritangent circles is 8 and the corresponding predicate
is of algebraic degree 2. Our theorem generalizes to
all types of conics, according to F. Sottile 4. The
interesting open question is how many of these circles
can be real. F. Ronga suggests a construction where
three conics have at least 136 real tritangent circles.
However, we have not been able to achieve such a
configuration with three disjoint ellipses.

With bitsize as in table 2, the timings of PHC-
pack were 23.85, 34.52, 38.36, and 38.44 sec respec-
tively. In [3], the time to solve the system describing
the Voronoi circle is several minutes. We also tried
the iCOs interval-arithmetic solver 5 on the system
of ∆i’s with B = 60. It detects a degeneracy for κ3

(three ellipses and a query one all externally tangent
to the same circle) in about 213 sec on a 1GHz P3.
Recently, with some preliminary experiments (thanks
to D. Lazard) exploiting the Gröbner base compu-
tation, we were able to isolate all real roots of the
system in about 2 min with GB-Rs.

5 Parametric approach to κ3

We use the parametric representation of ellipses to
study the external bitangent circles. In subsec. 5.1
we shall apply this discussion to external tritangent
circles.

We express the Voronoi vertex by the intersection
of 2 bisectors. The bisector of two ellipses is the
locus of points at equal distance from the two el-
lipses. Given ellipses Et, Er and points P,Q on each
of them, the bisector is obtained as the intersection
V of the normal lines at the ellipses, at P , Q, when
|−−→PV | = |−−→QV |. This expresses all points on the bisec-
tor except for a finite number of them, namely where
the two normals are parallel.

Point V (v1(t, r), v2(t, r)) is the solution of a lin-
ear system of two equations, expressing the normals

2http://www.math.uic.edu/∼jan/PHCpack/
3We checked the real roots by hand.
4Personal communication, 2004.
5http://www-sop.inria.fr/coprin/ylebbah/icos/

respectively at points with parameter values t and
r. A point defined by parameter value t will also be
referred to as point t, or t ∈ Et. The coordinates’
denominator Dtr vanishes iff the normals are parallel
to each other.

The bisector is

B(t, r) =
(

v1(t, r) − x(t)
)2

+
(

v2(t, r) − y(t)
)2 −

(

v1(t, r) − x(r)
)2 −

(

v2(t, r) − y(r)
)2
,(9)

which is rational in t, r with denominator Dtr. In the
case of ellipses, the numerator is a bivariate polyno-
mial of degree 6 in t and 6 in r. It can be shown
that it also vanishes when Dtr vanishes. Therefore
it includes both bisector points at infinity as well as
points where the normal vectors of the two ellipses
coincide (i.e. at the minimum distance between two
ellipses). We now consider the bitangent circles.

Proposition 5.1 Given 2 ellipses and a point on the
first, there may exist up to 6 real bitangent circles,
tangent at the specific point. This bound is tight.

Proof. If we fix t, equation (9) has 6 complex so-
lutions with respect to r. Therefore 6 is an upper
bound for the number of possible real bitangent cir-
cles. Moreover, a configuration of two ellipses that
have 6 real bitangent circles can be attained, see fig.
2. 2 Note that only one such
circle is external to both ellipses. We call this unique
external bitangent circle the Apollonius circle of the
2 ellipses, e.g. the third circle from the right in fig. 2.
The Voronoi circle of 3 ellipses is where 3 Apollonius
circles coincide.

Given ellipses Et, Er as in fig. 4, the tangency
points of any Apollonius circle lie inside their Con-
vex Hull (CH). Thus, for the parameterization (2),
there is at least an i-point of Et, Er, Ēt, Ēr that does
not lie inside CH. This implies that we can always
search for a Voronoi circle within a continuous range
on the boundary of an ellipse or its twin.

Now, consider all bitangent circles to Et, Er, tan-
gent at point t on Et. Also, consider the lines from t
tangent to Er at points r1, r2. They define two arcs
on Er. Arc (r1, r2), whose interior points lie on the
same side of line r1r2 as t, is called a visible arc.

Property 5.2 Visible arc (r1, r2) contains only tan-
gency points of bitangent circles at t, which are ex-
ternally tangent to Er. These include the Apollonius
circle of Et, Er, tangent at t ∈ Et.

Proof. From a point Q inside the visible arc (fig. 3),
an internally tangent circle to Er cannot be tangent
at t, because the tangent line at Q leaves t and Er

on different hyperplanes. External bitangent circles
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Figure 2: The 6 bitangent circles: The Apollonius
circle is the 4th from the left
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Figure 3: The two cases for defining an Apollonius
arc

at r1 and r2 are tangent to Et at points t1, t2 respec-
tively. Since t lies between t1 and t2, there exists
some point r between r1 and r2 that corresponds to
the Apollonius circle tangent to r and t of Er and Et

respectively. 2

The visible arc may also include some other bitan-
gent circles internally tangent to Et. The subset of
the visible arc that contains only the Apollonius circle
is called an Apollonius arc.

Lemma 5.3 Given is a point P = (x(t), y(t)) on Et.
Consider the line ε, tangent at P (cf. fig. 3). If ε does
not intersect Er, then the visible arc is an Apollonius
arc. Otherwise, the endpoints of the Apollonius arc
are: the intersection of ε with Er and the endpoint of
the visible arc which lies on the opposite side of Et

with respect to ε.

Proof. If ε does not intersect Er, then it leaves each
ellipse in a different hyperplane. In this case, a circle
internally tangent to Et at t, cannot be tangent to Er

as well. Thus, according to the visibility property,
the visible arc is an Apollonius arc. If ε intersects
Er, then a circle internally tangent to Et at t can
be tangent to Er at a point that lies in the same
hyperplane of ε as Et. Therefore, only the part of the
visible arc of Er that lies in the opposite hyperplane
is an Apollonius arc. 2 2

We thus computed arc (r1, r2) or (r1,∞)∪(−∞, r2)
on Er which contains only the tangency point of
the Apollonius circle, isolating it from the tangency
points of non-external bitangent circles.
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Corollary 5.4 Given a point t0 on Et, it is possi-
ble to determine the unique root ri of B(t0, r), from
equation (9), which lies on the Apollonius arc of Er

with respect to t0.

Given a point (x(t), y(t)) on Et, the squared radius
of the Apollonius circle of Et, Er tangent to Et at that
point is denoted by ftr(t). From the above, it follows

that: ftr(t) :=
(

v1(t, r̂) − x(t)
)2

+
(

v2(t, r̂) − y(t)
)2

,
where r̂ is the root of (9) that corresponds to the
Apollonius circle, when we fix t. Thus,

ftr(t) =
1

4
Pt(t)

(

Atr(t, r̂)

(1 + t2)(1 + r̂2)Dtr(t, r̂)

)2

. (10)

In the above equation, Pt(t) has no real roots, Atr is
a bivariate polynomial of degree 2 in t and 4 in r and
Dtr 6= 0, unless the normals are parallel.

In the sequel, we assume that ftr(t) is defined on
a continuous interval (a, b) (left-hand side in fig. 5).
If the interval is of the form (−∞, a) ∪ (b,∞) (right-
hand side of fig. 5), then the problem is identical or
easier.

Lemma 5.5 Function ftr(t) consists of two strictly
monotone parts, one decreasing and one increasing.

Proof. Although the proof can be intuitive, we pro-
vide a more formal one. There exist two single points
P and Q on Et and Er respectively whose distance is
minimal (fig. 4). As we move from P to P ′ (in CW

orientation), we have: |−−→PV |+ |−−→V Q| < |−−−→P ′V ′|+ |−−−→V ′Q′|,
since

−−−→
P ′V ′ and

−−−→
V ′Q′ cross the tangent lines at P and

6



Q respectively and angle θ′ = P̂ ′V ′Q′ is smaller than

θ = P̂ V Q . Therefore the radius of the Apollonius
circle grows monotonically to infinity. The same ar-
guments can be used to show that the radius also
grows when we move in CCW orientation. 2

Fig. 5 shows a graph of f . The figure is correct
in terms of the function’s monotony. We have not
proven the function’s convexity, though this is sug-
gested by numerical examples. To compute a value
of ftr(t) at a given point t we have to determine r̂.
First, we compute a proper Apollonius arc (r1, r2)
on the second ellipse. This is an isolating interval
of B(t, r) that contains root r̂ which corresponds to
the Apollonius circle. Now we can compute ftr from
equation (10).

5.1 The tritangent circle

In the parametric space, the intersection of two bi-
sectors involves 3 variables, so in order to express the
Voronoi circle, we need the intersection of three bisec-
tors. The system B(t, r) = B(t, s) = B(r, s) = 0 has
a non-optimal mixed volume of 432. We were not able
to factor its resultant. We solved this system with the
SYNAPS package of multivariate Bernstein subdivision
in 3 msec to 1 min, depending on how large the initial
domain was.

As an alternative, we consider the system:

Q(t, r, s) = B(t, r) = B(t, s) = 0 (11)

Here, Q is the condition that makes the three nor-
mals of each ellipse intersect at a single point. Q is
a polynomial of total degree 12, 4 in each variable
t, r, s. Again, this system has a mixed volume of 432.
But now, we construct a resultant matrix whose de-
terminant is factored: We have proven that there are
factors which have no real roots, or their roots corre-
spond to the normals lying on the same line. In every
example we have tried, if we eliminate all these fac-
tors at appropriate powers, we obtain a polynomial of
optimal degree (184) that contains all relevant roots.
We conjecture that this is the general case. Currently,
we have proven that the factors exist, but not with
such exponent.

For (11), PHCpack took about a minute to solve
with 10-bit coefficients, two times slower than in the
implicit approach. We now turn to a subdivision
method which is faster. We actually solve only for
t, but we show that if we know t with sufficient preci-
sion, then we are able to answer κ3. The idea is that
we slide an Apollonius circle tangent to two ellipses,
trying to make it tangent to the third one as well.
This is implemented by successively smaller intervals
on the first ellipse, which define the point of tangency
on this ellipse and, moreover, allow us to compute the
points of tangency on the other ellipses.

The Voronoi circle is the circle which is externally
bitangent to Et, Er, Es at the same time. The tan-
gency point of the Voronoi circle on Et can be defined
by the condition:

Strs(t) = 0, where Strs(t) = ftr(t) − fts(t).

We factor this polynomial as follows:

Strs(t) =
Pt(t)(Q1 −Q2)(Q1 +Q2)

4
[

(1 + t2)(1 + r2)(1 + s2)Dtr(t, r)Dts(t, s)
]2

(12)
where Q1 and Q2 are functions of (t, r, s).

We use a customized bisection to find a root of
Strs(t). We only need to solve Q1 −Q2 and Q1 +Q2,
since the rest of the terms in (12) are always positive.6

In fact, we only solve Q1 − Q2, because Q = (Q1 −
Q2)/(1 + w2

1). However, we still need Q1 + Q2 to
determine the sign of Strs.

Now we determine starting intervals for the subdi-
vision. Consider the complements ε1, ε2 of the sup-
porting hyperplanes of the two external bitangents of
two ellipses E1, E2 and a query ellipse E that does
not intersect the other two. Let |εi| = 0 or 1 de-
pending on whether E ∩ εi = ∅ or not. Let C be the
interior of the convex hull of E1, E2. Then, the num-
ber of Voronoi circles is |ε1| + |ε2|, if E ∩ C = ∅, or
2 − |ε1| − |ε2|, otherwise.

So, we can find a starting interval that contains
the tangency point of the Voronoi circle. In the case
where two Voronoi circles exist, we assume that we
know in advance which one we want and therefore
we pick a proper sub-interval. We end up with an
interval that contains only one Voronoi circle, and
hence Strs has a unique root in the starting interval.

We express the Voronoi circle between Et, Er, Es

implicitly by an interval containing t, such that
(x(t), y(t)) is the tangency point on Et. Note that
this interval might contain tangency points of other
non-external tritangent circles. We start by the ini-
tial interval [a, b] that contains the tangency point of
the Voronoi circle and later, if necessary, we subdi-
vide this interval by bisection. Let Atrs denote an
enclosing interval [a, b] where the tangency point on
Et of the Voronoi circle of Et, Er and Es lies. The
subdivision operator (∗) is defined as follows:

Atrs∗Atrs :=







[a+b
2 , a+b

2 ], if Strs(
a+b
2 ) = 0,

[a, a+b
2 ], if Strs(a)Strs(

a+b
2 ) < 0,

[a+b
2 , b], otherwise.

We denote multiple subdivisions by the power opera-
tor. (Atrs)

k represents an interval [a, b] that has been
subdivided k times and its length is 2−k(b− a).

6These two polynomials appear because we took the differ-
ence of squared functions.
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5.2 Deciding κ3

This subsection shows how the above algorithm de-
cides κ3 and establishes its exactness.

Given ellipses Et, Er, Es we want to determine the
relative position of ellipse Eh with respect to the
Voronoi circle of the first 3. The answer of κ3 is
False, True, or 0, depending on whether Eh is out-
side, intersects the open Voronoi disk, or is externally
tangent to the Voronoi circle of Et, Er, Es.

Lemma 5.6 Let x ∈ [a, b] be the root of Strs(x). If
Strh(x) > 0, then Eh intersects the Voronoi circle of
the other 3 ellipses. If Strh(x) < 0, then Eh lies out-
side the Voronoi circle. Otherwise, Eh is externally
tangent to this circle.

Proof. If Strh(x) > 0, then there exists a bitangent
circle of Et, Eh tangent at point x of Et, which lies
inside the Voronoi circle of Et, Er, Es. Therefore, Eh

intersects the Voronoi circle. If Strh(x) < 0, then
the external bitangent circle of Et on x and of Eh

contains the Voronoi circle. Therefore, Eh lies outside
the Voronoi circle. If Strh(x) = 0, the two Voronoi
circles coincide; this is a degerate configuration. 2

Observe that there is a neighborhood U of x where
sgn(Strh(u)) = sgn(Strh(x)), ∀u ∈ U . In our imple-
mentation, to find U , it suffices that we have sepa-
rated the roots of Strs,Strh. Fig. 7 shows an example
where the query ellipse intersects the Voronoi circle.

We now establish the exactness of our algorithm,
by computing the number of bits that suffice in or-

der to certify the predicate. We shall use the system
from sec. 4, defined after (8), because it has opti-
mal mixed volume: ∆1(v1, v2, q) = ∆2(v1, v2, q) =
∆3(v1, v2, q) = q − v2

1 − v2
2 + s = 0. Let us elim-

inate v1, v2, q; the resultant R(s) is of degree 184
in s and has coefficient bit size 3 · 56 · τ∆ = 168τ∆
[11]. Here 56 equals the mixed volume of the system
∆i,∆j , q−v2

1−v2
2 +s, if we consider s as a parameter,

and τ∆ denotes the bit size of the coefficients of ∆i,
where 1 ≤ i, j ≤ 3 and i 6= j.

The minimum distance between two roots of a
polynomial P (i.e. separation bound) of degree d and
bit size τ is sep(P ) ≥ d−(d+2)/2(d + 1)(1−d)/22τ(1−d)

[27], thus the number of bits that we need in order to
compute s is no more than 1389 + 30744 τ∆.

In order to compare two radii s1 and s2, which
are roots of polynomials R1 and R2 respectively, we
need a bound for |s1 − s2|. Notice that |s1 − s2| ≥
sep(R1R2), where the polynomial R1R2 has degree
368, since we multiply two polynomials of degree 184,
and coefficient bit size 8 + 336τ∆. The latter follows
since we multiply two polynomials of bit size 168τ∆,
so their product has, in the worst case, a coefficient
of magnitude 184 · 22·168τ∆ , or of bit size dlg 184 +
2 · 168τ∆e. We conclude [27] that the number of bits
sufficient to compare two roots of R1 and R2 and thus
to compare the two radii s1 and s2 is 1508+30324τ∆,
which corresponds to sep(R1R2) divided by 2.

This bound is close to tight, since the polynomials
R1 and R2 are obtained as resultants of systems with
optimal mixed volume, thus their degree is 184 and
they are irreducible in the general case. Moreover
the separation bound is tight (up to some constants),
namely the worst case separation bound can be at-
tained by Mignotte’s polynomials [27].

If the ellipses are given parametrically, in order to
compute the implicit representation (3), the bit size
increases by a factor of 6. If the input coefficients
have τ bits, then τ∆ = 6τ . If the order of convergence
of our method is φ, then the number of iterations
needed for κ3 is logφ (1508 + 181944τ).

6 Conflict region type (κ4)

This predicate takes as input ellipses Et, Er, Es, Eh

and determines the type of conflict of ellipse Eq with
the Voronoi edge whose vertices are the centers of the
Voronoi circles defined by Et, Er, Es and Et, Er, Eh

respectively. The conflict region is the set of points
V on the Voronoi edge where an Apollonius circle of
Et, Er centered at V intersects Eq, and it may fall
into one of 6 cases [12, 20]: NoConflict, Inte-

rior, 123-Vertex, 124-Vertex, TwoVertices,

EntireEdge (fig. 8).

As in the previous section we estimate t3, t4, such
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that t3 ∈ Atrs, t4 ∈ Atrh be the tangency points of
the two Voronoi circles and assume t3 < t4. Then,
table 1 shows how we can decide κ4 by applying κ3.
The case t3 > t4 is treated symmetrically.

The (degenerate) case where t3 = t4 implies there is
a unique Voronoi circle tangent to the 4 given ellipses,
which can be detected by κ3. Then, the Voronoi edge
degenerates to a vertex and κ4 reduces to κ3 with
arguments any 3 of the 4 ellipses and Eq. The possible
outcomes are NoConflict, EntireEdge.

case 1,2 Eq is outside both Voronoi circles. It lies in
the region between the Voronoi circles and el-
lipses Et, Er, iff the tangency points of the
Voronoi circles (there are two of them) of
Et, Er, Eq lie in [t3, t4] (Interior). Other-
wise, Eq does not conflict with the bisector
(NoConflict). Note that it is not possible to
have both κ3 equal to 0.

case 3,4 The query ellipse conflicts with only one of
the Voronoi circles, namely Et, Er, Es (or
Et, Er, Eh). The center of the (unique) Voronoi
circle of Et, Er, Eq lies on the Voronoi edge,
therefore the predicate answers 123-Vertex (or
124-Vertex), respectively.

case 5,6 Eq conflicts with both Voronoi circles. It has
no common points with the region between
Et, Er, Es, Eh, iff the tangency points of the
Voronoi circles of Et, Er, Eq lie in [t3, t4]. In
this case, there is a part of the Voronoi edge
that does not conflict with Eq (TwoVertices).
Otherwise, Eq conflicts with the entire edge
(EntireEdge).

7 Exact implementation

We report on our implementations in C++ and
Maple, and illustrate them with a series of exper-
iments. We offer some comparison with existing
generic algebraic software for κ3. All tests ran on
a P4 2.6GHz-CPU with 1GB of RAM, using Debian
Linux with a 2.6.10 kernel.

We have implemented predicates κ1, κ2 in C++
using the specialized algorithms of [13, 14], which are
implemented in the SYNAPS library [24].

The real algebraic numbers are in isolating interval
representation, that is by a square free integer polyno-
mial and an interval with rationals endpoints. Since
predicates κ1 and κ2 involve computations with real
algebraic number of degree up to 4 we used the im-
plementation based on the algorithms of [13], which
avoids subdividisions both for real solving and com-
parison.

We used extended integer arithmetic from gmp.
We also performed tests with the CGAL filtered type

Lazy exact nt, but the results were not better. The
reason is that the size of the various quantities is
rather large and the filter almost always failed. This
implies that geometric filters may be used, cf. sec. 8.

For each test we randomly generated 1000 in-
stances (point and 2 ellipses, or 3 ellipses), with
the coefficients uniformly distributed between 1 and
2B , B ∈ {10, 30, 100, 300}. Table 2 summarizes av-
erage timings; for κ1 and κ2 runtimes grow sub-
quadratically in B. Note that for κ2 half of the time
is spent for the solution of the bivariate system and
the other half is spent for the computation of the the
relative position of the third ellipse.

B predicate κ1[ms] predicate κ2[ms]
10 0.45 6.15
30 0.94 16.46
100 3.68 73.21
300 17.3 396.82

Table 2: Timings from our implementation in C++
utilising the implicit approach

The implementation of κ3 with parametric ellipses
was done in Maple 9. We have implemented a small
algebraic number package that performs exact uni-
variate real root isolation, comparison and sign eval-
uation of univariate (bivariate) expressions over one
(two) algebraic number(s), using Sturm sequences
and interval arithmetic over Q.

In order to decide the degenerate cases we have to
go up to the separation bound. This turned out to
be quite impractical, because of the number of iter-
ations needed. We suspect a degeneracy if after a
certain number of iterations, our algorithm has not
yet decided the predicate. Then, given the ellipses
Et, Er, Es and the query one Eh, we compute the re-
sultants of system (11) R1(t), R2(t), with respect to
the two triplets t, r, s and t, r, h. If all four ellipses
share a common Voronoi circle, then R1 and R2 have
a common root. In this case G(t) = gcd(R1, R2) 6= 1.
Given R1, R2 and G, we isolate the roots of the poly-
nomials and run our algorithm with a better sepa-
ration bound. This turned out to work very well in
practice. With 10-bit coefficients, the computation
of the resultant of (8) takes about 5 min with inter-
polation, while of (11) it is computed within 10 sec
with two applications of Sylvester resultants. This
shows that the parametric system, not only provides
a way to answer κ3 with geometric arguments, but
also allows faster computation of the resultant.

We performed several preliminary experiments
with different triplets of ellipses and circles. We con-
sider a query ellipse (or circle) with its centre moving
along a line and measure the time taken by κ3 to de-
cide its relative position with respect to the Voronoi
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case κ3(Et, Er, Es, Eq) condition κ3(Et, Er, Eh, Eq) κ4

1
0 ∨ False

(Atrq)
k ∩ [t3, t4] = ∅

0 ∨ False
NoConflict

2 (Atrq)
k ⊆ [t3, t4] Interior

3 True (⇒ (Atrq)
k ⊆ [t3, t4]) 0 ∨ False 123-Vertex

4 0 ∨ False (⇒ (Atrq)
k ⊆ [t3, t4]) True 124-Vertex

5
True

(Atrq)
k ⊆ [t3, t4]

True
TwoVertices

6 (Atrq)
k ∩ [t3, t4] = ∅ EntireEdge

Table 1: Deciding κ4

(1)-NoConflict (3)-123-Vertex (5)-TwoVertices

(2)-Interior (4)-124-Vertex (6)-EntireEdge

Figure 8: All cases of κ4, where the query ellipse is shaded

circle. Among the various configurations, there were
both degenerate and non-degenerate cases, although
the former are very hard to generate for ellipses.

The ellipses have 10-bit coefficients in their para-
metric form. Fig. 9 shows the 3 ellipses (or circles)
and the query one in its initial, middle and final posi-
tion. In fig. 10 we present the times for 3 test suites:
The first two graphs involve ellipses that do not share
a common Voronoi circle with the query one, which
center moves along the line y = −x. Notice that the
time increases as we approach a degenerate configu-
ration. Although the hardest cases took about 5s, in
90% of the cases we can decide in less than 2.5s. The
third graph involves circles, but as the query circle
moves along y = 0, a degenerate configuration is at-
tained. In that case the algorithm has to compute
the resultants. This corresponds to the peak of the
graph which is 30s after 100 iterations. In all other
cases the timings are less than 3s.

Our implementations are exact but can also run
with any prescribed precision, e.g. for rendering pur-
poses. In particular, a much faster execution is possi-
ble for the above algorithms if we restrict ourselves to
machine precision, as in [18]. Fig. 11 presents experi-

ments using machine precision and 32 bit coefficients.
With this inexact approach, we can decide the pred-
icate in less than two seconds in all cases.

8 Future work

We are implementing our methods in C++, using
Maple as a testbed of ideas. Our final goal is a CGAL
implementation. Working in C++ will allow us to
use one of the powerful interval arithmetic packages
in C++.

We can speed up the subdivision process by notic-
ing that Strs is strictly monotone in the starting
interval [a, b] and that it has a unique simple real
root in it. Since we can not prove its convexity
we can not guarantee the convergence of a Newton-
like subdivision, which has quadratic convergence
rate, but we can use Brent’s (also known as Van
Wijngaarden-Dekker-Brent’s) method which is super-
linear [9]. Let [a, b] be an interval during the subdivi-
sion process and m = a+b

2 . The new endpoint, i.e. x,

is given by the following iterative scheme x = m+ P
Q ,

where R = Strs(m)
Strs(b) , S = Strs(m)

Strs(a) , T = Strs(a)
Strs(b) ,

10
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Figure 10: Execution time of κ3 as function of the position of the query ellipse’s (circle’s) center

P = S(T (R − T )(b − m) − (1 − R)(m − a)) and
Q = (T − 1)(R− 1)(S − 1). The term P

Q corresponds

to a correction factor. If x /∈ [a, b] then the new
estimation is m. This method is a combination of
bisection and inverse quadratic interpolation (simi-
lar to the secant method) and ensures that the new
estimation will always lie between the interval [a, b].
The convergence rate of the method is φ = 1.618 in
general. Superlinear convergence is important for ob-
taining the number of bits required in the degenerate
cases.

It is possible to certify our algorithm based on con-
structive root separation bounds e.g. [10, 26], which
should be tighter than the static bounds now used.

We conclude with geometric constraints that per-
mit to derive bounds for the Voronoi vertex, thus
speeding up the subdivision.

Theorem 8.1 Circle C(V,
√
s) is externally tangent

to a given ellipse iff the coefficients of ϕ(λ) satisfy
∆ = 0 and one of the following: Either V lies outside
the closed disk of T (x, y), defined in sec. 3, or V lies
inside the closed disk T (x, y) and E(v1, v2) > J1s.
The latter means, for fixed s, that V is outside the
ellipse E−J1s = 0, which has the same foci as E but
different axes.

Proposition 8.2 Consider two ellipses E1, E2 and
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Figure 11: Execution time of κ3 as function of the
position of the query ellipse’s (circle’s) center, using
machine precision

point V outside of both. Let δ1 < δ2 be the dis-
tances between V and the ellipses. Then the center
of an external bitangent circle does not lie in circle
C(V, δ2−δ1

2 ).
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