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Abstract

We consider the price of stability for Nash and correlated equilibria of linear congestion
games. The price of stability is the optimistic price of anarchy, the ratio of the cost of the
best Nash or correlated equilibrium over the social optimum. We show that for the sum
social cost, which corresponds to the average cost of the players, every linear congestion game
has Nash and correlated price of stability at most 1.6. We also give an almost matching
lower bound of 1 +

√
3/3 = 1.577.

We also consider the price of anarchy of correlated equilibria. We extend some of the
results in [2, 4] to correlated equilibria and show that for the sum social cost, the price of
anarchy is 2.5. The same bound holds for symmetric games as well. This matches the lower
bounds given in [2, 4] for pure Nash equilibria. We also extend the results in [2] for weighted
congestion games to correlated equilibria. Specifically, we show that when the social cost is
the total latency, the price of anarchy is (3 +

√
5)/2 = 2.618.

1 Introduction

Recently, a new vigorous subfield of computer science emerged which studies how the viewpoint
and behavior of users affects the performance of computer networks or systems, by modeling
the situation as a game.

One of the most important questions in game theory is what is the correct solution concept
of a game. There are many proposals but three types of equilibria stand out in the literature
of non-cooperative game theory. The first and stronger equilibrium occurs when there are
dominant strategies, in which each player has an optimal strategy independently of what the
other players do. Unfortunately not every game has such a solution (and sometimes even if it
has one, as in the case of the game of prisoner’s dilemma, it may lead to unexpected solutions).
The second and the most well-known equilibrium is the Nash equilibrium, whose existence is
assured for every finite game by the famous theorem by Nash. The third type of equilibria is
the notion of correlated equilibrium, introduced by Aumann [1], and which recently is the focus
of computational studies (see for example [22, 21]).

A correlated strategy for a game is a probability distribution over all the possible pure
strategy profiles. One can interpret the situation as follows: there is a trusted mediator who
performs the random experiment and announces the resulted strategies to each player in private.
The players although they know the distribution, they are not informed about the outcome of
the experiment but just about their own strategy. They may choose to follow or not the
mediator’s advice according to their utility function. A correlated strategy is a correlated
equilibrium if no player has any reason to unilaterally disobey to the mediator’s advice. Roughly
speaking this paradigm is also an interpretion for mixed Nash equilibria with the exception that
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the distribution is formed by independent random experiments (one for each player) over the
possible pure strategies for each player.

The three types of equilibria (dominant, Nash, and correlated) are related by inclusion:
the set of Nash equilibria contains the dominant strategies and the set of correlated equilibria
contains all Nash equilibria. Thus the existence of correlated equilibria is guaranteed for every
finite game.

One of the main tools in the study of selfish behavior is the price of anarchy [14, 20], a
measure that compares the worst case performance Nash equilibrium to that of the optimal
allocation. Naturally, the concept of the price of anarchy extends to correlated equilibria.
If we know only that the players play at some equilibrium, the price of anarchy bounds the
deterioration of system performance due to selfish behavior. On the other hand, there is the
optimistic point of view in which the players are guided to play at the best Nash equilibrium.
Especially with correlated equilibria, the latter makes much more sense: The mediator who
selects the probability distribution, the correlated equilibrium, and presents it to the players,
can select the correlated equilibrium with minimum system cost. In other words, one can view
correlated equilibria as a mechanism for enforcing good behavior on selfish users. The optimistic
price of anarchy of the best equilibrium is also called price of stability [3].

In this paper we consider the price of anarchy and stability of Nash and correlated equilibria
of congestion games, a class of games which suitably models traffic networks and abstracts well
many game-theoretic situations in networks and systems. Congestion games, introduced by
Rosenthal [23], provide a common framework for almost all previous studies of price of anarchy
which originated in [14] and [26]. Congestion games have the fundamental property that a pure
Nash equilibrium always exists. In [18], it is proved that congestion games (also called potential
games) are characterized by a potential: the local optima of the potential correspond exactly
to mixed Nash equilibria (see [8] for computational issues related to this issue).

Whether one studies the price of anarchy or the price of stability, a critical matter is the
definition of the social optimum: the system allocation mostly desired by the system designer.
From the system designers point of view there are two natural notions of social cost: the
maximum or the average (or sum) cost among the players. For the original model of parallel
links in [14], the social cost was the maximum cost among the players. For the Wardrop model
studied by Roughgarden and Tardos [26], the social cost was the average player cost. A third
social cost is the total latency which is the sum of squares of the loads on each facility. For
unweighted games this is identical to the average (or sum) cost among the players.

Here we deal with the average social cost but we also consider the maximum social cost
and the total latency social cost (for weighted congestion games). We also consider the price of
anarchy of the natural subclass of symmetric congestion games, where the available actions are
the same for all the players.

1.1 Our results

We study linear general—not only network—congestion games with cost (latency) functions of
the form fe(k) = aek + be with nonnegative coefficients. We focus mainly on the sum social
cost which is the sum of the cost of all players and we consider all three types of equilibria:
dominant strategies, pure and mixed Nash equilibria, and correlated equilibria.

Price of stability: For linear congestion games we give an upper bound of 1.6 for Nash
and correlated equilibria (Theorem 1). Although bounding directly the price of stability seems
hard—after all, we need to bound the best not the worst equilibrium—we resort to a clever
trick by making use of the potential of congestion games. More specifically, instead of bounding
the cost of the best equilibrium, we bound the cost of the pure Nash equilibrium which has
minimum potential. Since every local optimum of the potential corresponds to a pure Nash
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equilibrium, such a Nash equilibrium is guaranteed to exist. In fact, the proof of Theorem 1
does not even need to consider the Nash equilibrium with minimum potential. All we need to
consider is that the potential of the Nash equilibrium is less than the potential of the optimal
strategies.

We give a non-trivial lower bound of 1 +
√

3
3 ≈ 1.577 for dominant strategies (Theorem 2).

This is perhaps the most technical part of this work. Naturally, both the upper and lower bounds
hold for all three types of equilibria (dominant strategies, Nash, and correlated equilibria). An
open problem is to close the little gap between 1.577 and 1.6.

We also observe that for the max social cost (i.e., the maximum cost among the players)
the price of stability is Θ(

√
N) (Theorem 3). This follows by a minor modification to the lower

bound (about pure Nash equilibria) given in [4].

Price of anarchy: For linear congestion games, we extend some of the results of our forth-
coming STOC’05 paper [4] on the price of anarchy of Nash equilibria to correlated equilibria
and at the same time improve them. More specifically, we show that the correlated price of
anarchy of the sum social cost is 2.5 for the asymmetric case (Theorem 4) and 5N−2

2N+1 for the
symmetric case (Theorem 5), where N is the number of players. Since in [4], we had matching
lower bounds for pure Nash equilibria, these are also tight bounds for Nash equilibria.

We also extend the results of [2] about the price of anarchy of Nash equilibria for weighted
linear congestion games when the social cost is the total latency: The price of anarchy of
correlated equilibria is 3+

√
5

2 ≈ 2.618 (Theorem 6). Although we prove a more general result,
our proof is substantially simpler.

1.2 Related work

The closer works in spirit, results, and techniques are the STOC’05 papers [4, 2]. Both these
papers study the price of anarchy of pure and mixed Nash equilibria for linear congestion games
and congestion games with polynomial delay functions. In particular, both papers show that
price of anarchy of pure Nash equilibria of linear congestion games is 2.5 for the average social
cost (and the total latency cost which is identical in this case). Paper [4] also shows that the
same bound holds also for symmetric games for both the average and the maximum social cost
but it gets up to Θ(

√
N) for the maximum social cost (in the general case). It also gives a

2.618 bound for mixed equilibria and the average social cost. On the other hand, [2] considers
weighted congestion games for the total latency social cost and shows that the price of anarchy
for both pure and mixed equilibria is 2.618.

The study of the price of anarchy was initiated in [14], for (weighted) congestion games of
m parallel links. The price of anarchy for the maximum social cost is proved to be Ω( log m

log log m),

while in [16, 13, 7] they proved Θ( log m
log log m). In [7] extended the result to m parallel links with

different speeds and showed that the price of anarchy is Θ( log m
log log log m). In [6], more general

latency functions are studied, especially in relation to queuing theory. For the same model of
parallel links, [10] and [15] consider the price of anarchy for other social costs.

In [28], the special case of congestion games in which each strategy is a singleton set is
considered. They give bounds for the case of the average social cost. For the same class
of congestion games and the maximum social cost, [11] showed that the price of anarchy is
Θ(log N/ log log N) (a similar, perhaps unpublished, result was obtained by the group of [28]).
The case of singleton strategies is also considered in [12] and [15].

In [9], they consider the mixed price of anarchy of symmetric network weighted congestion
games, when the network is layered.

The non-atomic case of congestion games was considered in [26, 27] where they showed
that for linear latencies the average price of anarchy is 4/3. They also extended this result to
polynomial latencies. Furthermore, [5, 25] considered the social cost of maximum latency.
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2 The model

A congestion game is a tuple (N,E, (Si)i∈N , (fe)e∈E) where N = {1, . . . , n} is the set of players,
E is a set of facilities, Si ⊆ 2E is a collection of pure strategies for player i: a pure strategy
Ai ∈ Si is a set of facilities, and finally fe is a cost (or latency) function associated with facility
j. We are concerned with linear cost functions: fe(k) = ae · k + be for nonnegative constants ae

and be.
A pure strategy profile A = (A1, . . . , An) is a vector of strategies, one for each player. The

cost of player i for the pure strategy profile A is given by ci(A) =
∑

e∈Ai
fe(ne(A)), where ne(A)

is the number of the players using e in A. A pure strategy profile A is a Nash equilibrium if no
player has any reason to unilaterally deviate to another pure strategy: ∀i ∈ N,∀s ∈ Si ci(A) ≤
ci(A−i, s), where (A−i, s) is the strategy profile produced if just player i deviates from Ai to s.

The social cost of A is either the maximum cost of a player Max(A) = maxi∈N ci(A) or
the average of the players’ costs. For simplicity, we consider the sum of all costs (which is N
times the average cost) Sum(A) =

∑
i∈N ci(A). These definitions extend naturally to the cases

of mixed and correlated strategies (with expected costs, of course).
A mixed strategy pi for a player i, is a probability distribution over his pure strategy set Si.

A correlated strategy q for a set of players is any probability distribution over the set of possible
combinations of pure strategies that these players can choose. That is a correlated strategy for
N is any probability distribution in ∆(S), where S = ×i∈NSi.

Given a correlated strategy q in ∆(S), the expected cost of a player i ∈ N is

ci(q) =
∑
s∈S

q(s)ci(s),

A correlated strategy q ∈ ∆(S) is a correlated equilibrium if q satisfies the following condition

ci(q) ≤
∑
s∈S

q(s)ci(s−i, δi(si)), ∀i ∈ N, ∀δi(si) : Si → Si

A congestion game is symmetric (or single-commodity) if all the players have the same
strategy set: Si = C. We use the term “asymmetric” (or multi-commodity) to refer to all games
(including the symmetric ones).

The correlated price of anarchy of a game is the worst-case ratio, among all correlated
equilibria, of the social cost over the optimum social cost, opt = minP∈S sc(P ).

PA = sup
q is a corr. eq.

sc(q)
opt

The correlated price of stability of a game is the best-case ratio, among all correlated equilibria,
of the social cost over the optimum.

PS = inf
q is a corr. eq.

sc(q)
opt

When we refer to the price of stability (resp. anarchy) of a class of games, we mean the maximum
(or supremum) price of stability (resp. anarchy) among all games in the class.

In weighted congestion games, each player controls an amount of traffic wi, and the cost of
a facility e depends on the total load on the facility. For this case, some of our results involve
the total latency social cost. For a pure strategy profile A ∈ S, the total latency is defined as
C(A) =

∑
e∈E θe(A) · fe(θe(A). Notice that the sum and the total latency social costs coincide

for unweighted congestion games.
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3 The correlated price of stability of congestion games

In this section we study the price of stability of linear congestion games. We will use the
following simple lemma:

Lemma 1. For every nonnegative integers α, β:

αβ + 2β − α ≤ 1
8
a2 + 2β2.

Proof.

2β2 +
1
8
a2 − αβ − 2β + a = (α− 4(β − 1))2 + 16(β − 1) ≥ 0.

Define the potential of a strategy profile A of a congestion game to be P (A) =
∑

e∈E

∑ne(A)
i=1 fe(i).

The potential has the nice property that when P (A) is a local optimum, then A is a pure Nash
equilibrium. To establish an upper bound on the price of stability, we simply bound the price of
anarchy of the subclass of Nash equilibria whose potential does not exceed the potential of the
optimal allocation. Clearly, by the property of the potential, this subclass of Nash equilibria is
not empty.

Theorem 1. Let A be a pure Nash equilibrium and P be any pure strategy profile such that
P (A) ≤ P (P ), then Sum(A) ≤ 8

5Sum(P ). This shows that the price of stability of correlated
equilibria is at most 1.6.

Proof. From the potential inequality we have

P (A) =
∑
e∈E

ne(A)∑
i=1

fe(i) =
1
2
Sum(A) +

1
2

∑
e∈E

(ae + be)ne(A) ≤

P (P ) =
1
2
Sum(P ) +

1
2

∑
e∈E

(ae + be)ne(P )

From the Nash inequality we have

Sum(A) ≤
∑
e∈E

ne(P )fe(ne(A) + 1) =
∑
e∈E

aene(A)ne(P ) +
∑
e∈E

(ae + be)ne(P ).

So if we sum the above inequalities and use Lemma 1 we get

2Sum(A) ≤
∑
e∈E

ae(ne(A)ne(P ) + n2
e(P ) + 2ne(P )− ne(A)) +

∑
e∈E

be(3ne(P )− ne(A)) ≤

1
8
Sum(A) + 3Sum(P )

and the lemma follows.

3.1 Lower bound

We now provide an almost matching lower bound.

Theorem 2. There are linear congestion games whose dominant equilibrium —and therefore
the Nash and correlated equilibria— have price of stability of the Sum social cost approaching
1 +

√
3/3 ≈ 1.577 as the number of players N tends to infinity.
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Proof. We describe a game of N players with parameters α, β, and m which we will fix later to
obtain the desired properties. Each player i has two strategies Ai and Pi, where the strategy
profile (A1, . . . , AN ) will be the equilibrium and (P1, . . . , PN ) will have optimal social cost.

There are 3 types of facilities:

• N facilities αi, i = 1, . . . , N , each with cost function f(k) = αk. Facility αi belongs only
to strategy Pi.

• N(N − 1) facilities βij , i, j = 1, . . . , N and i 6= j, each with cost f(k) = βk. Facility βij

belongs only to strategies Ai and Pj .

•
(
N
m

)
facilities γS , one for each subset S of {1, . . . , N} of cardinality m and with cost

function f(k) = k. Facility γS belongs to strategy Ai iff i 6∈ S and to strategy Pj iff j ∈ S.

We will first compute the cost of every player and every strategy profile. By symmetry, we need
only to consider the cost costA(k) of player 1 and the cost costP (k) of player N of the strategy
profile (A1, . . . , Ak, Pk+1, . . . , PN ). We could count the cost that every facility contributes to
costA(k) and costP (k), but this results in complicated sums. A simpler way is to resort to
probabilities and consider the contribution of a random facility of each of the 3 types. For
example, consider a random facility γS which is used by player 1, i.e. 1 6∈ S. The probability
that player j = k + 1, . . . , N uses this facility is equal to the probability that j ∈ S which is
equal to m/(N−1). Also the probability that player i = 2, . . . , k uses the facility is equal to the
probability that i 6∈ S which is equal to (N − 1−m)/(N − 1). Therefore the expected number
of players that use the facility γS is

1 + (N − k)
m

N − 1
+ (k − 1)

N − 1−m

N − 1
=

kN + mN − 2km + m− k

N − 1
.

Taking into account that there are
(
N−1

m

)
such facilities, the contribution of type 3 facilities to

the cost costA(k) of player 1 is
(
N−1

m

)
kN+mN−2km+m−k

N−1 . With similar but simpler considerations
we compute the contribution to costA(k) of facilities of the second type to be (2N − k − 1)β.
Therefore,

costA(k) = (2N − k − 1)β +
(

N − 1
m

)
kN + mN − 2km + m− k

N − 1
.

Similarly, we compute

costP (k) = α + (N + k − 1)β +
(

N − 1
N −m

)
kN + mN − 2km−m + k

N − 1
.

(In fact by symmetry, and with the exception of the term α, the cost costP (k) results from
costA(k) when we replace k and m by N − k and N −m, respectively.)

We now want to select the parameters α and β so that the strategy profile (A1, . . . , AN )
is dominant. Equivalently, at every strategy profile (A1, . . . , Ak, Pk+1, . . . , PN ), player i, i =
1, . . . , k, has no reason to switch to strategy Pi. This is expressed by the constraint

costA(k) ≤ costP (k − 1), for every k = 1, . . . , N . (1)

Magically, all these constraints are satisfied by equality when

α =
(

N

m

)
N2 − 2m− 2Nm + N

2N
,

and

β =
(

N

m

)
N2 + 4m2 − 4Nm−N

2N(N − 1)
.
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(The mystery disappears when we observe that both costA(k) and costP (k) are linear in k.)
In summary, for the above values of the parameters α and β, we obtain the desired property

that the strategy profile (A1, . . . , AN ) is a dominant strategy. If we increase α by any small
positive ε, inequality (1) becomes strict and the dominant strategy is unique (and therefore
unique Nash and correlated equilibrium).

We now want to select the value of the parameter m so that the price of anarchy of this
equilibrium is as high as possible. The price of anarchy is costA(N)/costP (0) which for the
above values of α and β can be simplified to

pa =
3N2 + 6m2 − 8Nm−N

2N2 + 6m2 − 6Nm− 2m
.

For m/N ≈ 1/2 −
√

3/6, the price of anarchy tends to pa = 1 +
√

3/3 ≈ 1.577, as N tends to
infinity.

Theorem 3. The price of stability for dominant strategies for asymmetric congestion games is
Θ(
√

N).

Proof. A minor modification of the example in the lower bound in [4] works. We simply add
a small term ε to the bad Nash equilibrium case, in order to turn the strategies into dominant
ones. On the other hand, the price of stability cannot be more that the price of anarchy of pure
Nash equilibria which shown in [4] to be O(

√
N).

4 The correlated price of anarchy of congestion games

We now turn our attention to the correlated price of anarchy of congestion games for linear
facility delay functions and for the average social cost.

The following is a simple fact which will be useful in the proof of the next theorem.

Lemma 2. For every pair of nonnegative integers α, β, it holds

α(β + 1) ≤ 1
3
α2 +

5
3
β2.

Theorem 4. The correlated price of anarchy of the average social cost is 5
2 .

Proof. The lower bound is established in [2, 4] (for pure equilibria). To establish the upper
bound, let q be a correlated equilibrium and P be an optimal (or any other) allocation. The cost
of player i at the correlated equilibrium is ci(q) =

∑
s∈S q(s)ci(s) =

∑
s∈S q(s)

∑
e∈si

fe(ne(s)).
We want to bound the expected social cost, the sum of the expected costs of the players:
Sum(q) =

∑
i ci(q) =

∑
s∈S q(s)

∑
e∈E ne(s)fe(ne(s)), with respect to the optimal cost Sum(P ) =∑

i ci(P ) =
∑

e∈E ne(P )fe(ne(P )).
At the correlated equilibrium

ci(q) =
∑
s∈S

q(s)
∑
e∈si

fe(ne(s)) ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(ne(s−i, Pi)) ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(ne(s) + 1)

where (s−i, Pi) is the usual notation in Game Theory to denote the allocation that results when
we replace si by Pi.
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If we sum over all players i, we can bound the expected social cost as

Sum(q) =
∑
i∈N

ci(q) ≤
∑
i∈N

∑
s∈S

q(s)
∑
e∈Pi

fe(ne(s) + 1) =

∑
s∈S

q(s)
∑
e∈E

ne(P )fe(ne(s) + 1) =∑
s∈S

q(s)
∑
e∈E

ne(P )(ae(ne(s) + 1) + be) =∑
s∈S

q(s)
∑
e∈E

(ae(ne(P )(ne(s) + 1) + bene(P )) ≤

∑
s∈S

q(s)
∑
e∈E

(ae(
1
3
n2

e(s) +
5
3
n2

e(P )) + bene(P )) ≤

∑
s∈S

q(s)
∑
e∈E

1
3
(aen

2
e(s) + be(ne(s)) +

∑
s∈S

q(s)
∑
e∈E

5
3
(aen

2
e(P ) + bene(P )) =

1
3
Sum(q) +

5
3
Sum(P ),

where the first inequality follows from Lemma 3 and the other one by the fact that be is
nonnegative.

For the symmetric games the correlated price of anarchy is also 5/2. In fact, as the next
theorem establishes, it is slightly less: 5N−2

2N+1 . This is tight, as a matching lower bound for pure
Nash equilibria in [4] shows.

Theorem 5. The average correlated price of anarchy of symmetric congestion games with linear
cost functions is 5N−2

2N+1 .

Proof. For each player i we have from the Nash inequalities that

ci(q) ≤
∑
s∈S

q(s)(
∑

e∈P1∩si

fe(ne(s)) +
∑

e∈P1−si

fe(ne(s) + 1)) =
∑
s∈S

q(s)(
∑
e∈P1

fe(ne(s) + 1)−
∑

e∈P1∩si

ae)

ci(q) ≤
∑
s∈S

q(s)(
∑

e∈P2∩si

fe(ne(s)) +
∑

e∈P2−si

fe(ne(s) + 1)) =
∑
s∈S

q(s)(
∑
e∈P2

fe(ne(s) + 1)−
∑

e∈P2∩si

ae)

ci(q) ≤
∑
s∈S

q(s)(
∑

e∈PN∩si

fe(ne(s)) +
∑

e∈PN−si

fe(ne(s) + 1)) =
∑
s∈S

q(s)(
∑

e∈PN

fe(ne(s) + 1)−
∑

e∈PN∩si

ae).

So,
N · ci(q) ≤

∑
s∈S

q(s)(
∑
e∈E

ne(P )fe(ne(s) + 1)−
∑
e∈si

aene(P )).
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If we sum over all i ∈ N we get

NSum(q) ≤
∑
s∈S

q(s)(N
∑
e∈E

ne(P )fe(ne(s) + 1)−
∑
e∈E

aene(P )ne(s)) =∑
s∈S

q(s)(N
∑
e∈E

ne(P )(ae(ne(s) + 1) + be)−
∑
e∈E

aene(P )ne(s)) =∑
s∈S

q(s)((N − 1)
∑
e∈E

aene(P )ne(s) + N
∑
e∈E

aene(P ) + N
∑
e∈E

bene(P )) =∑
s∈S

q(s)((N − 1)
∑
e∈E

aene(P )(ne(s) + 1) +
∑
e∈E

aene(P ) + N
∑
e∈E

bene(P )) ≤

∑
s∈S

q(s)((N − 1)
∑
e∈E

ae(
1
3
n2

e(s) +
5
3
n2

e(P )) +
∑
e∈E

aene(P ) + N
∑
e∈E

bene(P ))

∑
s∈S

q(s)(
N − 1

3
Sum(s) +

5N − 2
3

Sum(P )− 2
3
(N − 1)

∑
e∈E

bene(P )) ≤

∑
s∈S

q(s)(
N − 1

3
Sum(s) +

5N − 2
3

Sum(P ))

and the theorem follows.

4.1 Asymmetric weighted games

In this subsection we assume that the social cost is the total latency and we even allow players
to have weights. The main theorem of this subsection was first proved in [2] for mixed Nash
equilibria. Here we generalize it to correlated equilibria. Our proof is shorter and in our opinion
simpler, but it borrows a lot of ideas from [2]. We will need the following lemma:

Lemma 3. For every non negative real α, β, it holds

αβ + β2 ≤
√

5− 1
4

α2 +
√

5 + 5
4

β2

Proof. We want to find λ and k that minimize PA = λ
k−1 and satisfy αβ + β2 ≤ 1

kα2 + λ
kβ2.

We see that this is achieved for k = 1 +
√

5 and λ = (3
√

5 + 5)/2.

Theorem 6. For linear weighted congestion games, the correlated price of anarchy of the total
latency is at most 3+

√
5

2 ≈ 2.618.

Proof. Let q be a correlated equilibrium and P be an optimal (or any other) allocation. The cost
of player i at the correlated equilibrium is ci(q) =

∑
s∈S q(s)ci(s) =

∑
s∈S q(s)

∑
e∈si

fe(θe(s)),
where θe(s) is the total load on the facility e for the allocation s. We want to bound the
expected total latency: C(q) = E[

∑
e∈E lefe(le)] =

∑
s∈S q(s)

∑
e∈E θe(s)fe(θe(s)), where le is

a random variable indicating the actual load on the facility e, with respect to the optimal cost
C(P ) =

∑
e∈E θe(P )fe(θe(P )).

At the correlated equilibrium

ci(q) =
∑
s∈S

q(s)
∑
e∈si

fe(θe(s)) ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s−i, Pi)) ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s) + wi)

where (s−i, Pi) is the usual notation in Game Theory to denote the allocation that results when
we replace si by Pi.

If we multiply this inequality with wi we get
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∑
s∈S

q(s)
∑
e∈si

fe(θe(s))wi ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s) + wi)wi

If we sum over all players i, we can bound the expected total latency as∑
i∈N

∑
s∈S

q(s)
∑
e∈si

fe(θe(s))wi =
∑
s∈S

q(s)
∑
e∈E

θe(s)fe(θe(s)) = C(q) ≤∑
i∈N

∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s) + wi)wi =
∑
i∈N

∑
s∈S

q(s)
∑
e∈Pi

(ae(θe(s) + wi) + be)wi ≤∑
s∈S

q(s)(
∑
e∈E

ae(θe(s)θe(P ) + θ2
e(P )) +

∑
e∈E

beθe(P ) ≤

∑
s∈S

q(s)(
∑
e∈E

ae(
√

5− 1
4

θ2
e(s) +

√
5 + 5
4

θ2
e(P )) +

∑
e∈E

beθe(P ) ≤

√
5− 1
4

C(q) +
√

5 + 5
4

C(P ),

and the theorem follows.

5 Conclusion and open problems

We considered the price of anarchy and stability of correlated equilibria for linear congestion
games. Some of our results extend directly to polynomial cost functions but we leave the details
for the full version of the paper.

Our results point directly to interesting open questions such as to close the gap between the
lower bound of 1.577 and the upper bound of 1.6 of the price of stability (Theorems 1 and 2).
We also left open some cases about the maximum cost or symmetric games.
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