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Περίληψη

Η στατική ανάλυση προγραµµάτων αποτελεί ένα είδος ανάλυσης λογισµικού, που ασχολείται

µε την εξέταση του πηγαίου κώδικα χωρίς να εκτελείται το παραγόµενο πρόγραµµα. Μια σηµαν-

τική κατηγορία στατικής ανάλυσης είναι η ανάλυση δεικτών, η οποία εκτιµά σε ποιά αντικείµενα

µπορεί να ‘δείξει’ κάθε µεταβλητή του προγράµµατος για κάθε πιθανή εκτέλεση του κώδικα. Τα

αποτελέσµατα αυτά αποτελούν ϑεµελιώδες στάδιο για περαιτέρω πιο σύνθετες αναλύσεις.

Για να είναι µια τέτοια ανάλυση ακριβής, πρέπει να προσοµοιώνει κάθε πτυχή του προγράµµατος

καθώς και του συστήµατος στο οποίο ϑα εκτελεστεί ο κώδικας, και που επηρεάζουν την ϱοή των

αντικειµένων στις µεταβλητές του προγράµµατος. Από την άλλη για να είναι µια τέτοια ανάλυση

πρακτική χρειάζεται να παράγει αποτελέσµατα σε λογικό χρονικό διάστηµα. Σαν αποτέλεσµα

είναι αρκετά κρίσιµο οι υπερεκτιµήσεις που γίνονται να είναι όσο το δυνατόν πιο ‘σφικτές’.

΄Ενα σηµαντικό χαρακτηριστικό των αντικειµενοστρεφών γλωσσών όπως η Java είναι οι εξ-

αιρέσεις. Προηγούµενες µελέτες [2] έδειξαν ότι ο ακριβής χειρισµός των εξαιρέσεων επηρεάζει

σηµαντικά την ακρίβεια των αποτελεσµάτων. Παρουσιάζουµε στην εργασία αυτή τρεις εναλλακ-

τικές για το χειρισµό των εξαιρέσεων καθώς και τις επιπτώσεις που έχουν στην ακρίβεια και στην

απόδοση της ανάλυσης. ΄Ενα εντυπωσιακό εύρηµα αποτελεί το γεγονός ότι αντί να καταγράφεται

κάθε αντικείµενο-εξαίρεση, µπορούν τα αντικείµενα µε τον ίδιο τύπο να συγχωνευτούν σε ένα

αντικείµενο-αντιπρόσωπο. Κάτι τέτοιο επιφέρει ελάχιστη αλλαγή στην ακρίβεια, αλλά σηµαντική

ϐελτίωση στην απόδοση (σε αρκετές αναλύσεις πάνω από 20% ϐελτίωση).

Η ανάλυσή µας είναι µέρος του Doop framework [3], το οποίο περιλαµβάνει µία ανάλυση

δεικτών για ένα σύνολο από υποστηριζόµενους τύπους συµφραζοµένων, γραµµένο αποκλειστικά

σε Datalog.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική Ανάλυση Προγραµµάτων

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : Datalog, ανάλυση πλήρους προγράµµατος, Java, εξαιρέσεις, συµφραζόµενα



Abstract

Static program analysis is the analysis of computer software that focuses on the exam-

ination of the source code, without actually executing the program built from that code.

An important subclass of static program analysis is that of Points-To Analysis, an analysis

that reasons about which objects can flow into which variables, for every possible program

execution. The points-to results, are fundamental for further, more complex analyses.

For an analysis like the above to be precise, it has to simulate every aspect of the source

code and of the underlying system in which the program will be executed, that can influence

the flow of objects into variables. On the other hand, the results need to be produced within

a logical timespan for the analysis to be practical. Thus it is crucial that every overapproxi-

mation made by the analysis is as ‘‘tight’’ as possible.

One important feature of object-oriented languages like Java is that of exceptions. Pre-

vious work [2] has shown that accurate handling of exceptions can significantly affect the

precision of the results. In this work, we present three alternative ways to handle exceptions

in Java, as well as the effect each one has over the precision and the performance of the

resulting analysis. An impressive find is the fact that, instead of recording each distinct

exception object, we can collapse all exceptions of the same type, and use one representative

object per type, with barely any loss in precision but at the same time with a significant boost

in performance (in many analyses achieving more than 20% improvement).

Our analysis is part of the Doop framework [3], that provides a points-to analysis for a

number of possible types of context, written entirely in Datalog.

SUBJECT AREA: Static Program Analysis

KEYWORDS: Datalog, whole-program analysis, Java, exceptions, context-sensitivity
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The Role of Exceptions in Static Program Analysis for Java

Chapter 1

Introduction

Exceptions are the way modern programming languages offer for elegant error handling.

The old-fashioned way of error handling comprised setting a flag variable to some value at

the point where the error was encountered and afterwards passing that variable around (e.g.,

via function return) and checking at various points for that value in order to address the

issue. In that way, error handling is interleaved with ‘‘normal’’ code and gets mixed up with

the normal control flow intended by the programmer, making error handling a tedious task.

In addition, error handling can become optional as the programmer might easily ignore or

forget to check the flag variable or the return value of a function call, thus allowing code to

continue to run normally while in an erroneous state.

In contrast, by using exceptions as the mechanism for error handling, the programmer

can write normal code, as was originally intended without the obstruction introduced by

old-fashioned error handling. Afterwards, he can address the error handling itself in a

separate section, thus resulting in more readable code. Furthermore, error handling cannot

be ignored. Once an exception has occurred, it has to be addressed at some point of the code.

In general when normal control flow encounters an exceptional situation that it cannot

address with the information available in the current context, it creates a data structure

referred to as exception, that stores information about the error, and throws it out of the

current context to an enclosing context. The context that catches the exception, executes

afterwards code to address the error. If the exception is not caught inside the function it

occurred, it goes out of the function, to its caller. If it is not handled there, it continues to the

next enclosing dynamic scope, and so on until it is either caught or it has reached the entry

point of the program in which case, execution is terminated because there was not exception

handler found to address the error. In that way, errors cease to be simply an indication that

something went wrong, and rather become a first-class component that needs to be handled

appropriately.

Accurate handling of exceptions thus results in an accurate analysis overall, as they

constitute a significant factor affecting the general control flow. In the context of a points-

to analysis, as the ones provided by the Doop framework, exceptions contribute to the set

George Kastrinis 12
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1 public Object pop() {
2 Object obj;
3

4 if (size == 0)
5 throw new EmptyStackException();
6

7 obj = objectAt(size - 1);
8 setObjectAt(size - 1, null);
9 size--;

10 return obj;
11 }

Figure 1.1: Example of Java exceptions. The ‘‘normal’’ flow for a pop action on a stack, is to

return the object at the top. If pop is performed on an empty stack, an exception is thrown

to signify the erroneous condition.

of objects that can flow into a program variable, which in turn determines which methods

are reachable, which in turn determines which object can flow to other variables, with the

process continuing recursively until fixpoint is reached.

It is common practice in points-to analysis to use contexts [11] as a way to qualify program

variables and possibly object abstractions, in order to differentiate information that would

otherwise collapse and thus attain higher precision. Three main kinds of context-sensitivity

have been explored: call-site sensitivity [18, 19], object sensitivity [14] and type sensitivity

[4].
1

Specifically as far as exceptions are concerned, we have found three alternatives in com-

bining exceptions with context, each one with pros and cons:

• Don’t distinguish ‘‘throwable’’ heap objects (objects that can be used as an exception in

a throw expression) from ‘‘normal’’ heap objects, but instead use the full context that

the current analysis assumes for heap objects.

• Treat throwable heap objects context-insensitively. That means that each path that

leads to the allocation site of a specific throwable heap object, is collapsed and only one

context is recorder per heap allocation site for each of the above heap objects.

1
The context is typically a sequence of the N top call-sites of the calling stack (call-site sensitivity), or of the

static abstractions of the receiver objects for the N top calling stack methods (object sensitivity) or of the types

of those receiver objects (type sensitivity).

George Kastrinis 13
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• Instead of representing each throwable heap object with an abstraction of its allocation

site, a representative heap object is used, one specific for each particular class type.

That way all throwable heap objects of the same type are collapsed to the same heap

abstraction. Though in theory this should result in a loss in precision, we observed

that in practice that is not the case, as exceptions are usually not treated the way that

‘‘normal’’ heap objects are. In our experiments there was barely any loss in precision,

but at the same time a huge boost in performance.

The rest of the thesis is organized as follows. In Chapter 2 we give a background of

points-to analysis in Datalog using the Doop framework. In Chapter 3, we present how

Doop implements a joint points-to and exception analysis. In Chapter 4 we present the three

alternative methods for treating exceptions that we suggest, as well as the insight behind each

one. In Chapter 5, we present the evaluation of each method by testing it on the DaCapo

benchmark suite for a variety of context-sensitive analyses, and comparing the results in

each case, in terms of precision and performance. We conclude in Chapter 6.

George Kastrinis 14



The Role of Exceptions in Static Program Analysis for Java

Chapter 2

Background

Our analysis uses the Doop framework [3], which provides a collection of points-to analyses

(e.g., context insensitive, call-site sensitive, object sensitive, type sensitive). However, each

alternative that we present regarding the treatment of exceptions and their combination with

context, can be entirely oblivious to the exact choice of context (which is specified at runtime)

due to the modular way that context is represented in the framework.

2.1 Points-To Analysis in Datalog

Doop’s primary defining feature is the use of Datalog for its analyses. Architecturally, how-

ever, an important aspect of Doop’s performance is that it employs an explicit representation

of relations (i.e., all tuples of a relation are represented as an explicit table, as in a database),

instead of using Binary Decision Diagrams (BDDs), which have often been considered neces-

sary for scalable points-to analysis [22, 21, 12, 11].

Doop uses a commercial Datalog engine, developed by LogicBlox Inc. This version of

Datalog allows ‘‘stratified negation’’, that is, negated clauses, as long as the negation is not

part of a recursive cycle. It also allows specifying that some relations are functions, that is,

the variable space is partitioned into domain and range variables, and there is only one range

value for each unique combination of values in domain variables.

Datalog is a great fit for the domain of program analysis and, as a consequence, has been

extensively used both for low-level [17, 10, 22] and for high-level [6, 9] analyses. The essence

of Datalog is its ability to define recursive relations. Mutual recursion is the source of all

complexity in program analysis. For a standard example, the logic for computing a call-graph

depends on having points-to information for pointer expressions, which, in turn, requires a

call-graph. Such recursive definitions are common in points-to analysis.

Consider, for instance two relations, AssignHeapAllocation(?heap, ?var) and Assign

(?to, ?from)1
The former relation represents all occurrences in the Java program of an in-

struction ‘‘a = newA();’’ where a heap object is allocated and assigned to a variable. Those

1
We follow the Doop convention of capitalizing the first letter of relation names, while writing variable names

in lower case and prefixing them with a question-mark.

George Kastrinis 15
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relations are the result of a pre-processing
2

step that takes a Java program (in Doop this is

in intermediate, bytecode, form) as input and produces the relation contents. That kind of

relations that directly derive from the input Java program, are also known in Datalog seman-

tics, as the EDB (Extensional Database) predicates. A static abstraction of the heap object

is captured in variable ?heap—it can be concretely represented as, for example, a fully qual-

ified class name and the allocation’s bytecode instruction index. Similarly, relation Assign

contains an entry for each assignment between two Java program (reference) variables.

The mapping between the input Java program and the input relations is straightforward

and purely syntactic. After this step, a simple pointer analysis can be expressed entirely in

Datalog as a transitive closure computation:

1 VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).

2 VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

The Datalog program consists of a series of rules, also known in Datalog semantics as the

IDB (Intensional Database) rules, that are used to establish facts about derived relations (such

as VarPointsTo, which is the points-to relation, i.e., it links every program variable, ?var,

with every heap object abstraction, ?heap, it can point to) from a conjunction of previously

established facts. In the LB-Datalog syntax, the left arrow symbol (<-) separates the inferred

fact (i.e., the head of the rule) from the previously established facts (i.e., the body of the rule).

For instance, line 2 above says that if, for some values of ?from, ?to, and ?heap,

Assign(?to,?from) and VarPointsTo(?heap,?from) are both true, then it can be in-

ferred that VarPointsTo(?heap,?to) is true. Note the base case of the computation above

(line 1), as well as the recursion in the definition of VarPointsTo (line 2).

The declarativeness of Datalog makes it attractive for specifying complex program analysis

algorithms. Particularly important is the ability to specify recursive definitions—program

analysis is fundamentally an amalgam of mutually recursive tasks. For instance, Doop uses

mutually recursive definitions of points-to analysis and call-graph construction.

The key for a precise points-to analysis is context-sensitivity, which consists of qualify-

ing program variables and possibly object abstractions—in which case the context-sensitive

analysis is said to also have a context-sensitive heap—with context information: the analysis

collapses information (e.g., ‘‘what objects this method argument can point to’’) over all possi-

ble executions that result in the same context, while separating all information for different

2
We use the SOOT framework for the pre-processing of the Java program and the generation of input facts.

George Kastrinis 16
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1 class A {
2 void foo (Object o) { ... }
3 }
4

5 class B {
6 void bar (A a1, A a2) {
7 ...
8 a1.foo(someobj1);
9 ...

10 a2.foo(someobj2);
11 }
12 }

Figure 2.1: Simple Java Example for context-sensitivity

contexts. Call-site-sensitivity, object-sensitivity and type-sensitivity are the main flavors of

context sensitivity in modern points-to analyses. They differ in the context’s components and

in how they are combined in order to create new context.

A call-site sensitive analysis uses method call-sites as context elements. For instance, in

the code example in Figure 2.1, a 1-call-site sensitive analysis will distinguish the two call-

sites of method foo on lines 7 and 9. In contrast, object-sensitivity uses object allocation

sites as context elements. That is, when a method is called on an object, the analysis

separates the inferred facts depending on the allocation site of the receiver object (i.e., the

object on which the method was called), as well as other allocation sites used as context.

Thus, in our example, a 1-object-sensitive analysis will analyze foo separately depending on

the allocation sites of the objects that a1 and a2 may point to.

It is not apparent from the code fragment neither whether a1 and a2 may point to differ-

ent objects, nor to how many objects. Similarly, it is not possible to compare the precision of

an object-sensitive and a call-site sensitive analysis in principle. Nonetheless, ever since the

introduction of object-sensitivity by Milanova et al. [14], there has been accumulating evi-

dence [3, 11, 12, 13, 15] that it is a superior context abstraction for object-oriented languages,

yielding high precision relative to cost.

Type-sensitivity was introduced [4] as an analysis directly analogous to an object-sensitive

analysis, yet approximating (some) context elements using types instead of full allocation

sites. It is a relatively new variant that combines scalability with good precision. In contrast

to past uses of types in points-to analysis (e.g., [1, 16, 20]), types used as contexts should not

George Kastrinis 17
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be the types of the corresponding objects. Instead, the precision of type-sensitive analysis

is due to replacing the allocation site of an objects o (which would be used as context in an

object-sensitive analysis) with an upper-bound of the dynamic type of o’s allocator object.

Context-sensitive analysis in Doop is, to a large extent, similar to the above context-

insensitive logic. The main changes are due to the introduction of Datalog variables repre-

senting contexts for variables (and, in the case of a context-sensitive heap, also objects), in the

analyzed program. For an illustrative example, the following two rules handle method calls

as implicit assignments from the actual parameters of a method to the formal parameters, in

a 1-context-sensitive analysis with a context-insensitive heap.
3

1 Assign(?calleeCtx, ?formal, ?callerCtx, ?actual) <-

2 CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?method),

3 FormalParam[?index, ?method] = ?formal,

4 ActualParam[?index, ?invocation] = ?actual.

5

6 VarPointsTo(?heap, ?toCtx, ?to) <-

7 Assign(?toCtx, ?to, ?fromCtx, ?from),

8 VarPointsTo(?heap, ?fromCtx, ?from).

Note that some of the above relations are functions, in which case the functional nota-

tion ‘‘Relation[?domainvar] = ?val’’, is used instead of the traditional relational notation,

‘‘Relation(?domainvar, ?val)’’. Semantically the two are equivalent, with the only differ-

ence being that the execution engine enforces the functional constraint and produces an

error if a computation causes a function to have multiple range values for the same domain

value.

The example shows how a derived Assign relation (unlike the input relation Assign in

the earlier basic example) is computed, based on the call-graph information, and then used

in deriving a context-sensitive VarPointsTo relation.

For deeper context, the above rules need not to change at all (with the exception of adding

a variable for the heap context as well). Doop makes use of the notion of skolem functions

for creating new contexts. Skolem functions are the way that the Datalog engine provides in

order to create new values from existing ones. The existing values, also known as keys, are

combined and generate a new unique value. Each skolem predicate is 1:1, meaning that the

underlying engine guarantees that the same key values will always generate the same value,

3
This code is the same for either call-site-sensitivity, object-sensitivity or type-sensitivity.
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and that two different key value sets, will generate different resulting values.

In Doop, skolem functions are used when we need to create a new context for a variable

abstraction, simply referred to as Context, or a new context for a heap abstraction, simply

referred to as HContext. We use the notion of record and merge functions [4], that manipulate

contexts.

record : Label × Context→ HContext

merge : Label × HContext × Context→ Context

The record function is used every time an object is created, in order to store the creation

context with the object. Its first argument is the current allocation statement label and its

second one is the current (caller’s) context. The merge function is used on every method

invocation. Its first argument is the current call statement label, while the second and

third arguments are the context of allocation of the method’s receiver object and the current

(caller’s) context, respectively. The key for different flavors of context sensitivity is to specify

different record and merge functions.

For instance, the rule for an object allocation in a 1-object-sensitive analysis with a

context-sensitive heap can be as following:
4

1 Record[?heap, ?ctx] = ?hCtx,

2 VarPointsTo(?hCtx, ?heap, ?ctx, ?var) <-

3 AssignNormalHeapAllocation(?heap, ?ctx, ?var).

The above rule states that whenever a new heap object is allocated, its heap context will

be uniquely identified by the current context. Each analysis has to define the Record and

Merge predicates, and Doop employs a macro system to make the integration with the main

part of the code, where most of the rules concerning the point-to analysis are defined, quite

straight-forward.

Generally, the declarative nature of Doop often allows for very concise specifications of

analyses. In [3], Bravenboer and Smaragdakis demonstrate a striking example of the logic

for the Java cast checking—i.e., the answer to the question ‘‘can type A be cast to type B?’’.

The Datalog rules are almost an exact transcription of the Java Language Specification. A

small excerpt, with the Java Language Specification text included in comments, can be seen

in Figure 2.2.

4
Technical details about the usage of skolem functions have been omitted.
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1 // If S is an ordinary (nonarray) class, then:
2 // o If T is a class type, then S must be the
3 // same class as T, or a subclass of T.
4 CheckCast(?s, ?s) <- ClassType(?s).
5 CheckCast(?s, ?t) <- Subclass(?t, ?s).
6 ...
7 // o If T is an array type TC[], that is, an array of components
8 // of type TC, then one of the following must be true:
9 // + TC and SC are the same primitive type

10 CheckCast(?s, ?t) <-
11 ArrayType(?s), ArrayType(?t),
12 ComponentType(?s, ?sc), ComponentType(?t, ?sc), PrimitiveType(?sc).
13

14 // + TC and SC are reference types (2.4.6), and type SC can be
15 // cast to TC by recursive application of these rules.
16 CheckCast(?s, ?t) <-
17 ComponentType(?s, ?sc), ComponentType(?t, ?tc),
18 ReferenceType(?sc), ReferenceType(?tc), CheckCast(?sc, ?tc).

Figure 2.2: Excerpt of Datalog code for Java cast checking, together with Java Language

Specification text in comments. The rules are quite faithful to the specification.
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Chapter 3

Background of Points-to and Exception

Analysis

In this chapter, we present previous work supporting the claim that exception analysis is

better done in combination with points-to analysis and explaining how context-sensitivity

can help in achieving higher precision and better performance.

3.1 Exception Analysis

Exception analysis and points-to analysis are typically done in complete separation. Past al-

gorithms for precise exception analysis use precomputed points-to information. Past points-

to analyses either unsoundly ignore exceptions altogether, or conservatively compute a crude

approximation of exception throwing (e.g., considering an exception throw as an assignment

to a global variable accessible from any catch clause). It was shown however [2] that this

separation results in significant slowdowns or vast imprecision. This is because the two

kinds of analyses are interdependent and neither can be performed accurately without the

other.

3.2 Joint Points-To and Exception Analysis

The approach where exceptions are treated equally to other code features is the one followed

by the Doop framework. The resulting exception analysis is ‘‘fully precise’’, as it models

closely the Java exception handling semantics. The necessary approximation is provided

only through whichever abstractions are used for contexts and objects in the base points-to

analysis. This combined approach achieves similar precision relative to exceptions as the

best past precise exceptions analysis, with a runtime of seconds instead of tens of minutes.

At the same time, the precision of points-to information is much higher than that in points-to

analyses that treat exceptions conservatively, all at a fraction of the execution time.

The relevant parts of exception handling in Java consist of declaring and throwing excep-
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1 ThrowPointsTo(?hctx, ?heap, ?callerCtx, ?callerMethod) <-
2 CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?tomethod),
3 ThrowPointsTo(?hctx, ?heap, ?calleeCtx, ?tomethod),
4 HeapAllocation:Type[?heap] = ?heaptype,
5 not exists ExceptionHandler[?heaptype, ?invocation],
6 Instruction:Method[?invocation] = ?callerMethod.
7

8 VarPointsTo(?hctx, ?heap, ?callerCtx, ?param) <-
9 CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?tomethod),

10 ThrowPointsTo(?hctx, ?heap, ?calleeCtx, ?tomethod),
11 HeapAllocation:Type[?heap] = ?heaptype,
12 ExceptionHandler[?heaptype, ?invocation] = ?handler,
13 ExceptionHandler:FormalParam[?handler] = ?param.

Figure 3.1: Propagation of exceptions for method invocations. ThrowPointsTo: A method

?callerMethod throws an exception ?heap if there is a call-graph edge from an invocation

in ?callerMethod to some method ?tomethod and ?tomethod throws ?heap. Also,

the exception should not be caught immediately by an exception handler in ?tomethod.

VarPointsTo: If there is such an exception handler, then the exception ?heap is assigned

to the formal parameter ?param of the exception handler.

tions, as well as catching them. An extra element, the Java finally clause, often causes

headaches for static analysis purposes [5] but is a non-issue in our context. Doop performs

all analysis on bytecode. At that level, all uses of finally have already been translated

away by the Java compiler.
1

The logic in Doop models the Java exception handling semantics. Exceptions introduce

an interprocedural layer of assignments over the normal source code. At throw statements,

normal objects flow in the exception-flow. At exception handlers, exception objects flow

to normal Java variables. The propagation of exceptions is similar to the propagation of

objects over assignments, except that assignment to an exception handler depends on the

run-time type of an exception, somewhat similarly to dynamic dispatch. An excerpt of the

code responsible for the exception handling is included in Appendix A.

An example of how the exception logic interacts with the main logic of the points-to

analysis is given in Figure 3.1.

We can observe here that the declarative definition of our analysis is the main reason

for its power with such conciseness. Defining the complex mutual interdependencies man-

1
The finally block is copied appropriately and executed on any possible exit point, normal or exceptional, of

the try block or any local catch block.
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ually would have been very hard. Doop has multiple rules that cause the computation of

VarPointsTo to depend on call-graph information. Similarly, there are many rules that

cause the call-graph computation to depend on VarPointsTo. We add more complex mu-

tual recursion to these rules, by making VarPointsTo depend on ThrowPointsTo (and

vice versa) while ThrowPointsTo also depends on call-graph information (CallGraphEdge).

The Datalog engine automatically incrementalizes all computation so that all iterations to fix-

point only need to operate on facts newly added to each relation.

Another element to note is that the exception handling logic is, in a sense, fully precise.

This is not a formal statement, but we claim it informally based on inspection of the natural

language text of the Java Virtual Machine Specification. We certainly have not consciously

introduced any approximation in the exception handling logic. Of course, there is an approx-

imation introduced in our exception analysis, but this comes directly from the abstraction of

the host points-to analysis.

3.3 Context-Sensitive Exception Analysis

Adding context to our exception analysis requires propagating exceptions over the context-

sensitive call-graph, and not over the conventional, user-visible context-insensitive one. Why

is context-sensitivity important, however? The goal of a joint analysis is to employ the well-

understood precision mechanisms of a standard points-to analysis in order to match the

precision of (much more expensive) analyses specifically designed to track exception flow.

Indeed, rich context abstractions allow our analysis to handle even complicated scenarios of

the exception-flow analysis by Fu et al. [7] which are used to motivate improvements over

the original DataReach algorithm [8].

A simple but illustrative example is shown in Figure 3.2 [7]. If we do not distinguish

different calls to BufferedInputStream.read, exceptions resulting from the read in-

vocation in readFile leak to readNet and vice versa. Our context-insensitive pointer

analysis with precise exception analysis returns 9 exception-links between native methods

throwing I/O exceptions and the exception handlers in readFile and readNet (Table 3.1).

Even a 1-call-site-sensitive analysis is ineffective. A single call-site is not sufficient context

to distinguish the different calling contexts of the native methods—a very long call string

would be required for that. However, a 1-object-sensitive analysis is sufficient and yields the

required precision (Table 3.2). This example also shows that a context-sensitive represen-

tation of ThrowPointsTo is crucial: both readFile and readNet share some methods
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on their call-graph paths to potential exception throwing code. Therefore, although the call-

graph is context-sensitive, a context-insensitive ThrowPointsTo would merge the exception

information of those distinct paths.

1 public void readFile(String filename) {
2 byte[] buffer = new byte[256];
3 try {
4 InputStream f = new FileInputStream(filename);
5 InputStream fin = new BufferedInputStream(f);
6 int c = fin.read(buffer);
7 } catch(IOException exc) { ... }
8 }
9 public void readNet(Socket socket) {

10 byte[] buffer = new byte[256];
11 try {
12 InputStream s = socket.getInputStream();
13 InputStream sin = new BufferedInputStream(s);
14 int c = sin.read(buffer);
15 } catch(IOException exc) { ... }
16 }

Figure 3.2: Exception-flow analysis example

readFile: catch IOException

FileInputStream: void open(java.lang.String)

FileInputStream: int readBytes(byte[],int,int)

FileInputStream: int available()

PlainSocketImpl: int socketAvailable()

SocketInputStream: int socketRead(byte[],int,int)

readNet: catch IOException

FileInputStream: int readBytes(byte[],int,int)

FileInputStream: int available()

PlainSocketImpl: int socketAvailable()

SocketInputStream: int socketRead(byte[],int,int)

Table 3.1: Exception-catch links for Fig. 3.2 using context-insensitive analysis, focusing on

native methods.
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readFile: catch IOException

FileInputStream: void open(java.lang.String)

FileInputStream: int readBytes(byte[],int,int)

FileInputStream: int available()

readNet: catch IOException

PlainSocketImpl: int socketAvailable()

SocketInputStream: int socketRead(byte[],int,int)

Table 3.2: Exception-catch links for Fig. 3.2 using 1-object-sensitive analysis, focusing on

native methods.

3.4 Precise Versus Imprecise Exception Analysis

We include here experimental results from previous work on the Doop framework [2] that

support the claim that the separation of exception analysis from pointer analysis results in

either significant slowdowns or vast imprecision. The comparison is between a precise joint

exception and points-to analysis, and an imprecise one. The imprecise exception analysis

assigns all exceptions thrown in reachable methods to a single variable. This variable is

assigned to all reachable exception handlers. Type filtering removes exceptions that are

not assignment-compatible with the type of a specific exception handler. Four analyses are

evaluated: context-insensitive (insens), 1-call-site sensitive (1-call), 1-call-site sensitive with

a context-sensitive heap abstraction (1-call+H), and 1-object-sensitive (1-obj). The results are

for a subset of the DaCapo benchmarks programs. For context-sensitive analysis, there are

two sets of statistics. One corresponds to end-user visible results and the other to primary

internal complexity metrics. The first group (‘‘after dropping contexts’’) drops all contexts

after a context-sensitive analysis. The second group of results (‘‘before dropping contexts’’) is

context-sensitive, although it does drop the context of the heap abstraction for the 1-call+H

analysis, so that it is comparable with the rest. The statistics for the imprecise analyses are

relative to the corresponding statistics of the precise ones (e.g., in 1-call for antlr, the ×1.7

in vars means that the VarPointsTo relation is 1.7 times larger compared to the precise 1-

call analysis). The imprecise exception analysis does not compute the exceptions potentially

thrown by each method, therefore the corresponding cells of Table 3.3 are empty (-).

The primary benefit from a precise analysis, is evident in the precision of the points-

to results. Mainly the context-insensitive var points-to relation (the primary user-visible

end result of a points-to analysis) is substantially smaller compared to imprecise exception
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handling. The context-sensitive var points-to relation is comparatively even smaller when

using precise exception handling.

Another point of interest is that of call-graph precision. Precise exception analysis does

not substantially reduce the number of nodes and edges of the context-insensitive call-graph.

This is not surprising, since earlier studies demonstrated that improvements in precision

barely influence the context-insensitive call-graph [12]. The context-sensitive call-graph is

also not significantly affected, except in the case of the 1-obj analysis. This is quite expected,

since the analysis uses objects as contexts.
2

A major metric of the precision of the exception analysis is that of throw points-to relation.

Comparing insensitive analyses and the context-sensitive ones, the context-insensitive throw

points-to relation is generally two times smaller. This confirms that using a context-sensitive

pointer analysis is useful for determining which exceptions may be thrown by a method. In

addition, similarly to var points-to, the 1-obj analysis is the most precise analysis for the

throw points-to. This corresponds to conclusions in related work that object sensitivity is the

most useful context abstraction for object-oriented programs.

Finally, besides the precision improvements, the most striking result is the performance

improvement of using precise exception analysis with the 1-obj pointer analysis. The analysis

time comparison is a trade-off in most cases. Compared to an imprecise exception analysis,

a precise one computes more information: the throw points-to relation. This relation is big,

usually comparable to the var points-to relation. The performance of the benchmarks is

correlated with the sum of the var points-to, throw points-to and call-graph edge relations.

If introducing the throw points-to calculation substantially reduces the others, then the

performance improves substantially.

2
If a variable points to more abstract objects, then methods invoked on this variable will be invoked in more

contexts under a 1-obj analysis.
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after dropping contexts before dropping contexts

prog analysis nodes edges vars throws nodes edges vars throws time (sec)

a
n

t
lr

p
r
e
c
is

e insens 5K 38K 10M 181 1.3M 252 5K 38K 10M 181 1.3M 252 74

1-call 5K 38K 767K 13 757K 150 38K 159K 4.3M 17 4.5M 119 91

1-call+H 5K 38K 759K 13 756K 150 38K 154K 4.1M 16 4.5M 119 464

1-obj 5K 38K 598K 10 579K 115 60K 1.0M 3.4M 9 1.9M 31 191

im
p
r
e
c
is

e insens ×1.0 ×1.0 ×1.0 +9 - - ×1.0 ×1.0 ×1.0 +9 - - 53

1-call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +7 - - 59

1-call+H ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +7 - - 467

1-obj ×1.0 ×1.0 ×2.0 +11 - - ×1.1 ×6.1 ×4.6 +28 - - 2680

c
h

a
r
t p

r
e
c
is

e insens 8K 40K 5.7M 82 1.8M 230 8K 40K 5.7M 82 1.8M 230 65

1-call 8K 39K 2.5M 36 956K 123 40K 170K 17M 64 3.7M 94 138

1-call+H 8K 39K 2.5M 35 955K 123 40K 169K 17M 64 3.7M 94 650

1-obj 8K 39K 2.3M 33 792K 103 95K 1.9M 18M 27 4.5M 47 447

im
p
r
e
c
is

e insens ×1.0 ×1.0 ×1.2 +13 - - ×1.0 ×1.0 ×1.2 +13 - - 44

1-call ×1.0 ×1.0 ×1.4 +14 - - ×1.0 ×1.0 ×1.2 +11 - - 113

1-call+H ×1.0 ×1.0 ×1.4 +14 - - ×1.0 ×1.0 ×1.2 +11 - - 671

1-obj ×1.0 ×1.0 ×1.4 +15 - - ×1.1 ×5.4 ×2.3 +31 - - 5429

e
c
li
p
s
e p
r
e
c
is

e insens 5K 26K 3.1M 69 1.4M 286 5K 26K 3.1M 69 1.4M 286 41

1-call 5K 25K 841K 19 728K 151 25K 125K 4.5M 26 2.9M 114 69

1-call+H 5K 25K 838K 19 727K 151 25K 125K 4.5M 26 2.9M 114 316

1-obj 5K 25K 672K 15 592K 123 55K 2.3M 5.3M 14 3.1M 56 480

im
p
r
e
c
is

e insens ×1.0 ×1.0 ×1.2 +11 - - ×1.0 ×1.0 ×1.2 +11 - - 27

1-call ×1.0 ×1.0 ×1.7 +14 - - ×1.0 ×1.0 ×1.3 +9 - - 50

1-call+H ×1.0 ×1.0 ×1.7 +13 - - ×1.0 ×1.0 ×1.3 +9 - - 287

1-obj ×1.0 ×1.0 ×2.0 +15 - - ×1.1 ×4.1 ×3.8 +33 - - 3794

jy
t
h

o
n p

r
e
c
is

e insens 6K 33K 5.1M 93 1.9M 322 6K 33K 5.1M 93 1.9M 322 66

1-call 6K 33K 2.3M 41 1.2M 198 33K 150K 14M 58 5.1M 154 141

1-call+H 6K 33K 2.3M 41 1.2M 198 33K 150K 14M 58 5.1M 154 1358

1-obj 6K 33K 2.0M 36 1.1M 189 95K 2.6M 17M 25 14M 146 914

im
p
r
e
c
is

e insens ×1.0 ×1.0 ×1.2 +18 - - ×1.0 ×1.0 ×1.2 +18 - - 41

1-call ×1.0 ×1.0 ×1.5 +22 - - ×1.0 ×1.0 ×1.4 +24 - - 117

1-call+H ×1.0 ×1.0 ×1.5 +22 - - ×1.0 ×1.0 ×1.4 +24 - - 1436

1-obj ×1.0 ×1.0 ×1.6 +22 - - ×1.1 ×3.2 ×2.2 +25 - - 3037

x
a
la

n p
r
e
c
is

e insens 4K 18K 1.7M 51 855K 229 4K 18K 1.7M 51 855K 229 35

1-call 4K 18K 464K 14 459K 123 18K 70K 2.4M 20 1.7M 93 51

1-call+H 4K 17K 459K 14 458K 123 18K 65K 2.3M 20 1.6M 93 154

1-obj 4K 18K 394K 12 358K 97 37K 885K 2.6M 11 1.5M 39 174

im
p
r
e
c
is

e insens ×1.0 ×1.0 ×1.2 +8 - - ×1.0 ×1.0 ×1.2 +8 - - 18

1-call ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.3 +7 - - 33

1-call+H ×1.0 ×1.0 ×1.7 +10 - - ×1.0 ×1.0 ×1.4 +7 - - 141

1-obj ×1.0 ×1.0 ×1.9 +11 - - ×1.1 ×3.2 ×3.0 +18 - - 834

legend

nodes, edges = call-graph nodes, call-graph edges

vars = total and mean (per variable) entries in var points-to relation

throws = total and mean (per method) entries in throw points-to relation

Table 3.3: Precise versus imprecise exception analysis.
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Chapter 4

Combining Exceptions with Context

In this chapter, we present three alternative methods for treating exceptions in the pres-

ence of a context-sensitive points-to analysis, and their effect on the resulting precision and

performance. Each method differentiates on the way that exception objects are combined

with context. Exception objects are identified by their type, which must be a subtype of

java.lang.Throwable in order for them to appear in a throw statement.

4.1 ‘‘Full’’ Context Sensitive Exceptions

The most straight-forward way of handling exception objects, in the presence of a context-

sensitive points-to analysis, is to do nothing special. This means that for exception objects,

the full context of the points-to analysis is used the same way that it’s used for ‘‘normal’’ heap

objects. From a theoretical point of view, this method should attain the highest precision for

a specific context depth, as it fully utilizes the context that is available. In practice, however,

this method suffers (heavily in many cases) in terms of performance. In many analyses (e.g. 2-

object sensitive with a 2-context sensitive heap abstraction) the size of the ThrowPointsTo

relation is comparable to that of the VarPointsTo relation, or even bigger.

The size of ThrowPointsTo relation (as well as that of the VarPointsTo and the

CallGraphEdge relations) can significantly affect the computation time needed for the anal-

ysis. Consequently, the remaining methods try to ameliorate the impact that exceptions have

on performance and to minimize the size of the resulting ThrowPointsTo relation, while

trying to keep precision as high as possible.

One interesting thing that we should note here is that the precise analyses in the exper-

iments in Chapter 3.4, were not using the above method. Instead exception objects were

allocated context-insensitively (as described in more detail, in the next section).
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1 HeapAllocationContextInsensitive(?heap) <-
2 HeapAllocationType[?heap] = ?heaptype,
3 Type[?throw] = "java.lang.Throwable",
4 AssignCompatible(?throw, ?heaptype).
5

6 AssignContextInsensitiveHeapAllocation(?heap, ?var, ?inmethod) <-
7 AssignHeapAllocation(?heap, ?var, ?inmethod),
8 HeapAllocationContextInsensitive(?heap).
9

10 RecordImmutable[] = ?immCtx,
11 VarPointsTo(?immCtx, ?heap, ?ctx, ?var) <-
12 AssignContextInsensitiveHeapAllocation(?heap, ?var, ?inmethod),
13 ReachableContext(?ctx, ?inmethod).

Figure 4.1: Code for the context-insensitive treatment of exception objects.

4.2 Context Insensitive Exceptions

The next method for the treatment of exception objects suggests that each exception object

should use a context-insensitive heap abstraction. The pointer analysis is not affected in any

way and continues to use the type and amount of contexts that is implied. Only exception

objects are treated in a special way during their allocation where a context-insensitive heap

abstraction is produced. Otherwise, the flow of the analysis remains the same.

The code responsible for the context-insensitive treatment of exceptions, is given in Fig-

ure 4.1. Every heap object whose type is a subtype of java.lang.Throwable is identified

as an exception object. The HeapAllocationContextInsenstive relation is used in

order to store heap objects deemed by the analysis for context-insensitive treatment. This

relation is not new in the context of the Doop framework and its usage is not confined to

exception objects. It is used in general when some group of heap objects should be treated

context-insensitively. A different example from exception objects is that of Class-name string

constants, which are also treated context-insensitively.

The AssignContextInsensitiveHeapAllocation relation is used to store heap

objects that are selected for context-insensitive treatment. Those objects are subsequently

used to derive facts for the VarPointsTo relation. Since those objects are allocated context-

insensitively but a heap context is needed for the VarPointsTo relation, RecordImmutable

is used to generates a single unique context. In practice, heap objects that should be treated

context-insensitively, are allocated context-sensitively in a sense, but with a unique heap
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context that is shared amongst them.

This method manages to extensively reduce the size of the ThrowPointsTo relation,

with barely any loss in terms of precision but with a significant improvement in terms of

performance.

We should also note here, how easily we were able to differentiate the context-sensitivity

for a subset of the heap objects with only a few lines of code. This should be attributed to

the declarative programming style of Datalog.

4.3 Type Representatives for Exceptions

In comparison to the context-sensitive treatment of exceptions, the context-insensitive one

improves the performance of the resulting analysis because the size of the ThrowPointsTo

relation is significantly reduced. However, the size of the ThrowPointsTo relation is still

comparable to that of the VarPointsTo relation (in many cases as high as half of the

VarPointsTo relation), and thus highly affecting the performance of the analysis.

With that as our initial motivation, we tried to pinpoint the source of the problem more

accurately. Exceptions are one possible way for heap objects to leak out of a method’s

boundaries. Method arguments and the return value are another. Thus, we examined

and compared the two sets. The findings further supported our initial insight. With the

context-insensitive treatment of exceptions, the ThrowPointsTo relation is in some cases

still comparable to the VarPointsTo relation, although smaller. But strikingly enough,

when compared to the amount of heap objects leaking out of a method’s boundaries through

‘‘normal’’ control flow (i.e., arguments and return value), the ThrowPointsTo relation can

be almost as large (or in some cases even larger). For instance, in a 2-object sensitive analysis

with a context sensitive heap abstraction, the amount of heap objects on ‘‘normal’’ method

boundaries is roughly 2.5 millions. At the same time, the size of the ThrowPointsTo

relation is roughly 5.5 millions! In general, our experiments showed an average ratio of 1.81

and a median of 1.26 for the ThrowPointsTo relation over the number of heaps on method

boundaries.

A new insight, in order to address the issue, is that instead of using every exception object

in our analysis, we can use a unique representative heap object per class type. This means

that, for every group of exception objects with the same type, one object is uniquely selected

as the group representative. All exception objects of the same type are merged, and this

representative object is subsequently used.
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1 TypeToHeap(?heap, ?heaptype) <-
2 HeapAllocationType[?heap] = ?heaptype,
3 Type[?throw] = "java.lang.Throwable",
4 AssignCompatible(?throw, ?heaptype).
5

6 HeapRepresentative[?heap] = ?representativeHeap <-
7 agg<<?representativeHeap = min(?otherHeap)>>
8 TypeToHeap(?otherHeap, HeapAllocationType[?heap]).
9

10 HeapAllocationMerge[?heap] = ?mergeHeap <-
11 HeapRepresentative[?heap] = ?mergeHeap.
12

13 AssignContextInsensitiveHeapAllocation(?mergeHeap, ?var, ?inmethod) <-
14 AssignHeapAllocation(?heap, ?var, ?inmethod),
15 HeapAllocationMerge[?heap] = ?mergeHeap.

Figure 4.2: Code for the usage of type representatives for exception objects.

Consequently, points-to results for throwable objects are not accurate and this method is

not preferable in case of an analysis that focuses on exception objects. However, interestingly

enough, the precision for the rest of the points-to metrics is barely affected, while at the same

time a boost in performance is achieved. The improvement in performance can be explained

by the significantly smaller ThrowPointsTo relation, due to the usage of representative

objects.

It is not hard to also explain why the general precision of the analysis is barely affected by

the usage of representatives. The common usage of exceptions is to indicate that some kind

of erroneous condition has been encountered, and the exception object itself is used to alter

the control-flow in order for the error to be addressed. As such, exception objects are used

in lieu of indications, have only few fields (that mostly keep some indication of the error that

occurred) and rarely have any method invoked on them (mainly getters in order to access the

information about the error). As far as control-flow is concerned, what is important in most

cases is not the exception object itself, but its type, in order to transfer control-flow to the

correct exception handler.

The code responsible for this method of exception treatment can be found in Figure 4.2.

Each throwable object is associated with its corresponding type, and one representative

heap object is uniquely selected for each type. One way to uniquely select a representative

object for a specific type, is to choose the object with the smaller internal id. The nota-
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tion ‘‘agg<<?minVal = min(?val)>>Relation(?val)’’ means that an aggregator is used to

calculate the minimum value ?minVal of the collection identified by ?val. Finally, each ex-

ception object that is not selected as a representative is merged and the representative object

is subsequently used in its place. The AssignContextInsensitiveHeapAllocation

relation is used once more to store the heap objects that are selected for context-insensitive

treatment, as discussed previously in section 4.2.
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Chapter 5

Experimental Results

In this chapter, we present the evaluation of the three alternative methods suggested in

Chapter 4, on a well-known benchmark suite and comment on the experimental results.

5.1 Setup

We use a 64-bit machine with a quad-core Xeon E5530 2.4GHz CPU (only one thread was

active at a time). The machine has 24GB of RAM.

We analyzed the DaCapo benchmark programs, v.2006-10-MR2, with JDK 1.4. These

benchmarks are the largest in the literature on context-sensitive points-to analysis. We

concentrated on a subset of the DaCapo benchmarks, namely antlr, bloat, chart, eclipse,

xalan, all of which can be successfully analyzed by the Doop framework with reflection-

analysis enabled.

There was an upper bound for the execution time of each analysis. A time limit of 5400

seconds (one hour and a half) was used. Analyses that did not finish within that timespan

were terminated and the corresponding table cells are empty (-).

5.2 Evaluation

Figure 5.1 presents the execution time needed for each alternative method of exception treat-

ment that we proposed in chapter 4, on the Eclipse benchmark. It is clear that the full

context-sensitive treatment (‘‘no merge + sensitive’’) has, almost always, a significant exe-

cution overhead compared to the other alternatives. The context-insensitive treatment (‘‘no

merge’’) shows a clear improvement over the full context-sensitive, with the time needed al-

most cut in half in most cases. Finally, the type representative alternative (‘‘merge’’) presents

a noticeable improvement over the context-insensitive one.

In general, for the set of benchmarks that we tested, ‘‘no merge’’ has a median of 26% (and

an average of 40%) improvement over ‘‘no merge + sensitive’’ (with many analyses showing

over 50% improvement). Similarly, ‘‘merge’’ has a median of 26% (and an average of 30%)
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improvement over ‘‘no merge’’.

Figure 5.1: Execution time (seconds) of the Eclipse Benchmark. 2-obj+2H did not finish

within the time allotted for the ‘‘no merge + sensitive’’ alternative.

Figure 5.2 presents the disk footprint (in KB) of the database for each alternative method.

The results are in accordance with the execution time needed for each analysis. Analyses

that have a larger disk footprint (and thus larger relations), need more time to finish their

computations (and vice versa).

Table ?? and table 5.3, present the execution time and disk footprint respectively, for a

variety of analyses on various benchmarks. The behavior of each benchmark is similar to

that of the Eclipse benchmark which was analyzed above. Table 5.2 and table 5.4, present

the ratios of the ‘‘no merge’’ alternative to the ‘‘no merge + sensitive’’ one, and of the ‘‘merge’’

alternative to the ‘‘no merge’’ one, for tables ?? and 5.3 respectively.

Figures 5.3, 5.4 and 5.5 depict the difference on the number of heap objects on method

boundaries (i.e., arguments and return value) when compared to the ThrowPointsTo re-

lation, for the 2-obj+H analysis. The comparisons are done context-sensitively—this means

that the contexts associated with the results are still present. This is helpful when analyzing
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Figure 5.2: Disk footprint (KB) of the Eclipse Benchmark. 2-obj+2H did not finish within the

time allotted for the ‘‘no merge + sensitive’’ alternative.

analysis

prog alt. insens 1-obj 1-obj+H 2-obj+H 2-obj+2H 1-type+H 2-type+H 1-call 1-call+H 2-call+H 2-call+2H

a
n

t
lr

sens 88 114 506 372 1684 178 126 116 532 1289 -

insens 88 115 298 130 232 128 95 109 295 896 5956

merge 76 82 250 92 176 109 87 71 230 778 5098

b
lo

a
t sens 87 518 3272 - - 347 650 265 2120 - -

insens 83 521 1343 - - 216 255 247 1352 - -

merge 55 220 1099 4977 - 147 113 157 1255 - -

c
h

a
r
t sens 79 312 1216 1852 - 345 210 145 577 2789 -

insens 78 320 770 470 1838 249 133 146 347 1786 -

merge 58 242 688 233 1356 209 104 106 313 1723 -

e
c
li
p
s
e sens 100 166 905 1038 - 408 288 151 609 2792 -

insens 103 170 466 411 1983 296 191 144 372 1497 -

merge 41 60 271 206 1340 137 89 56 203 1176 5639

x
a
la

n sens 103 319 1844 - - 466 479 176 700 1554 -

insens 104 332 934 - - 326 307 177 446 977 -

merge 76 187 773 5282 - 230 228 109 380 788 -

legend

sens = context-sensitive treatment of exceptions

insens = context-insensitive treatment of exceptions

merge = using type representatives for exceptions

Table 5.1: Execution time (seconds) for a variety of analyses on various benchmarks.
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analysis

prog ratio insens 1obj 1obj+H 2obj+H 2obj+2H 1type+H 2type+H 1call 1call+H 2call+H 2call+2H avg (med)

antlr

A1 / A2 1.00 1.00 1.70 2.86 7.26 1.39 1.33 1.06 1.80 1.44 - 2.08 (1.41)

A2 / A3 1.16 1.39 1.19 1.41 1.32 1.17 1.09 1.54 1.28 1.15 1.17 1.26 (1.19)

bloat

A1 / A2 1.06 0.99 2.44 - - 1.61 2.55 1.07 1.57 - - 1.61 (1.57)

A2 / A3 1.52 2.37 1.22 1.09 - 1.47 2.26 1.09 1.08 - - 1.51 (1.35)

chart

A1 / A2 1.00 0.98 1.58 3.94 2.94 1.39 1.58 0.99 1.66 1.35 - 1.74 (1.48)

A2 / A3 1.34 1.32 1.12 2.02 1.36 1.19 1.28 1.38 1.11 1.18 - 1.33 (1.30)

eclipse

A1 / A2 0.97 0.98 1.94 2.52 2.77 1.38 1.51 1.05 1.64 1.87 - 1.54 (1.51)

A2 / A3 2.51 2.82 1.72 2.00 1.45 2.16 2.15 2.57 1.83 1.27 - 2.05 (2.07)

xalan

A1 / A2 0.99 0.96 1.97 - - 1.43 1.56 0.99 1.57 1.59 - 1.38 (1.49)

A2 / A3 1.37 1.78 1.21 - - 1.42 1.35 1.62 1.17 1.24 - 1.39 (1.36)

legend

A1 / A2 = ratio of alternative 1 (‘‘no merge + sensitive’’) to alternative 2 (‘‘no merge’’)

A2 / A3 = ratio of alternative 2 (‘‘no merge’’) to alternative 3 (‘‘merge’’)

Table 5.2: Execution time ratios for the analyses in Table ??.

analyss

prog alt. insens 1-obj 1-obj+H 2-obj+H 2-obj+2H 1-type+H 2-type+H 1-call 1-call+H 2-call+H 2-call+2H

a
n

t
lr

sens 1433 860 3584 2867 11264 1228 691 1126 4812 13312 -

insens 1433 860 2662 1126 2150 1126 581 1126 2457 11264 24576

merge 1228 723 2969 790 1536 867 494 833 2048 11264 23552

b
lo

a
t sens 1126 1433 6860 - - 1536 1536 2150 13312 - -

insens 1126 1433 4915 - - 1331 1126 2150 12288 - -

merge 931 1228 5017 12288 - 1022 761 1843 9728 - -

c
h

a
r
t sens 1126 1638 6758 5939 - 1945 1009 1638 4505 19456 -

insens 1126 1638 5324 2457 14336 1740 794 1638 3276 11264 -

merge 797 1433 4915 1843 11264 1331 608 1331 2560 11264 -

e
c
li
p
s
e sens 768 713 4710 3788 - 1945 1126 789 2662 7475 -

insens 768 713 3276 1843 8704 1638 775 789 1945 6246 -

merge 535 491 2150 1433 6348 1126 585 533 1433 5632 9830

x
a
la

n sens 815 1638 7270 - - 2252 1843 1126 4403 8704 -

insens 815 1638 6758 - - 1945 1433 1126 3379 7168 -

merge 600 1228 4505 15360 - 1331 1126 794 2355 4505 -

Table 5.3: Disk footprint (MB) for a variety of analyses on various benchmarks.

analysis

prog ratio insens 1obj 1obj+H 2obj+H 2obj+2H 1type+H 2type+H 1call 1call+H 2call+H 2call+2H avg (med)

antlr

A1 / A2 1.00 1.00 1.35 2.55 5.24 1.09 1.19 1.00 1.96 1.18 - 1.76 (1.19)

A2 / A3 1.17 1.19 0.90 1.43 1.40 1.30 1.18 1.35 1.20 1.00 1.04 1.20 (1.19)

bloat

A1 / A2 1.00 1.00 1.40 - - 1.15 1.36 1.00 1.08 - - 1.14 (1.08)

A2 / A3 1.21 1.17 0.98 - - 1.30 1.48 1.17 1.26 - - 1.22 (1.21)

chart

A1 / A2 1.00 1.00 1.27 2.42 - 1.12 1.27 1.00 1.37 1.73 - 1.35 (1.27)

A2 / A3 1.41 1.14 1.08 1.33 1.27 1.31 1.31 1.23 1.28 1.00 - 1.24 (1.28)

eclipse

A1 / A2 1.00 1.00 1.44 2.06 - 1.19 1.45 1.00 1.37 1.20 - 1.30 (1.20)

A2 / A3 1.44 1.45 1.52 1.29 1.37 1.45 1.32 1.48 1.36 1.11 - 1.38 (1.40)

xalan

A1 / A2 1.00 1.00 1.08 - - 1.16 1.29 1.00 1.30 1.21 - 1.13 (1.12)

A2 / A3 1.36 1.33 1.50 - - 1.46 1.27 1.42 1.43 1.59 - 1.42 (1.43)

legend

A1 / A2 = ratio of alternative 1 (‘‘no merge + sensitive’’) to alternative 2 (‘‘no merge’’)

A2 / A3 = ratio of alternative 2 (‘‘no merge’’) to alternative 3 (‘‘merge’’)

Table 5.4: Disk footprint ratios for the analyses in Table 5.3.
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Figure 5.3: ‘‘no merge + sensitive’’ for the 2-obj+H analysis

the results, as the context-sensitive relations are those that affect the performance of the

analysis.

The results support what we claim in Chapter 4. For the ‘‘no merge + sensitive’’ and ‘‘no

merge’’ alternatives, the ThrowPointsTo relation is not only comparable to but even larger

than the number of heap objects on method boundaries (although the difference is smaller

in the ‘‘no merge’’ alternative). This can explain why these alternatives have a significant

time overhead (and also a larger disk footprint), when compared to the ‘‘merge’’ alternative.

Table 5.5 presents these metrics in more detail for a variety of analyses.

Table 5.6 presents the ratios of the ‘‘no merge’’ alternative to the ‘‘no merge + sensitive’’

one, and of the ‘‘merge’’ alternative to the ‘‘no merge’’ one, for table 5.5. We are interested in

the following metrics: context-insensitive / context-sensitive var points-to entries (vars / c-s

vars), context-insensitive / context-sensitive throw points-to entries (throws / c-s throws),

and context-insensitive / context-sensitive heaps on method boundaries (heaps on bounds /

c-s heaps on bounds).

One final important point of interest is the precision of the analyses under each alternative

treatment of exceptions. Table 5.7 presents a few representative metrics for the precision of

each analysis. We are interested in the following metrics: context-insensitive / context-

sensitive var points-to entries to non-throwable objects (vars / c-s vars), context-insensitive
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Figure 5.4: ‘‘no merge’’ for the 2-obj+H analysis

Figure 5.5: ‘‘merge’’ for the 2-obj+H analysis
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metrics

prog analysis alt. vars c-s vars throws c-s throws

heaps

on bounds

c-s heaps

on bounds
a
n

t
lr

1call+H

sens 1,755,928 39,629,645 896,483 18,795,136 306,228 8,232,824

insens 1,755,928 37,881,574 896,483 5,366,432 306,228 8,174,846

merge 1,577,404 37,286,572 71,291 425,031 297,540 8,157,714

1obj+H

sens 904,331 53,533,098 716,341 30,242,473 143,813 15,883,155

insens 904,331 48,498,480 716,341 3,032,188 143,813 15,733,578

merge 774,915 42,562,162 61,311 260,241 137,198 14,958,784

2obj+H

sens 477,786 18,588,395 380,418 40,718,205 58,664 2,572,927

insens 477,825 8,947,303 380,418 5,444,711 58,673 2,417,767

merge 383,193 7,065,213 38,653 501,018 54,424 2,152,874

1type+H

sens 2,334,491 13,659,755 769,490 5,898,836 283,196 2,901,472

insens 2,334,491 12,721,441 769,490 1,771,874 283,196 2,857,404

merge 2,197,368 10,729,720 64,710 149,554 275,915 2,827,657

b
lo

a
t

1call+H

sens 3,905,574 156,807,857 1,359,933 39,227,903 462,365 35,772,800

insens 3,905,574 153,498,003 1,359,933 9,796,553 462,365 35,701,340

merge 3,713,558 152,512,350 97,765 700,863 453,655 35,683,216

1obj+H

sens 2,079,529 77,255,392 1,120,476 65,958,285 357,346 20,331,118

insens 2,079,529 72,930,652 1,120,476 8,181,213 357,346 20,183,675

merge 1,935,110 69,580,689 85,708 612,314 350,076 20,606,911

1type+H

sens 2,535,716 19,367,073 1,329,596 13,440,987 420,278 3,974,687

insens 2,535,716 17,842,592 1,329,596 4,241,840 420,278 3,925,346

merge 2,360,828 15,139,472 97,670 295,463 412,429 3,928,446

c
h

a
r
t

1call+H

sens 2,726,367 48,301,383 1,127,053 16,086,699 542,653 13,524,605

insens 2,726,367 45,963,590 1,127,053 4,636,173 542,653 13,428,365

merge 2,463,640 45,148,039 90,840 377,593 530,418 13,397,145

1obj+H

sens 1,405,157 90,289,730 912,614 45,932,283 290,939 23,477,713

insens 1,405,157 81,824,616 912,614 5,481,361 290,939 23,248,271

merge 1,198,856 72,143,078 77,596 465,779 280,777 23,894,934

2obj+H

sens 458,517 48,421,275 580,626 132,291,526 63,392 5,043,060

insens 458,548 22,510,540 580,626 21,547,138 63,409 4,398,163

merge 306,103 17,456,833 50,395 1,824,970 55,760 4,170,122

1type+H

sens 1,983,416 27,292,650 1,016,952 9,963,411 420,682 5,687,124

insens 1,983,416 25,442,532 1,016,952 2,926,732 420,682 5,601,568

merge 1,756,258 18,978,391 84,806 242,385 409,358 5,576,654

e
c
li
p
s
e

1call+H

sens 1,353,112 29,421,842 1,183,006 17,813,923 218,146 6,277,964

insens 1,353,112 26,558,283 1,183,006 5,035,878 218,146 6,137,420

merge 996,806 25,559,841 92,105 395,024 197,784 6,091,697

1obj+H

sens 831,393 60,969,897 941,669 51,169,580 137,873 12,340,156

insens 831,393 50,872,415 941,669 5,647,537 137,873 11,915,605

merge 549,563 38,518,800 77,959 471,221 119,429 12,384,597

2obj+H

sens 470,677 42,025,451 615,330 75,972,306 63,224 6,761,134

insens 470,725 21,365,532 615,330 11,030,920 63,230 5,801,705

merge 262,816 17,869,654 55,677 975,545 48,017 5,622,990

1type+H

sens 1,117,879 32,491,607 1,139,517 13,031,671 190,948 4,555,635

insens 1,117,879 29,985,596 1,139,517 3,816,446 190,948 4,440,201

merge 797,712 16,137,100 91,655 307,049 171,593 4,390,787

x
a
la

n

1call+H

sens 1,755,952 43,642,644 1,292,735 18,321,006 325,275 11,124,313

insens 1,755,952 40,723,505 1,292,735 5,259,843 325,275 10,949,465

merge 1,376,105 39,698,133 99,246 406,130 299,453 10,892,320

1obj+H

sens 848,229 124,527,709 1,088,295 89,407,699 138,145 30,526,014

insens 848,229 94,706,464 1,088,295 10,501,818 138,145 29,778,686

merge 532,856 81,777,325 88,097 831,449 114,679 29,811,380

1type+H

sens 1,094,606 37,292,663 1,154,557 14,826,654 192,046 6,594,554

insens 1,094,606 33,373,130 1,154,557 4,247,554 192,046 6,418,714

merge 767,534 19,391,341 92,390 334,071 167,661 6,168,573

Table 5.5: Metrics concerning performance for a variety of analyses.
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metrics

prog analysis alt. vars c-s vars throws c-s throws

heaps

on bounds

c-s heaps

on bounds
a
n

t
lr

1call+H
A2 / A1 1.00 0.96 1.00 0.29 1.00 0.99

A3 / A2 0.90 0.98 0.08 0.08 0.97 1.00

1obj+H
A2 / A1 1.00 0.91 1.00 0.10 1.00 0.99

A3 / A2 0.86 0.88 0.09 0.09 0.95 0.95

2obj+H
A2 / A1 1.00 0.48 1.00 0.13 1.00 0.94

A3 / A2 0.80 0.79 0.10 0.09 0.93 0.89

1type+H
A2 / A1 1.00 0.93 1.00 0.30 1.00 0.98

A3 / A2 0.94 0.84 0.08 0.08 0.97 0.99

b
lo

a
t

1call+H
A2 / A1 1.00 0.98 1.00 0.25 1.00 1.00

A3 / A2 0.95 0.99 0.07 0.07 0.98 1.00

1obj+H
A2 / A1 1.00 0.94 1.00 0.12 1.00 0.99

A3 / A2 0.93 0.95 0.08 0.07 0.98 1.02

1type+H
A2 / A1 1.00 0.92 1.00 0.32 1.00 0.99

A3 / A2 0.93 0.85 0.07 0.07 0.98 1.00

c
h

a
r
t

1call+H
A2 / A1 1.00 0.95 1.00 0.29 1.00 0.99

A3 / A2 0.90 0.98 0.08 0.08 0.98 1.00

1obj+H
A2 / A1 1.00 0.91 1.00 0.12 1.00 0.99

A3 / A2 0.85 0.88 0.09 0.08 0.97 1.03

2obj+H
A2 / A1 1.00 0.46 1.00 0.16 1.00 0.87

A3 / A2 0.67 0.78 0.09 0.08 0.88 0.95

1type+H
A2 / A1 1.00 0.93 1.00 0.29 1.00 0.98

A3 / A2 0.89 0.75 0.08 0.08 0.97 1.00

e
c
li
p
s
e

1call+H
A2 / A1 1.00 0.90 1.00 0.28 1.00 0.98

A3 / A2 0.74 0.96 0.08 0.08 0.91 0.99

1obj+H
A2 / A1 1.00 0.83 1.00 0.11 1.00 0.97

A3 / A2 0.66 0.76 0.08 0.08 0.87 1.04

2obj+H
A2 / A1 1.00 0.51 1.00 0.15 1.00 0.86

A3 / A2 0.56 0.84 0.09 0.09 0.76 0.97

1type+H
A2 / A1 1.00 0.92 1.00 0.29 1.00 0.97

A3 / A2 0.71 0.54 0.08 0.08 0.90 0.99

x
a
la

n

1call+H
A2 / A1 1.00 0.93 1.00 0.29 1.00 0.98

A3 / A2 0.78 0.97 0.08 0.08 0.92 0.99

1obj+H
A2 / A1 1.00 0.76 1.00 0.12 1.00 0.98

A3 / A2 0.63 0.86 0.08 0.08 0.83 1.00

1type+H
A2 / A1 1.00 0.89 1.00 0.29 1.00 0.97

A3 / A2 0.70 0.58 0.08 0.08 0.87 0.96

AVG
A2 / A1 1.00 0.84 1.00 0.22 1.00 0.97

A3 / A2 0.80 0.84 0.08 0.08 0.92 0.99

MEDIAN
A2 / A1 1.00 0.91 1.00 0.27 1.00 0.98

A3 / A2 0.83 0.86 0.08 0.08 0.94 1.00

legend

A2 / A1 = ratio of alternative 2 (‘‘no merge’’) to alternative 1 (‘‘no merge + sensitive’’)

A3 / A2 = ratio of alternative 3 (‘‘merge’’) to alternative 2 (‘‘no merge’’)

Table 5.6: Ratios of metrics concerning performance for a variety of analyses.
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/ context-sensitive call graph edges (edges / c-s edges), reachable methods (meths), reachable

virtual call sites (v-calls), polymorphic virtual call sites (poly v-calls), reachable casts (casts),

and reachable casts that may fail (fail casts).

The metrics that are significant for precision are the context-insensitive ones (the end-user

visible ones). Their context-sensitive variations are internal metrics of the analysis, but are

included here for comparison among different alternatives, for an insight on their impact on

performance. For instance, the context-sensitive call-graph edge relation is larger in the full

context-sensitive alternative when compared to the one with the representatives (i.e., merged

exceptions), but the end result (the context-insensitive metric) is the same in both cases.

Thus, it is apparent that the alternative with the representatives is more efficient. It is clear

that all the alternative methods for exception treatment achieve the same levels of precision

(while having different execution costs). One metric that has in some cases a noticeable,

but small, loss of precision is the VarPointsTo relation (to non-throwable objects). This

is within acceptable levels (the three most significant digits remain the same), and does not

affect other significant metrics (i.e., the number of reachable virtual call sites).
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metrics

prog analysis alt. vars c-s vars edges c-s edges meths c-s meths v-calls poly v-calls casts fail casts

a
n

t
lr

1
c
a
ll
+
H

sens 1,560,753 37,225,255 42,351 187,937 5,728 43,373 27,761 1,280 1,033 690

insens 1,560,753 37,225,255 42,351 187,937 5,728 43,373 27,761 1,280 1,033 690

merge 1,560,753 37,225,255 42,351 187,937 5,728 43,373 27,761 1,280 1,033 690

1
o
b
j+
H

sens 760,457 47,896,816 41,254 946,597 5,692 81,949 27,599 1,253 1,009 612

insens 760,457 47,896,816 41,254 946,597 5,692 81,949 27,599 1,253 1,009 612

merge 760,724 42,501,811 41,254 882,198 5,692 67,759 27,599 1,253 1,009 612

2
o
b
j+
H

sens 371,627 7,920,770 39,757 2,746,197 5,609 354,112 27,188 1,147 970 404

insens 371,659 7,644,418 39,757 2,313,888 5,609 265,687 27,188 1,147 970 404

merge 372,014 6,921,879 39,757 2,065,857 5,609 196,585 27,188 1,147 970 404

1
ty

p
e
+
H sens 2,183,345 12,318,820 41,755 198,555 5,701 23,743 27,610 1,264 1,011 684

insens 2,183,345 12,318,820 41,755 198,555 5,701 23,743 27,610 1,264 1,011 684

merge 2,182,913 10,691,398 41,755 182,900 5,701 20,467 27,610 1,264 1,011 679

b
lo

a
t

1
c
a
ll
+
H

sens 3,697,206 152,427,121 51,006 301,356 6,988 51,892 25,367 1,432 2,083 1,659

insens 3,697,206 152,427,121 51,006 301,356 6,988 51,892 25,367 1,432 2,083 1,659

merge 3,697,206 152,427,121 51,006 301,356 6,988 51,892 25,367 1,432 2,083 1,659

1
o
b
j+
H

sens 1,921,000 72,254,097 47,792 1,770,781 6,945 94,878 25,220 1,406 2,062 1,544

insens 1,921,000 72,254,097 47,792 1,770,781 6,945 94,878 25,220 1,406 2,062 1,544

merge 1,921,064 69,519,850 47,792 1,708,956 6,945 82,554 25,220 1,406 2,062 1,544

1
ty

p
e
+
H sens 2,345,182 17,148,041 48,610 310,309 6,956 30,405 25,230 1,463 2,064 1,663

insens 2,345,182 17,148,041 48,610 310,309 6,956 30,405 25,230 1,463 2,064 1,663

merge 2,345,022 15,094,373 48,610 292,721 6,956 26,840 25,230 1,463 2,064 1,663

c
h

a
r
t

1
c
a
ll
+
H

sens 2,439,946 45,066,857 43,965 206,396 8,432 45,049 23,777 1,150 1,714 1,236

insens 2,439,946 45,066,857 43,965 206,396 8,432 45,049 23,777 1,150 1,714 1,236

merge 2,439,946 45,066,857 43,965 206,399 8,432 45,049 23,777 1,150 1,714 1,236

1
o
b
j+
H

sens 1,178,269 80,561,690 41,628 1,064,777 8,339 106,799 23,384 1,104 1,668 1,021

insens 1,178,269 80,561,690 41,628 1,064,777 8,339 106,799 23,384 1,104 1,668 1,021

merge 1,178,275 72,033,464 41,628 928,207 8,339 86,921 23,384 1,104 1,668 1,021

2
o
b
j+
H

sens 290,102 17,698,766 38,576 8,337,762 8,171 616,870 22,844 902 1,603 737

insens 290,133 17,398,268 38,576 7,319,011 8,171 512,984 22,844 902 1,603 737

merge 290,497 16,971,013 38,576 7,016,882 8,171 435,350 22,844 902 1,603 737

1
ty

p
e
+
H sens 1,734,811 24,663,696 42,757 306,991 8,380 37,003 23,511 1,131 1,690 1,234

insens 1,734,811 24,663,696 42,757 306,991 8,380 37,003 23,511 1,131 1,690 1,234

merge 1,734,680 18,914,653 42,757 272,848 8,380 31,034 23,511 1,131 1,690 1,229

e
c
li
p
s
e

1
c
a
ll
+
H

sens 965,085 25,460,908 34,945 198,463 6,483 36,367 18,231 815 1,261 751

insens 965,085 25,460,908 34,945 198,463 6,483 36,367 18,231 815 1,261 751

merge 965,194 25,464,554 34,945 198,473 6,483 36,367 18,231 815 1,261 751

1
o
b
j+
H

sens 521,033 49,472,319 32,103 775,329 6,318 89,597 17,840 745 1,228 682

insens 521,033 49,472,319 32,103 775,329 6,318 89,597 17,840 745 1,228 682

merge 521,790 38,394,794 32,106 632,852 6,318 71,126 17,840 745 1,228 682

2
o
b
j+
H

sens 239,983 19,644,130 29,513 5,945,598 6,189 441,164 17,259 625 1,177 498

insens 239,999 18,193,814 29,513 4,957,980 6,189 334,504 17,259 625 1,177 498

merge 240,727 17,563,264 29,516 4,665,960 6,189 236,259 17,259 625 1,177 498

1
ty

p
e
+
H sens 766,827 28,964,394 33,087 310,708 6,431 33,398 18,047 778 1,236 789

insens 766,827 28,964,394 33,087 310,708 6,431 33,398 18,047 778 1,236 789

merge 767,461 16,047,991 33,088 266,833 6,431 28,152 18,047 778 1,236 784

x
a
la

n

1
c
a
ll
+
H

sens 1,342,717 39,599,466 37,969 177,150 7,313 39,370 20,046 1,249 1,296 851

insens 1,342,717 39,599,466 37,969 177,150 7,313 39,370 20,046 1,249 1,296 851

merge 1,342,907 39,601,828 37,976 177,194 7,313 39,377 20,046 1,250 1,296 851

1
o
b
j+
H

sens 502,294 90,538,691 35,908 870,727 7,237 102,393 19,828 1,175 1,264 666

insens 502,294 90,538,691 35,908 870,727 7,237 102,393 19,828 1,175 1,264 666

merge 502,805 81,438,319 35,911 710,588 7,237 84,497 19,828 1,176 1,264 666

1
ty

p
e
+
H sens 736,952 31,829,242 36,731 315,005 7,268 36,627 19,888 1,194 1,271 836

insens 736,952 31,829,242 36,731 315,005 7,268 36,627 19,888 1,194 1,271 836

merge 737,178 19,268,160 36,733 265,394 7,268 30,892 19,888 1,195 1,271 831

Table 5.7: Metrics concerning precision for a variety of analyses.
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Chapter 6

Conclusions

By using Datalog we were able to succinctly express a declarative joint exception and points-

to analysis for Java. We were also able to express three alternative methods for exception

treatment, by modifying only a few lines of code each time. Our analysis was built on top

of the Doop framework [3] which allowed the convenient decoupling of the choice of context

from the exception analysis code.

As following from previous work [2], we chose to do a joint exception and points-to analysis

because of its benefits both in precision and performance. In order to further reduce the

execution time of the analysis, we investigated how the treatment of exceptions affected both

precision and performance, and we proposed three alternative methods for their handling.

The new insight was that the type of each exception suffices for an accurate points-

to analysis (although losing precision in exception-specific metrics). Thus, we proposed a

method for exception handling, where each exception object of the same type is merged

and one representative object is used instead. This results in significant improvements in

performance, while barely having any loss in precision.

We evaluated the methods we proposed, on the DaCapo benchmark suite. The experi-

mental results confirmed our initial insights and supported our claim that the usage of type

representatives for exception objects is an effective way of reducing the execution time of an

analysis.
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Acronyms and Abbreviations

Abbreviation Full Name

insens context-insensitive analysis

1obj 1-object-sensitive analysis

1obj+H 1-object-sensitive+heap analysis

2obj+H 2-object-sensitive+heap analysis

2obj+2H 2-object-sensitive+2-heap analysis

1type+H 1-type-sensitive+heap analysis

2type+H 2-type-sensitive+heap analysis

1call 1-call-site-sensitive analysis

1call+H 1-call-site-sensitive+heap analysis

2call+H 2-call-site-sensitive+heap analysis

2call+2H 2-call-site-sensitive+2-heap analysis

no-merge+sens full context-sensitive exceptions

no-merge context-insensitive exceptions

merge type representatives for exceptions

LB LogicBlox Inc.
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Appendix A

Exception Analysis Code

1 /**

2 * Represents the heap abstractions of the exceptions a method can

3 * throw.

4 */

5 ThrowPointsTo(?heapCtx, ?heap, ?ctx, ?method) ->

6 HContext(?heapCtx), HeapAllocationRef(?heap),

7 Context(?ctx), MethodSignatureRef(?method).

8

9 /*****************************************************************************

10 *

11 * Throw statements

12 *

13 *****************************************************************************/

14

15 /**

16 * A method throws an exception in a context if there is a throw

17 * statement in the method, and the thrown variable points to an

18 * object in this context, but this object is not immediately caught

19 * by an exception handler (ThrowPointsTo rule).

20 *

21 * If the object is a caught, then it is assigned to the formal

22 * parameter of the exeception handler (VarPointsTo rule).

23 */

24

25 ThrowPointsTo(?heapCtx, ?heap, ?ctx, ?method) <-

26 Throw(?ref, ?var),

27 VarPointsTo(?heapCtx, ?heap, ?ctx, ?var),

28 HeapAllocation:Type[?heap] = ?heaptype,

29 !(ExceptionHandler[?heaptype, ?ref]=_),

30 Instruction:Method[?ref] = ?method.

31

32 VarPointsTo(?heapCtx, ?heap, ?ctx, ?param) <-
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33 Throw(?ref, ?var),

34 VarPointsTo(?heapCtx, ?heap, ?ctx, ?var),

35 HeapAllocation:Type[?heap] = ?heaptype,

36 ExceptionHandler[?heaptype, ?ref] = ?handler,

37 ExceptionHandler:FormalParam[?handler] = ?param.

38

39 /*****************************************************************************

40 *

41 * Method invocations

42 *

43 *****************************************************************************/

44

45 /**

46 * A method M1 throws an exception in a context if there is a call

47 * graph edge from an invocation in M1 to some method M2 and the

48 * method M2 throws a an exception for this specific

49 * (context-sensitive) call graph edge. Also, the exception should not

50 * be caught immediately by an exception handler in M1 (ThrowPointsTo

51 * rule).

52 *

53 * If there is such an exception handler, then the exception object is

54 * assigned to the formal parameter of the exception handler

55 * (VarPointsTo rule).

56 */

57

58 ThrowPointsTo(?heapCtx, ?heap, ?callerCtx, ?callerMethod) <-

59 CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?tomethod),

60 ThrowPointsTo(?heapCtx, ?heap, ?calleeCtx, ?tomethod),

61 HeapAllocation:Type[?heap] = ?heaptype,

62 !(ExceptionHandler[?heaptype,?invocation]=_),

63 Instruction:Method[?invocation] = ?callerMethod.

64

65 VarPointsTo(?heapCtx, ?heap, ?callerCtx, ?param) <-

66 CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?tomethod),

67 ThrowPointsTo(?heapCtx, ?heap, ?calleeCtx, ?tomethod),

68 HeapAllocation:Type[?heap] = ?heaptype,

69 ExceptionHandler[?heaptype,?invocation] = ?handler,

70 ExceptionHandler:FormalParam[?handler] = ?param.

71

72

73 /*****************************************************************************
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74 *

75 * Compute for an instruction which exception handlers handle which

76 * exception types.

77 *

78 ****************************************************************************/

79

80 // Note how this logic is superlinear. We keep

81 // relations that link every exception handler to every relevant (i.e., throw

82 // or methcall) instruction under its range, and to every type that the

83 // exception handler can handle, including all subtypes of the declared type.

84 // It is not easy to change this, nor perhaps too valuable. But it is certainly

85 // a spot where bottom-up evaluation with an explicit representation hurts us.

86 // We have very large ExceptionHandler, PossibleExceptionHandler, etc. relations.

87 // Note: currently exception objects are allocated context-insensitively.

88 /**

89 * An exception of a specific type, thrown at an instruction, is

90 * handled by an exception handler.

91 */

92 ExceptionHandler[?type, ?instruction] = ?handler ->

93 ExceptionHandlerRef(?handler), Type(?type), InstructionRef(?instruction).

94

95 ExceptionHandler[?type, ?instruction] = ?handler <-

96 PossibleExceptionHandler(?handler, ?type, ?instruction),

97 ! ImpossibleExceptionHandler(?handler, ?type, ?instruction).

98

99 /**

100 * An exception type that is caught by an earlier exception handler

101 * (not ?handler).

102 */

103

104 ImpossibleExceptionHandler(?handler, ?type, ?instruction) ->

105 ExceptionHandlerRef(?handler), Type(?type), InstructionRef(?instruction).

106

107 ImpossibleExceptionHandler(?handler, ?type, ?instruction) <-

108 PossibleExceptionHandler(?handler, ?type, ?instruction),

109 ExceptionHandler:Before(?previous, ?handler),

110 PossibleExceptionHandler(?previous, ?type, ?instruction).

111

112 /**

113 * All possible handlers of an exception type for an instruction.

114 */
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115 PossibleExceptionHandler(?handler, ?type, ?instruction) ->

116 ExceptionHandlerRef(?handler),

117 Type(?type),

118 InstructionRef(?instruction).

119

120 PossibleExceptionHandler(?handler, ?type, ?instruction) <-

121 ExceptionHandler:InRange(?handler, ?instruction),

122 ExceptionHandler:Type[?handler] = ?type.

123

124 PossibleExceptionHandler(?handler, ?subtype, ?instruction) <-

125 ExceptionHandler:InRange(?handler, ?instruction),

126 ExceptionHandler:Type[?handler] = ?type,

127 Superclass(?subtype, ?type).

128

129 /**

130 * Instructions that are in the range of an exception handler.

131 */

132 ExceptionHandler:InRange(?handler, ?instruction) ->

133 ExceptionHandlerRef(?handler),

134 InstructionRef(?instruction).

135

136 ExceptionHandler:InRange(?handler, ?instruction) <-

137 Instruction:Method[?instruction] = ?method,

138 ExceptionHandler:Method(?handler, ?method),

139 Instruction:Index[?instruction] = ?index,

140 ExceptionHandler:Begin[?handler] = ?begin,

141 ?begin <= ?index,

142 ExceptionHandler:End[?handler] = ?end,

143 ?index < ?end.

144

145 /**

146 * Transitive closure of ExceptionHandler:Previous.

147 */

148 ExceptionHandler:Before(?before, ?handler) ->

149 ExceptionHandlerRef(?before),

150 ExceptionHandlerRef(?handler).

151

152 ExceptionHandler:Before(?previous, ?handler) <-

153 ExceptionHandler:Previous[?handler] = ?previous.

154

155 ExceptionHandler:Before(?before, ?handler) <-
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156 ExceptionHandler:Before(?middle, ?handler),

157 ExceptionHandler:Previous[?middle] = ?before.

158

159 InRangeOfExceptionHandler(?instruction) -> InstructionRef(?instruction).

160 InRangeOfExceptionHandler(?instruction) <-

161 ExceptionHandler:InRange(_, ?instruction).

1 /*************************************************************

2 * Special objects

3 *

4 * Some objects are so common that they heavily impact performance if

5 * every allocation is distinguished or a context-sensitive heap

6 * abstraction is used. In many cases, this precision is not actually

7 * useful for a points-to analysis, so handling them in a less precise

8 * way is beneficial.

9 *************************************************************/

10

11 /**

12 * Objects that should not be allocated as normal.

13 */

14 HeapAllocation:Special(?heap) -> HeapAllocationRef(?heap).

15

16 /**

17 * Objects that should use a context-insensitive heap abstraction.

18 */

19 HeapAllocation:ContextInsensitive(?heap) ->

20 HeapAllocationRef(?heap).

21

22 HeapAllocation:Special(?heap) <-

23 HeapAllocation:ContextInsensitive(?heap).

24

25 /**

26 * Objects that should be merged to some heap abstraction (implies context-

insensitive)

27 */

28 HeapAllocation:Merge[?heap] = ?mergeHeap ->

29 HeapAllocationRef(?heap),

30 HeapAllocationRef(?mergeHeap).

31
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32 /**

33 * Join with AssignHeapAllocation for performance.

34 */

35 AssignNormalHeapAllocation(?heap, ?var, ?inmethod) <-

36 AssignHeapAllocation(?heap, ?var, ?inmethod),

37 ! HeapAllocation:Special(?heap).

38

39 HeapAllocation:Special(?heap) <-

40 HeapAllocation:Merge[?heap] = _.

41

42 AssignContextInsensitiveHeapAllocation(?mergeHeap, ?var, ?inmethod) <-

43 AssignHeapAllocation(?heap, ?var, ?inmethod),

44 HeapAllocation:Merge[?heap] = ?mergeHeap.

45

46 AssignContextInsensitiveHeapAllocation(?heap, ?var, ?inmethod) <-

47 AssignHeapAllocation(?heap, ?var, ?inmethod),

48 HeapAllocation:ContextInsensitive(?heap).

49

50

51 /*************************************************************

52 * Exceptions

53 *************************************************************/

54

55 /*

56 // Context-Insensitive Treatment:

57 // This is the original, precise and straightforward treatment

58 // of throwables. They were allocated context insensitively. This still

59 // produced huge ThrowPointsTo sets and caused slowdowns.

60 */

61

62 HeapAllocation:ContextInsensitive(?heap) <-

63 HeapAllocation:Type[?heap] = ?heaptype,

64 Type:Value(?throw:"java.lang.Throwable"),

65 AssignCompatible(?throw, ?heaptype).

66

67

68 // Type Representatives Treatment:

69 // The optimized treatment represents every exception (i.e., throwable)

70 // object by a unique representative of the same type. All exception

71 // objects of the same type are therefore merged. This means that points-to

72 // results for throwables are not accurate! Only the type will be right.
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73

74 TypeToHeap(?heap, ?heaptype) <-

75 HeapAllocation:Type[?heap] = ?heaptype,

76 Type:Value(?throw:"java.lang.Throwable"),

77 AssignCompatible(?throw, ?heaptype).

78

79 // Quadratic but so local that it shouldn’t matter, ever.

80 HeapRepresentative[?heap] = ?representativeHeap <-

81 agg<<?representativeHeap = min(?otherHeap)>>(TypeToHeap(?otherHeap,

HeapAllocation:Type[?heap])).

82

83 HeapAllocation:Merge[?heap] = ?mergeHeap <-

84 HeapRepresentative[?heap] = ?mergeHeap.
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