More Sound Static Handling of Java Reflection

Yannis Smaragdakis', George Balatsouras', George Kastrinis', and
Martin Bravenboer?

L University of Athens, Greece
2 LogicBlox Inc., Atlanta, GA, USA

Abstract. Reflection is a highly dynamic language feature that poses
grave problems for static analyses. In the Java setting, reflection is ubiq-
uitous in large programs. Any handling of reflection will be approximate,
and overestimating its reach in a large codebase can be catastrophic for
precision and scalability. We present an approach for handling reflec-
tion with improved empirical soundness (as measured against prior ap-
proaches and dynamic information) in the context of a points-to analysis.
Our approach is based on the combination of string-flow and points-to
analysis from past literature augmented with (a) substring analysis and
modeling of partial string flow through string builder classes; (b) new
techniques for analyzing reflective entities based on information available
at their use-sites. In experimental comparisons with prior approaches, we
demonstrate a combination of both improved soundness (recovering the
majority of missing call-graph edges) and increased performance.

1 Introduction

Whole-program static analysis is the engine behind several modern programming
facilities for program development and understanding. Compilers, bug detectors,
security checkers, modern development environments (with automated refactor-
ings, slicing facilities, and auto-complete functionality), and a myriad other tools
routinely employ static analysis machinery. Even the seemingly simple effort of
computing a program’s call-graph (i.e., which program function can call which
other) requires sophisticated analysis in order to achieve precision.

Yet, static whole-program analysis suffers in the presence of common dy-
namic features, especially reflection. When a Java program accesses a class by
supplying its name as a run-time string, via the Class.forName library call, the
static analysis needs to either conservatively over-approximate (e.g., assume that
any class can be accessed), or to perform a string analysis that will allow it to
infer the contents of the forName string argument. Both options can be detri-
mental to the scalability of the analysis: the conservative over-approximation
may never become constrained enough by further instructions to be feasible in
practice; precise string analysis is impractical for programs of realistic size. It is
telling that no practical Java program analysis framework in ezxistence handles
reflection soundly [19], although other language features are modeled soundly.?

3 In our context, sound = over-approximate, i.e., guaranteeing that all possible be-
haviors of reflection operations are modeled.

2 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

Full soundness is not practically achievable, but it can still be approximated
for the well-behaved reflection patterns encountered in regular, non-adversarial
programs. Therefore, it makes sense to treat soundness as a continuous quan-
tity: something to improve on, even though we cannot perfectly reach. To avoid
confusion, we use the term empirical soundness for the quantification of how
much of the dynamic behavior the static analysis covers. Computable metrics of
empirical soundness can help quantify how close an analysis is to the fully sound
result. Based on such metrics, one can make comparisons (e.g., “more sound”)
to describe soundness improvements.

The second challenge of handling reflection in a static analysis is scalability.
The online documentation of the IBM WALA library [8] concisely summarizes
the current state of the practice, for points-to analysis in the Java setting.

Reflection usage and the size of modern libraries/frameworks make it
very difficult to scale flow-insensitive points-to analysis to modern Java
programs. For example, with default settings, WALA’s pointer analyses
cannot handle any program linked against the Java 6 standard libraries,
due to extensive reflection in the libraries.

In this paper, we describe an approach to analyzing reflection in the Java
points-to analysis setting. Our approach requires no manual configuration and
achieves significantly higher empirical soundness without sacrificing scalability,
for realistic benchmarks and libraries (DaCapo Bach and Java 7). In experi-
mental comparisons with the recent ELF system [16] (itself improving over the
reflection analysis of the DooOP framework [6]), our algorithm discovers most
of the call-graph edges missing (relative to a dynamic analysis) from ELF’s re-
flection analysis. This improvement in empirical soundness is accompanied by
increased performance relative to ELF, demonstrating that near-sound handling
of reflection is often practically possible. Concretely, our work:

e introduces key techniques in static reflection handling that contribute greatly
to empirical soundness. The techniques generalize past work from an intra-
procedural to an inter-procedural setting and combine it with a string analysis;

e shows how scalability can be addressed with appropriate tuning of the above
generalized techniques;

e thoroughly quantifies the empirical soundness of a static points-to analysis,
compared to past approaches and to a dynamic analysis;

e isimplemented and evaluated on top of an existing open framework (DooP [6]).

2 Background: Joint Reflection and Points-To Analysis

As necessary background, we next present an abstracted model of the inter-
related reflection and points-to analysis upon which our approach builds. The
model is a light reformulation of the analysis introduced by Livshits et al. [18,20].
The main insight of the Livshits et al. approach is that reflection analysis relies on
points-to information, because the different key elements of a reflective activity

[B N PO N e

More Sound Static Handling of Java Reflection 3

may be dispersed throughout the program. A typical pattern of reflection usage
is with code such as:

String className = ... ;

Class c¢ = Class.forName(className);
Object o = c.newInstance();

String methodName = ... ;

Method m = c.getMethod(methodName, ...);
m.invoke(o, ...);

All of the above statements can occur in distant program locations, across
different methods, invoked through virtual calls from multiple sites, etc. Thus,
a whole-program analysis with an understanding of heap objects is required
to track reflection with any amount of precision. This suggest the idea that
reflection analysis can leverage points-to analysis—it is a client for points-to
information. At the same time, points-to analysis needs the results of reflec-
tion analysis—e.g., to determine which method gets invoked in the last line of
the above example, or what objects each of the example’s local variables point
to. Thus, under the Livshits et al. approach, reflection analysis and points-to
analysis become mutually recursive, or effectively a single analysis.

This mutual recursion introduces significant complexity. Fortunately, a large
amount of research in points-to analysis has focused on specifying analyses
declaratively [5,6,10,13-15,17,22,23,25,26], in the Datalog programming lan-
guage. Datalog is ideal for encoding mutually recursive logic—recursion is the
backbone of the language. Computation in Datalog consists of monotonic log-
ical inferences that apply to produce more facts until fixpoint. A Datalog rule
“C(z,z) < A(z,y), B(y,2).” means that if A(x,y) and B(y, z) are both true,
then C(z,x) can be inferred. Livshits et al. expressed their joint reflection and
points-to analysis declaratively in Datalog, which is also a good vehicle for our
illustration and further changes.

We consider the core of the analysis algorithm, which is representative and
handles the most common features, illustrated in our above example: creating
a reflective object representing a class (a class object) given a name string (li-
brary method Class.forName), creating a new object given a class object (library
method Class.newInstance), retrieving a reflective method object given a class
object and a signature (library method Class.getMethod), and reflectively calling
a virtual method on an object (library method Method.invoke). This treatment
ignores several other APIs, which are handled similarly. These include, for in-
stance, fields, constructors, other kinds of method invocations (static, special),
reflective access to arrays, other ways to get class objects, and more.

The domains of the analysis include: invocation sites, I; variables, V; heap
object abstractions (i.e., allocation sites), H; method signatures, S; types, T’
methods, M; natural numbers, N, and strings. The analysis takes as input the
relations (i.e., tables filled with information from the program text) shown in Fig-
ure 1. Using these inputs, the Livshits et al. reflection analysis can be expressed
as a five-rule addition to any points-to analysis. The rest of the points-to anal-
ysis (not shown here—see e.g., [10,14,25]) supplies more rules for computing a

4 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

Call(i : I, s : string): instruction 4 is an invocation to a method with signature s.
ActualArg(i: I,n: N,v:V): at invocation ¢, the n-th parameter is local var v.
AssignRetValue(i : I,v : V): at invocation 7, the value returned is assigned to
local variable v.

HeapType(h : H,t: T): object h has type t.

Lookup(sig : S,t: T,m : M): in type t there exists method m with signature sig.
ConstantForClass(h : H,t : T): class/type t has a name represented by the
constant string object h in the program text.

ConstantForMethod(h : H,sig : S): method signature sig has a name repre-
sented by the constant string object h in the program text.

ReifiedClass(t : T, h : H): special object h represents the class object of type t.
Such special objects are created up-front and are part of the input.
ReifiedHeapAllocation(i : I,¢: T, h : H): special object h represents objects of
type t that are allocated with a newInstance call at invocation site %.
ReifiedMethod(sig : S,h : H): special object h represents the reflection object
for method signature sig.

Fig. 1: Relations representing the input program and their informal meaning.

relation VarPointsTo(v : V, h : H) and a relation CallGraphEdge(i : I, m : M).
Intuitively, the traditional points-to part of the joint analysis is responsible for
computing how heap objects flow intra- and inter-procedurally through the pro-
gram, while the added rules contribute only the reflection handling. We explain
the rules below.
ClassObject(i, t) <—

Call(i, "Class.forName"), ActualArg(i,0,p),

VarPointsTo(p, ¢), ConstantForClass(c, t).
VarPointsTo(r, h) <—

ClassObject(i, t), ReifiedClass(¢, h), AssignRetValue(i,).

The first two rules, above, work jointly: they model a forName call, which returns
a class object given a string representing the class name. The first rule says that if
the first argument (0-th parameter, since forName is a static method) of a forName
call points to an object that is a string constant, then the type corresponding to
that constant is retrieved and associated with the invocation site in computed
relation ClassObject. The second rule then uses ClassObject: if the result of the
forName call at instruction 7 is assigned to a local variable r, and the reflection
object for the type associated with 4 is h, then r is inferred to point to h.

The above rules could easily be combined into one. However, their split form is
more flexible. In later sections we will add more rules for producing ClassObject
facts—for instance, instead of constant strings we will have expressions that still
get inferred to resolve to an actual type.

VarPointsTo(r, h) <—
Call(i, "Class.newInstance"), ActualArg(i,0,v), VarPointsTo(v, h.),
ReifiedClass(t, h.), AssignRetValue(i,), ReifiedHeapAllocation(i,t,).

The above rule reads: if the receiver object, h., of a newInstance call is a class
object for class t, and the newInstance call is assigned to variable r, then make

More Sound Static Handling of Java Reflection 5

r point to the special (i.e., invented) allocation site h that designates objects of
type t allocated at the newInstance call site.

VarPointsTo(r, h,,) <
Call(i, "Class.getMethod"), ActualArg(i,0,b), ActualArg(i,1,p),
AssignRetValue(i, r), VarPointsTo(b, h.), ReifiedClass(t, h.),
VarPointsTo(p, ¢), ConstantForMethod(c, s),
Lookup(t, s,), ReifiedMethod(s, h,,).

The above rule gives semantics to getMethod calls. It states that if such a call
is made with receiver b (for “base”) and first argument p (the string encoding
the desired method’s signature), and if the analysis has already determined the
objects that b and p may point to, then, assuming p points to a string constant
encoding a signature, s, that exists inside the type that b points to (“_” stands
for “any” value), the variable r holding the result of the getMethod call points to

the reflective object, h,,, for this method signature.
CallGraphEdge(i,m) <—
Call(i, "Method.invoke"), ActualArg(i,0,b), ActualArg(i, 1,p),
VarPointsTo(b, h,,), ReifiedMethod(s, h,,),
VarPointsTo(p, h), HeapType(h,t), Lookup(t, s, m).

Finally, all reflection information can contribute to inferring more call-graph
edges. The last rule encodes that a new edge can be inferred from the invocation
site, i, of a reflective invoke call to a method m, if the receiver, b, of the invoke
(Oth parameter) points to a reflective object encoding a method signature, and
the argument, p, of the invoke (1st parameter) points to an object, h, of a class
in which the lookup of the signature produces the method m.

3 Techniques for Empirical Soundness

We next present our main techniques for higher empirical soundness.

3.1 Generalizing Reflection Inference via Substring Analysis

An important way of enhancing the empirical soundness of our analysis is via
richer string flow. The logic discussed in Section 2 only captures the case of
entire string constants used as parameters to a forName call. The parameter of
forName could be any string expression, however. It is interesting to attempt to
deduce whether such an expression can refer to a class name. Similarly, strings
representing field and method names are used in reflective calls—we already
encountered the getMethod call in Section 2.

In order to estimate what classes, fields, or methods a string expression may
represent, we implement substring matching: all string constants in the program
text are tested for prefix and suffix matching against known class, method, and
field names. (We use tunable thresholds to limit the matches: e.g., member pre-
fixes, resp. suffixes, need to be at least 3, resp. 5, characters long.)

6 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

The strings that may refer to such entities are handled with more precision
than others during analysis. For instance, a points-to analysis (e.g., in the Doop
or WALA frameworks) will typically merge most strings into a single abstract
object—otherwise the analysis will incur an overwhelmingly high cost because of
tracking numerous string constants. Strings that may represent class/interface,
method, or field names are prevented from such merging. Furthermore, the flow
of such strings through factory objects is tracked.

String concatenation in Java is typically done through StringBuffer or
StringBuilder objects. The common concatenation operator, +, reduces to calls
over such factory objects. To evaluate whether reflection-related substrings may
flow into factory objects, we leverage the points-to analysis itself, pretending
that an object flow into an append method and out of a toString method is
tantamount to an assignment. A simplified version of the logic is in the rule
below. (The rule assumes we have already computed relation ReflectionOb-
ject(h : H), which lists the string constants that partially match method, field,
or class names, as described above. It also takes an extra input relation String-
FactoryVar (v, : V) that captures which variables are of a string factory type.)

VarPointsTo(r, h) <—
Call(i,, "append"), ActualArg(iq,0,vy), ActualArg(i,, 1,v),
StringFactoryVar(vy), Call(i;, "toString"), AssignRetValue(i;,r),
ActualArg(i,0,uf), VarPointsTo(vy, hy), VarPointsTo(uy, hy),
VarPointsTo(v, h), ReflectionObject(h).

In words: if a call to append and a call to toString are over the same factory
object, hy, (accessed by different vars, vy and uy, at possibly disparate parts of
the program) then all the potentially reflection-related objects that are pointed
to by the parameter, v, of append are inferred to be pointed by the variable r
that accepts the result of the toString call.

In this way, the flow of partial string expressions through the program is
tracked. By then appropriately adjusting the ConstantForClass and Constant-
ForMethod predicates of Section 2 (to also map from partial strings to their
matching types) we can estimate which reflective entities can be returned at the
site of a forName or getMethod call. In this way, the joint points-to and reflection
analysis is enhanced with substring reasoning without requiring any changes to
the base logic of Section 2. String flow through buffers becomes just an enhance-
ment of the points-to logic, which is already leveraged by reflection analysis.

An interesting aspect of the above approach is that it is easily configurable,
in commonly desirable ways. Our above rule for handling partial string flow
through string factory objects does not concern itself with how string factory
objects (hy) are represented inside the analysis. Indeed, string factory objects
are often as numerous as strings themselves, since they are implicitly allocated
on every use of the + operator over strings in a Java program. Therefore, a
pointer analysis will often merge string factory objects, with the appropriate
user-selectable flag.* The rule for string flow through factories is unaffected by

4 E.g., SMUSH_STRINGS in WALA [8] and MERGE_STRING_BUFFERS in Doop.

a a2 W N e

More Sound Static Handling of Java Reflection 7

this treatment. Although precision is lost if all string factory objects are merged
into one abstract object, the joint points-to and reflection analysis still computes
a fairly precise outcome: “does a partial string that matches some class/method-
/field name flow into some string factory’s append method, and does some string
factory’s toString result flow into a reflection operation?” If both conditions are
satisfied, the class/method/field name matched by the partial string is consid-
ered to flow into the reflection operation.

3.2 Use-Based Reflection Analysis

Our second technique for statically analyzing reflection calls is called use-
based reflection analysis and it integrates two sub-techniques: a back-propagation
mechanism and a (forward) object invention mechanism.

Inter-procedural Back-Propagation. An important observation regard-
ing reflection handling is that it is one of the few parts of a static analy-
sis that are typically under-approximate rather than over-approzimate [19)].
Our first use-based reflection analysis technique back-propagates information
from the use-site of a reflective result to the original reflection call that got
under-approximated. Such an under-approximated call can be a Class.forName,
Class.get [Declared]Method, Class.get[Declared]Field, etc. call, which returns
a dynamic representation of a class, method, or field, given a string name.

The example below, which we will refer to repeatedly in later sections, shows
how the use of a non-reflection object can inform a reflection call’s analysis:
Class cl1 = Class.forName(className);

// c2 aliases c1l
Object ol = c2.newlInstance();
// o2 aliases ol
e = (Event) 02;

Typically (e.g., when className does not point to a known constant) the
forName call will be under-approximated (rather than, e.g., assuming it will re-
turn any class in the system). The idea is to then treat the cast as a hint: it
suggests that the earlier forName call should have returned a class object for
Event. This reasoning, however, should be inter-procedural with an understand-
ing of heap behavior. The above statements could be in distant parts of the
program (separate methods) and aliasing is part of the conditions in the above
pattern. Further, note that the related objects are twice-removed: we see a cast
on an instance object and need to infer something about the forName site that
may have been used to create the class that got used to allocate that object.
This propagation should be as precise as possible: lack of precision will lead to
too many class objects returned at the forName call site, affecting scalability.

Therefore, we see again the need to employ points-to analysis, this time in
order to detect the relationship between cast sites and forName sites, so that the
latter can be better resolved and we can improve the points-to analysis itself—
a mutual recursion pattern. The high-level structure of our technique (for this
pattern) is as follows:

8 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

o At the site of a forName call, create a marker object (of type java.lang.Class),
to stand for all unknown objects that the invocation may return.

e The special object flows freely through the points-to analysis, taking full ad-
vantage of inter-procedural reasoning facilities.

e At the site of a newInstance invocation, if the receiver is our special object,
the result of newInstance is also a special object (of type java.lang.0Object this
time) that remembers its forName origins.

e This second special object also flows freely through the points-to analysis,
taking full advantage of inter-procedural reasoning facilities.

e If the second special object (of type java.lang.Object) reaches the site of a
cast, then the original forName invocation is retrieved and augmented to return
the cast type or its subtypes as class objects.

The algorithm for the above treatment can be elegantly expressed via rules
that are mutually recursive with the base points-to analysis. The rules for the
forName-newInstance-cast pattern are representative. We use extra input relations
ReifiedForName(i : I, h : H), and ReifiedNewInstance(i : I, h : H), analogous
to our earlier “Reified...” relations. The first relation gives, for each forName
invocation site, 7, a special object, h, that identifies the invocation site. The
second relation gives a special object, h, that stands for all unknown objects
returned by a newInstance call, which was, in turn, performed on the special
object returned by a forName call, at invocation site 7. The rules then become:

VarPointsTo(v, h) <—
Call(i, "Class.forName"), AssignRetValue(i,v), ReifiedForName(i, h).

In words: the variable that was assigned the result of a forName invocation points
to the special object representing all missing objects from this invocation site. In
this way, the special object can then propagate through the points-to analysis.

VarPointsTo(r, hy,) —

Call(iy, "Class.newInstance"), ActualArg(i,,0,v), VarPointsTo(v, h),
AssignRetValue(i,,), ReifiedForName(i, h), ReifiedNewInstance(i, i,).

According to this rule, when analyzing a newInstance call, if the receiver is a
special object that was produced by a forName invocation, i, then the result of
the newInstance will be another special object (of appropriate type—determined
by the contents of ReifiedNewInstance) that will identify the forName call.

The final rule uses input relation Cast(v’' : Vv : V. ¢ : T) (with v’ being the
variable to which the cast result is stored and v the variable being cast) and
Subtype(t : T,u : T') with its expected meaning:

ClassObject(i,t’) <—
Cast(_,v,t), Subtype(t’,t), VarPointsTo(v, h,,), ReifiedNewInstance(i, h,,).

The rule ties the logic together: if a cast to type t is found, where the cast variable
points to a special object, h,, then retrieve the object’s forName invocation site,
1, and infer that this invocation site returns a class object of type ¢/, where t’ is
a subtype of ¢.

N N I U R SR

.

w

More Sound Static Handling of Java Reflection 9

Other use-cases. As seen above, the back-propagation logic involves the result
of several inter-procedural queries (e.g., points-to information at possibly dis-
tant call sites). In fact, there are use-based back-propagation patterns with even
longer chains of reasoning. In the case below, the cast of 02 informs the return
value of forName, three reflection calls back!

Class cl1 = Class.forName(className);
// c2 aliases ci

Constructor[] consl = c2.getConstructors(types);
// cons2 aliases consl

Object ol = cons2[i].newInstance(args);
// 02 aliases ol

e = (Event) 02;

Interestingly, the back-propagation analysis can exploit not just cast in-
formation but also strings (including partial strings, transparently, per our
substring/string-flow analysis of Section 3.1). When retrieving a member from
a reflectively discovered class, the string name supplied may contain enough
information to disambiguate what this class may be. Consider the pattern:

Class cl = Class.forName(className);
// c2 aliases ci
Field f = c2.getField(fieldName) ;

In this case, the value of the fieldName string can inform the analysis
result for the earlier forName call. We apply this idea to the 4 API calls
Class.get [Declared]Method and Class.get[Declared]Field.

Contrasting approaches. Our back-propagating reflection analysis has some close
relatives in the literature. Livshits et al. [18,20] also examined using future casts
as hints for forName calls, as an alternative to regular string inference. Li et
al. [16] generalize the Livshits approach to many more reflection calls. There
are, however, important ways in which our techniques differ:

e Our analysis generalizes the pattern significantly. In our earlier example, from
the beginning of this section, both the Li et al. and the Livshits et al. approaches
require for the cast to not only occur in the same method as the newInstance call
but also to post-dominate it! This restricts the pattern to an intra-procedural
and fairly specific setting, reducing its generality:

Class cl1 = Class.forName(className);
// c2 aliases ci
e = (Event) c2.newlInstance();

The result of such a restriction is that the potential for imprecision is dimin-
ished, yet the ability to achieve empirical soundness is also scaled back. There
are several cases where the cast will not post-dominate the intermediate reflec-
tion call, yet could yield useful information. This is precisely what Livshits et
al. encountered experimentally—a direct quote illustrates:

[I N O

10 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

The high number of unresolved calls in the JDK is due to the fact that
reflection use in libraries tends to be highly generic and it is common to
have Class.newInstance wrappers’—methods that accept a class name
as a string and return an object of that class, which is later cast to an
appropriate type in the caller method. Since we rely on intraprocedural
post-dominance, resolving these calls is beyond our scope. [20]

e We generalize back-propagation to string information and not just cast infor-
mation (i.e., we exploit the use of get [Declared] {Method,Field} calls to resolve
earlier forName calls). This feature also benefits from other elements of our
overall analysis, namely substring matching and substring flow analysis (Sec-
tion 3.1). For instance, by having more information on what are the possible
strings passed to a getMethod call, we are more likely to determine the return
value of a getClass, on which the getMethod was called.

Inventing Objects. Our approach introduces an alternative use-based reflec-
tion analysis technique, which works as a forward propagation technique (in
contrast to the earlier back-propagation). It consists of inventing objects of the
appropriate type at the point of a cast operation that has received the result of
a reflection call. Consider again our usual forName-newInstance-cast example:

Class cl = Class.forName(className);
// c2 aliases ci

Object ol = c2.newInstance();

// 02 aliases ol

e = (Event) 02;

A major issue with our earlier back-propagation technique is that its results
may adversely affect precision. The information will flow back to the site of the
forName call, and from there to multiple other program points—not just to the
point of the cast operation (line 5), or even to the point of the newInstance
operation (line 3) in the example.

The object invention technique offers the converse compromise. Whenever
a special, unknown reflective object flows to the point of a cast, instead of in-
forming the result of forName, the technique invents a new, regular object of the
right type (Event, in this case) that starts its existence at the cast site. The “in-
vented” object does not necessarily abstract actual run-time objects. Instead, it
exploits the fact that a points-to analysis is fundamentally a may-analysis: it is
designed to possibly yield over-approximate results, in addition to those arising
in real executions. Thus, an invented value does not impact the correctness of
the analysis (since having extra values in points-to sets is acceptable), yet it will
enable it to explore possibilities that might not exist without the invented value.
These possibilities are, however, strongly hinted by the existence of a cast in the
code, over an object derived from reflection operations.

The algorithm for object invention in the analysis is again recursive with the
main points-to logic. We illustrate for the case of Class.newInstance, although
similar logic applies to reflection calls such as Constructor.newInstance, as well
as Method. invoke and Field.get.

More Sound Static Handling of Java Reflection 11

As in the back-propagating analysis, we use special marker objects. These
are represented by input relations ReifiedMarkerNewlInstance(i : I,h : H),
and ReifiedInventedObject(i : I,t: T, h: H). The first relation gives, for each
newInstance invocation site, ¢, a special object, h, that identifies the invoca-
tion site. The second relation gives an invented object, h of type ¢, for each
newlnstance invocation site, ¢, and type ¢ that appears in a cast. The algorithm
is captured by two rules:

VarPointsTo(v, h) <—

Call(i, "Class.newInstance"), AssignRetValue(i,v),
ReifiedMarkerNewlInstance(i, h).

That is, the variable assigned the result of a newInstance invocation points to
a special object marking that it was produced by a reflection call. The marker
object can then propagate through the points-to analysis.

The key part of the algorithm is to then invent an object at a cast site.

VarPointsTo(r, h) <—
Cast(r,v,t), VarPointsTo(v, h,),
ReifiedMarkerNewInstance(i, h,,), ReifiedInventedObject(i,t, h).

In words, if a variable, v, is cast to a type t and points to a marker object that
was produced by a newInstance call, then the variable, r, storing the result of
the cast, points to a newly invented object, with the right type, t.

Note that in terms of empirical soundness the object invention approach is
weaker than the back-propagation analysis: if a type is inferred to be produced
by an earlier forName call, it will flow down to the point of the cast, removing the
need for object invention. (Conversely, inventing objects at the cast site will not
catch all cases covered by back-propagation, since the special object of the back-
propagation analysis may never flow to a cast.) Nevertheless, back-propagation
is often less scalable. Thus, the benefit of object invention is that it allows to
selectively turn off back-propagation while still taking advantage of information
from a cast.

3.3 Balancing for Scalability

Consider again our inter-procedural back-propagating analysis technique relative
to prior, intra-procedural techniques. Our approach explicitly aims for empirical
soundness (i.e., to infer all potential results of a reflection call). At the same time,
however, the technique may suffer in precision, since the result of a reflection call
is deduced from far-away information, which may be highly over-approximate.
Conversely, our object invention technique is more precise (since the invented
object only starts existing at the point of the cast) but may suffer in terms of
soundness. Thus, it can be used to supplement back-propagation when the latter
is applied selectively.

To balance the soundness/precision tradeoff of the back-propagating analy-
sis, we employ precision thresholds. Namely, back-propagation is applied only
when it is reasonably precise in terms of type information. For instance, if a cast

12 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

is found, it is used to back-propagate reflective information only when there are
up to a constant, ¢, class types that can satisfy the cast (i.e., at most ¢ subtypes
of the cast type). Intuitively, a cast of the form “(Event)” is much more infor-
mative when Event is a class with only a few subclasses, rather than when Event
is an interface that many tens of classes implement. Similarly, if string informa-
tion (e.g., a method name) is used to determine what class object could have
been returned by a Class.forName, the back-propagation takes place only when
the string name matches methods of at most d different types. This threshold
approach minimizes the potential for noise back-propagating and polluting all
subsequent program paths that depend on the original reflection call.

A second technique for employing back-propagation without sacrificing pre-
cision and scalability adjusts the flow of special objects (i.e., objects in Rei-
fiedForName or ReifiedNewInstance). Although we want such objects to flow
inter-procedurally, we can disallow their tracking through the heap (i.e., through
objects or arrays), allowing only their flow through local variables. This is consis-
tent with expected inter-procedural usage patterns of reflection results: although
such results will likely be returned from methods (cf. the quote from [20] in Sec-
tion 3.2), they are less likely to be stored in heap objects.

We employ both of the above techniques by default in our analysis (with ¢
= d = 5). The user can configure their application through input options.

4 Evaluation

We implemented our techniques in the Doop framework [6], together with nu-
merous improvements (i.e., complete API support) to DOOP’s reflection han-
dling. Following the ELF study [16], we perform the default joint points-to and
call-graph analysis of DOOP, which is an Andersen-style context-insensitive anal-
ysis, with full support for complex Java language features, such as class initial-
ization, exceptions, etc. Our techniques are orthogonal to the context-sensitivity
used, and can be applied to all analyses in the DOOP framework. In general,
nothing in our modeling of reflection limits either context- or flow-sensitivity.

Experimental Setup. Our evaluation setting uses the LogicBlox Datalog engine,
v.3.9.0, on a Xeon X5650 2.67GHz machine with only one thread running at a
time and 24GB of RAM. We have used a JVMTTI agent to construct a dynamic
call-graph for each analyzed program.

We analyze 10 benchmark programs from the DaCapo 9.12-Bach suite [3],
with their default inputs (for the purposes of the dynamic analysis). Other bench-
marks could not be executed or analyzed: tradebeans/tradesoap from 9.12-Bach
do not run with our instrumentation agent, hence no dynamic call-graphs can
be extracted for comparison. This is a known, independently documented, issue
(see http://sourceforge.net/p/dacapobench/bugs/70/). We have been unable to
meaningfully analyze fop and tomcat—significant entry points were missed. This
suggests either a packaging error (no application-library boundaries are provided
by the DaCapo suite), or the extensive use of dynamic loading, which needs fur-
ther special handling.

More Sound Static Handling of Java Reflection 13

We use Oracle JDK 1.7.0_25 for the analysis. (For comparison, consider the
quote from [8] in the Introduction, refers to the smaller JDK 1.6.)

Empirical soundness metric. We quantify the empirical unsoundness of the static
analysis in terms of missing call-graph edges, compared to the dynamic call-
graph. Call-graph construction is one of the best-known clients of points-to anal-
ysis [1,2,16] and has the added benefit of quantifying how much code the analysis
truly reaches. We compare the call-graph edges found by our static analysis to
a dynamic call-graph—a comparison also found in other recent work [24]. For a
sound static analysis, no edge should occur dynamically but not predicted stat-
ically. However, this is not the case in practice, due to the unsound handling of
dynamic features, as discussed in the Introduction.

Results. Figure 2 plots the results of our experiments, combining both analy-
sis time and empirical unsoundness (in call-graph edges). Each chart plots the
missing dynamic call-graph edges that are not discovered by the correspond-
ing static analysis. We use separate bars for the application-to-application and
application-to-library edges. Library-to-library edges are also computed but they
are not comparable in static vs. dynamic analysis due to native calls. We filter
out edges to implicit methods (static initializers, loadClass()) that are not stat-
ically modeled. We show five techniques:

1. Elf. This is the ELF reflection analysis [16], which also attempts to improve
reflection analysis for Java.

2. No substring. Our reflection analysis, with engineering enhancements over
the original DooP framework, but no analysis of partial strings or their flow.

3. Substring. The analysis integrates the substring and substring flow anal-
ysis of Section 3.1.

4. +Invent. This analysis integrates substring analysis as well as the object
invention technique of Section 3.2.

5. +Backwards.®> This analysis integrates substring analysis as well as the
back-propagation technique of Section 3.2.

It is important to note that, by design, our techniques do not enhance the
precision of an analysis, only its empirical soundness. Thus, the techniques only
find more edges: they cover more of the program. This improvement appears as
a reduction in the figures (“lower is better”) only because the number plotted is
the difference in the missing edges compared to the dynamic analysis.

As can be seen, our techniques substantially increase the soundness of the
analysis. In most benchmarks, more than half (to nearly all) of the missing
application-to-application edges are recovered by at least one technique. The
application-to-library missing edges also decreased, although not as much. In
fact, the eclipse benchmark was hardly being analyzed in the past, since most
of the dynamic call-graph was missing.

® The +Backwards and +Invent techniques are both additions to the substring anal-
ysis, but neither includes the other.

14 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

avrora
M app-to-app 1 app-to-lib [l time
i g 4000 sec
16 A 2100 sec
2086.18s
4
4 k=3 3000 sec
k=3 12 1600sec g
: H
s
g
g ® 2000
3 8 1100sec § sec
3 3
> 2
£ a
2 2
g 13 1000
£ 4 - 473395 adal7e— 600sec £ sec
284.63s
0 100 sec - 0sec
elf substring +backwards elf substring +backwards
no substring +invent no substring +invent
eclipse h2
40000 2400 sec 20 4000 sec
\ 2106.71s
2293.78s
3042.15¢
2 20004 \ 20099 o57 56 P ©
$ 30000 1657.58s 1800sec & 15 3000 sec
3 152658 3
§ §_ 2231.20s
5 S
= 20000 1200sec = 2000 sec
8 3
e g
2 9775 2
|3 10000 600 sec 3 1000 sec
3t *
0 0sec 0sec
elf substring +backwards elf substring +backwards
no substring +invent no substring +invent
jython luindex
2400 2400 sec 110 sec
a a
4] 4
2 1800 1800 sec 2 100 sec
3 °
< <
S s
g g
S S
= 1200 1200sec = 90 sec
T K]
3 8
> >
£ £
2 8
3 600 600 sec g 80 sec
® *
nfa n/a nfa n/a nfa n/a
0 L | | | 0Osec 70 sec
substring +backwards elf substring +backwards
no substring +invent no substring +invent
lusearch pmd
94 sec 600 1200 sec
1015.50s
4 4
2 88 sec 2 900 sec
° 3
s s
g g
S >
= 82sec = 600 sec
K] T
8 8
) >
£ £
3 »
2 2
E 76sec & 300 sec
* *
70 sec Osec
elf substring +backwards elf substring +backwards
no substring +invent no substring +invent
sunflow xalan
16 500 sec 200 2000 sec
1717.45s
A
470.79s
4 4
ﬁ) 12 400 sec ? 150 1500 sec
5 5 1133.74s
g g
> >
‘:'ﬂ 8 262.865 300 sec % 100 1000 sec
3 8
> >
£ £
@]
2 2
£ 4 200sec £ 50 500 sec
3 *
0
0 100 sec 0 Osec
elf substring +backwards elf substring +backwards
no substring +invent no substring +invent

Fig. 2: Unsoundness metrics (two bars: missing call-graph edges app-to-app and app-
to-lib) and analysis time (line) over the DaCapo benchmarks. Lower is better for all.
For missing bars (“n/a”), the analysis did not terminate in 90mins.

More Sound Static Handling of Java Reflection 15

Total Edges Settings

Benchmark dynamic elf no substring substring +invent +backwards
avrora 4165 19355 19379 20591 26586 20677
batik 8329 31602 31708 35314 47303 37013
eclipse 40026 10191 9032 115967 116635 117576
h2 4901 38252 35538 38107 38162 43952
jython 13583 19709 20537 n/a n/a n/a
luindex 3027 4547 4676 4682 5773 6115
lusearch 1845 4209 4352 4362 5266 5587
pmd 4874 8544 8592 9533 9557 9577
sunflow 2215 4223 4251 4285 4319 4407
xalan 6128 35918 35221 45160 45343 63746

Fig. 3: Total static and dynamic call-graph edges for the DaCapo 9.12-Bach bench-
marks. These include only application-to-application and application-to-library edges.

Furthermore, although our approach emphasizes empirical soundness, it does
not sacrifice scalability. All four of our settings are faster than ELF for almost all
benchmarks. Aside from jython, for which only the ELF and no substring tech-
niques are able to terminate before timeout, in all other cases substring and at
least one of +invent or +backwards outperformed ELF, while in 7-0f-10 bench-
marks all our techniques outperformed ELF. This is due to achieving scalability
using the threshold techniques of Section 3.3 instead of by sacrificing some empir-
ical soundness, as ELF does. (A major design feature of ELF is that it explicitly
avoids inferring reflection call targets when it cannot fully disambiguate them.)

For completeness, we also show a sanity-checking metric over our analyses.
Empirical soundness could increase by computing a vastly imprecise call-graph.
This is not the case for our techniques. Figure 3 lists the total static and dynamic
edges being computed. On average, +backwards computes the most static edges
(about 4.5 times the number of dynamic edges). On the lower end of the spectrum
lies no substring, with a minimum of 3.4 times the number of dynamic edges
being computed.

In pragmatic terms, a user of our analysis should use flags to pick the tech-
nique that yields more soundness without sacrificing scalability, for the given
input program. This is a familiar approach—e.g., it also applies to picking the
exact flavor and depth of context-sensitivity.

5 Related Work

The traditional handling of reflection in static analysis has been through inte-
gration of user input or dynamic information. The Tamiflex tool [4] exemplifies
the state of the art. The tool observes the reflective calls in an actual execu-
tion of the program and rewrites the original code to produce a version without
reflection calls. Instead, all original reflection calls become calls that perform
identically to the observed execution. This is a practical approach, but results
in a blend of dynamic and static analysis. It is unrealistic to expect that uses of

16 Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

reflection will always yield the same results in different dynamic executions—or
there would be little reason to have the reflection (as opposed to static code) in
the first place. Our approach attempts to restore the benefits of static analysis,
with reasonable empirical soundness.

An alternative approach is that of Hirzel et al. [11,12], where an online
pointer analysis is used to deal with reflection and dynamic loading by monitor-
ing their run-time occurrence, recording their results, and running the analysis
again, incrementally. This approach is quite interesting when applicable. How-
ever, maintaining and running a precise static analysis during program run time
is often not realistic (e.g., for expensive context-sensitive analyses). Furthermore,
the approach does not offer the off-line soundness guarantees one may expect
from static analysis: it is not possible to ask questions regarding all methods
that may ever be called via reflection, only the ones that have been called so far.

Interesting work on static treatments of reflection is often in the context of
dynamic languages, where resolving reflective invocations is a necessity. Furr et
al. [9] offer an analysis of how dynamic features are used in the Ruby language.
Their observations are similar to ours: dynamic features (reflection in our case)
are often used either with sets of constant arguments or with known prefixes/-
suffixes (e.g., to re-locate within the file system).

Madsen et al. [21] employ a use-based analysis technique in the context of
Javascript. When objects are retrieved from unknown code (typically libraries)
the analysis infers the object’s properties from the way it is used in the client.
In principle, this is a similar approach to our use-based techniques (both ob-
ject invention and back-propagation) although the technical specifics differ. The
conceptual precursor to both approaches is the work on reflection by Livshits et
al. [18,20], which has been extensively discussed and contrasted throughout the
paper (see Sections 2, and 3.2).

Advanced techniques for string analysis have been presented by Christensen
et al. [7]. They analyze complex string expressions and abstract them via a
context-free grammar that is then widened to a regular language. Reflection is
one of their examples but they only apply it to small benchmarks.

Stancu et al. [24] empirically compare profiling data with a points-to static
analysis. However, they target only the most reflection-light benchmarks of the
DaCapo 9.12-Bach suite and patch the code to avoid reflection entirely.

6 Conclusions

Highly dynamic features, such as reflection and dynamic loading, are the bane
of static analysis. These features are not only hard to analyze well, but also
ubiquitous in practice, thus limiting the practical impact of static analysis. We
presented techniques for static reflection handling in Java program analysis. Our
techniques build on top of state-of-the-art handling of reflection in Java, by ele-
gantly extending declarative reasoning over reflection calls and inter-procedural
object flow. Our main emphasis has been in achieving higher empirical sound-
ness, i.e., in having the static analysis truly model observed dynamic behaviors.

More Sound Static Handling of Java Reflection 17

Although full soundness is infeasible for a realistic analysis, it is possible to
produce general techniques that enhance the ability to analyze reflection calls.

Although our techniques improve on the problem of handling reflection, fur-

ther work is necessary to achieve good scalability and empirical soundness for
complex programs. Furthermore, our work has not addressed another major and
commonly used dynamic feature: dynamic loading. Continued work will hope-
fully make such language features a lot more feasible to analyze statically.

Acknowledgments. We gratefully acknowledge funding by the European Research
Council under grant 307334 (SPADE).

References

1.

10.

Ali, K., Lhotdk, O.: Application-only call graph construction. In: Proc. of the
26th European Conf. on Object-Oriented Programming. pp. 688-712. ECOOP
’12, Springer (2012)

. Ali, K., Lhoték, O.: Averroes: Whole-program analysis without the whole program.

In: Proc. of the 27th European Conf. on Object-Oriented Programming. pp. 378—
400. ECOOP 13, Springer (2013)

. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,

R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Proc. of the 21st Annual ACM SIGPLAN Conf. on
Object Oriented Programming, Systems, Languages, and Applications. pp. 169—
190. OOPSLA 06, ACM, New York, NY, USA (2006)

. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:

Aiding static analysis in the presence of reflection and custom class loaders. In:
Proc. of the 33rd International Conf. on Software Engineering. pp. 241-250. ICSE
11, ACM, New York, NY, USA (2011)

. Bravenboer, M., Smaragdakis, Y.: Exception analysis and points-to analysis: Bet-

ter together. In: Proc. of the 18th International Symp. on Software Testing and
Analysis. pp. 1-12. ISSTA ’09, ACM, New York, NY, USA (2009)

. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated

points-to analyses. In: Proc. of the 24th Annual ACM SIGPLAN Conf. on Ob-
ject Oriented Programming, Systems, Languages, and Applications. OOPSLA ’09,
ACM, New York, NY, USA (2009)

. Christensen, A.S., Mgller, A., Schwartzbach, M.I.: Precise analysis of string ex-

pressions. In: Proc. of the 10th International Symp. on Static Analysis. pp. 1-18.
SAS ’03, Springer (2003)

. Fink, S.J., et al.: WALA UserGuide: Pointer Analysis. http://wala.sourceforge.

net/wiki/index.php/UserGuide:PointerAnalysis

. Furr, M., An, J.D., Foster, J.S.: Profile-guided static typing for dynamic scripting

languages. In: Proc. of the 24th Annual ACM SIGPLAN Conf. on Object Oriented
Programming, Systems, Languages, and Applications. pp. 283-300. OOPSLA ’09,
ACM, New York, NY, USA (2009)

Guarnieri, S., Livshits, B.: GateKeeper: mostly static enforcement of security and
reliability policies for Javascript code. In: Proc. of the 18th USENIX Security
Symposium. pp. 151-168. SSYM’ 09, USENIX Association, Berkeley, CA, USA
(2009), http://dl.acm.org/citation.cfm?id=1855768.1855778

18

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Y. Smaragdakis, G. Balatsouras, G. Kastrinis, M. Bravenboer

Hirzel, M., von Dincklage, D., Diwan, A., Hind, M.: Fast online pointer analysis.
ACM Trans. Program. Lang. Syst. 29(2) (2007)

Hirzel, M., Diwan, A., Hind, M.: Pointer analysis in the presence of dynamic class
loading. In: Proc. of the 18th European Conf. on Object-Oriented Programming.
pp. 96-122. ECOOP ’04, Springer (2004)

Kastrinis, G., Smaragdakis, Y.: Efficient and effective handling of exceptions in
Java points-to analysis. In: Proc. of the 22nd International Conf. on Compiler
Construction. pp. 41-60. CC ’13, Springer (2013)

Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: Proc. of the 2013 ACM SIGPLAN Conf. on Programming Language Design
and Implementation. PLDI '13; ACM, New York, NY, USA (2013)

Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel,
C.: Context-sensitive program analysis as database queries. In: Proc. of the 24th
Symp. on Principles of Database Systems. pp. 1-12. PODS ’05, ACM, New York,
NY, USA (2005)

Li, Y., Tan, T., Sui, Y., Xue, J.: Self-inferencing reflection resolution for Java. In:
Proc. of the 28th European Conf. on Object-Oriented Programming. pp. 27-53.
ECOQP 14, Springer (2014)

Liang, P., Naik, M.: Scaling abstraction refinement via pruning. In: Proc. of the
2011 ACM SIGPLAN Conf. on Programming Language Design and Implementa-
tion. pp. 590-601. PLDI ’11, ACM, New York, NY, USA (2011)

Livshits, B.: Improving Software Security with Precise Static and Runtime Anal-
ysis. Ph.D. thesis, Stanford University (December 2006)

Livshits, B., Sridharan, M., Smaragdakis, Y., Lhotdk, O., Amaral, J.N., Chang,
B.Y.E., Guyer, S.Z., Khedker, U.P., Mgller, A., Vardoulakis, D.: In defense of
soundiness: A manifesto. Commun. ACM 58(2), 44-46 (Jan 2015), http://doi.
acm.org/10.1145/2644805

Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. In: Proc. of the
3rd Asian Symp. on Programming Languages and Systems. pp. 139-160. APLAS
’05, Springer (2005)

Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript appli-
cations in the presence of frameworks and libraries. In: Proc. of the ACM SIGSOFT
International Symp. on the Foundations of Software Engineering. pp. 499-509. FSE
'13, ACM (2013)

Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: Proc.
of the 2006 ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation. pp. 308-319. PLDI '06, ACM, New York, NY, USA (2006)

Reps, T.W.: Demand interprocedural program analysis using logic databases. In:
Ramakrishnan, R. (ed.) Applications of Logic Databases, pp. 163-196. Kluwer
Academic Publishers (1994)

Stancu, C., Wimmer, C., Brunthaler, S., Larsen, P., Franz, M.: Comparing points-
to static analysis with runtime recorded profiling data. In: Proc. of the 2014 Inter-
national Conf. on Principles and Practices of Programming on the Java Platform
Virtual Machines, Languages and Tools. pp. 157-168. PPPJ 14, ACM (2014)
Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with binary decision
diagrams for program analysis. In: Proc. of the 3rd Asian Symp. on Programming
Languages and Systems. pp. 97-118. APLAS ’05, Springer (2005)

Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proc. of the 2004 ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation. pp. 131-144. PLDI ’04, ACM, New
York, NY, USA (2004)

