
C++ Templates
and Java Generics



Generic Programming in C++
● Use types as parameters of functions and classes

● An additional level of abstraction when defining an algorithm, etc.

● Generate different code versions at compilation depending on usage

● So they cannot be in a separate “.cpp” file → must be in a header file

● Warning: parts not used in current code are not “checked” → late errors!



Before “mymax” because “max” defined in std



After
keyword “class” equivalent to “typename” here

works with any type that has a “<” operator
even custom classes!



After
❯
❯

…

g++ generated 3 different 
versions

generate (text) assembly file



Template Classes



Dynamic Allocation



Dealing with classes as type parameters

prints:
A
A
copy A
copy A 
copy A
copy A



Dealing with classes as type parameters

prints:
A
A 
copy A
copy A



But this doesn’t work then… 

❯

…



Template Specialization



Template Specialization
…



Template Specialization -- Notes
● No need to specialize all type parameters

e.g.    

● All versions exists simultaneously!

● Each specialization can provide completely different code!

● But… we have to write versions for every primitive type

(in the previous example)



Template Specialization -- Alternative

specialize for pointers



Template Specialization -- Alternative



C++ Templates Java Generics



Java Generics != C++ Templates
● Only one version of the code exists!

● Any reference to a type parameter is replaced by Object

● Known as “type erasure” 

● Java will generate code without the need of explicit casts in every place

● Checks that different type values are not used for the same type parameter!



Java Generics “<>” is the diamond operator
could have been

Pair<Integer, Integer>



Java Generics -- Similar to… 



Java Generics -- Safe Types

❯

not allowed even if everything is 
replaced by Object


