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Abstract. The term voxelization describes the conversion of an object of any 
type into volume data, stored in a three dimensional array of voxels. This 
paper presents a fast and easy to implement voxelization algorithm, which is 
based on the z-buffer. Unlike most existing methods, our approach is 
suitable both for polygonal and analytical objects. The efficiency of the 
method is independent of the object complexity and can be accelerated by 
taking advantage of widely available, low-cost hardware. 
 
 
1.   Introduction 
 
Volume graphics is one of the latest developments in computer graphics, yet 
it is evident that it has the potential to become one of the most useful 
techniques in three dimensional object manipulation and representation. 
Voxel-based models [Kaufman, Cohen, Yagel 93] are used in a variety of 
applications, including (but not limited to) medical imaging [Pommert et al. 
92], [Stytz, Frieder, Frieder 91], fluid dynamics, CSG, terrain modeling 
[Cohen-Or 97], texture generation [Kajiya, Kay 89],  [Neyret 98] and lately 
even in computer games. 

In many cases, the voxelization of non-discrete models is required, 
in order to further manipulate them using techniques applicable to voxel-
based objects. Voxelization, that is the process of approximating a 
continuous object by a set of voxels, consists of sampling the initial object 
and assigning a value to each voxel of a three dimensional raster.  

The main idea in most voxelization algorithms is to examine 
whether each voxel belongs to the object or not and assign to the voxel a 
value of 1 or 0 respectively. This is accomplished by either examining if a 
voxel’s centre lies inside the object, or by selecting all the voxels that are 
intersected by the object [Kaufman, Shimony 86]. More sophisticated 
algorithms generate smoother and alias-free models and involve filtering of 
the volume [Wang, Kaufman 93], [Wang, Kaufman 94], subdivision of the 
original object [Cohen, Kaufman, Wang 94] or calculation of the exact 
distance of a voxel from the object surface [Jones 96]. We should mention at 
this point that the majority of voxelization techniques are oriented to a single 
type of object, e.g. polygonal meshes, lines, parametric surfaces etc. 

In this paper we present a simple and fast algorithm, which produces 
volume data from any kind of original model to which a z–buffer can be 
applied. Section 2 describes the basic idea of the method, while in Section 3 
we comment on the advantages of the algorithm and compare it to previous 
methods. Section 4 presents two variations of the method, which voxelize 
only the contour or produce volume data of varying density. In Section 5 we 
present some test results.  
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2.   Algorithm Overview  
 
Our algorithm is based on the creation of volume data using depth 
information from different views of the object and could be regarded, as 
already mentioned, as an application of the z-buffer. The object is 
surrounded by three orthogonal pairs of z-buffers, each pair holding depth 
information for the object from a different viewing angle. Voxelization is 
accomplished by scanning the volume space and checking whether each 
voxel is between the limits imposed by the buffers. 

Previous work has been conducted in [Prakash, Manohar 95] on the 
voxelization of convex objects using a single pair of depth buffers. 
Discussion of the method is limited to convex objects representing 
unstructured grid cells and the voxelization process is interwound with the 
scan conversion step. Our algorithm can be used for non-convex objects and 
does not require a specific data representation, as we separate the depth 
buffer acquisition from the voxelization. This way we can exploit hardware 
z-buffer to increase the performance. 
 
 
2.1.    Setting up the buffers 
 
 The first step of the method is to place the object in the scene, as we would 
normally do for rendering, independently of the object type. In order to 
proceed with the voxelization we need to set up three pairs of depth buffers 
([x1,x2], [y1,y2], [z1,z2]), facing along the three axes X, Y, Z which define the 
global coordinate system. Each pair consists of two buffers, perpendicular to 
the same axis but in opposite sides of the object, in such a way that they are 
facing each other (Fig. 1).  

Buffers of the same pair hold opposite views of the object and 
correspond to the same viewing axis. The first buffer of each pair x1, y1, z1 
(looking at R, U, F in Fig. 1) holds the closest depth to the viewer, while the 
second buffer x2, y2, z2 (looking at L, D, B in Fig. 1) stores the maximum 
distance from the viewer, along the corresponding axis.  

Since depth information is usually stored in the z-buffer, that is in a 
buffer along the Z axis, in our case the object needs to be rotated twice, in 
order to obtain the “x-buffer” and “y-buffer” pairs. No additional 
transformations are required to obtain the second buffer of each pair, since 
this can be easily accomplished by modifying the comparison function used 
by the z-buffer, to store the greatest distance instead of the smallest. Control 
over the comparison function is provided by most common APIs, like 
OpenGL. 

In Fig. 1 a greater value (lighter colour) indicates a more distant 
point, while a smaller value (darker colour) indicates a point closer to the 
viewer. Points in the background are interpreted as far points in the first 
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group of buffers and as close points in the second group, since the 
comparison criterion is reversed. 
 
 
2.2.   Voxelization 
 
Once all six buffers have been created, we may proceed with the actual 
voxelization step. Let ) },N[:i,j,k{ v(i,j,k)V  0∈=  be the voxel cube. The 
final voxel-based model detail is imposed by the buffer resolution, so we 

must choose NN ×  sized buffers for a 3N  voxel cube. The voxel cube 
orientation is defined by the three global axes X, Y, Z. 

Conversion to volume data, consists of a triple loop, to cover the 
voxel space. A voxel v(i,j,k) is related to six  projected points on the depth 
buffers, whose coordinates are (j,k), (k,i) and (j,i) on the X, Y, and Z pair 
respectively. The corresponding depths are given by the appropriate buffers:  
x1(j,k), x2(j,k), y1(k,i), y2(k,i), z1(j,i), z2(j,i) (Fig. 2a).  

Voxelization, i.e. deciding whether a voxel belongs to the object 
(interior or contour) or not, is equivalent to examining if the voxel lies 
within the boundaries defined by the corresponding depth values of the 
buffers (Fig. 2b). Since voxel coordinates are defined relative to the voxel 
cube size  (in the interval [0,N)), while z-buffer values lie in an 
implementation dependant range [depthmin, depthmax], some conversion is 
necessary for the comparison.  

The position of v(i,j,k) if converted to the z-buffer range is : 
 

1
),,(),,( minmax

−
−

⋅=
N

depthdepth
kjizyx           (1) 

 
and v(i,j,k) lies inside the object if and only if : 
 

),(),( 21 kjxxkjx ≤≤  

AND ),(),( 21 ikyyiky ≤≤  

AND ),(),( 21 ijzzijz ≤≤            (2) 
 
 
2.3.   Domain of Applicability 
 
The algorithm presented above is constrained by certain limitations imposed 
by the buffers themselves. Since the method uses data from the z-buffer, the 
information available about the object is limited to parts of the object visible 
from the three principal viewing axes. As a result the method is not able to 
correctly reconstruct objects with internal cavities or other parts, which can 
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not be seen from the chosen viewing angles. This does not constrain the 
method to convex objects; non-convex objects can be voxelized, as long as 
there are no “hidden” cavities (Figs. 5, 6, 7, 8). 

The algorithm is obviously not optimized for hollow objects (as 
additional computation is needed to remove the inner voxels), while it is 
ideal for applications where the interior of the object should be occupied 
with voxels. In such cases, many existing algorithms first voxelize the outer 
surface and subsequently perform a volume-filling operation [Wang, 
Kaufman 94]. A variation of the method which voxelizes only the outer 
surface of an object will be described in Section 4. 

When dealing with convex objects, the algorithm may be further 
simplified by using only one pair of buffers, decreasing floating point 
operations and comparisons by 2/3, as all required information can be 
retrieved from a single view. Even certain non-convex objects, on which the 
location of all non-convex characteristics is restricted to certain views, can 
be modeled with less than three pairs of buffers, provided that the buffers are 
placed at the viewing angles of interest (e.g. a torus can be voxelized using 
the pair of buffers that is parallel to the torus base plane).  
 
 
3.   Advantages  
 
The proposed algorithm has two major advantages: it is very simple and easy 
to implement and it is extremely fast. Voxelization of an object to a 
reasonable spatial resolution is accomplished in real time in an average 
machine, as will be demonstrated in the Test Results section, even without 
specialized hardware. Since graphics cards supporting hardwired z-buffers 
are very popular even in most home computer systems, the method can take 
advantage of hardware acceleration for free.  

Another important feature of our algorithm is that it can be used for 
all types of 3D objects (polygonal, analytical or even volume data) without 
any modification or increase in computational cost, unlike many existing 
voxelization techniques which are restricted to specific types of objects 
[Kaufman, Shimony 86], [Jones 96]. The method can even be used for 
simultaneous voxelization of multiple objects, so long as there is no overlap 
resulting in hidden areas among them for all views. 

Since our algorithm is based on the z-buffer, its complexity is 
independent of the object complexity. Of course the computational time is 
proportional to the required level of detail, which can be easily controled by 
the z-buffer resolution.  

An additional advantage is that the algorithm can be used to easily 
produce multiresolutional models, simply by repeated execution for different 
buffer resolutions. 

Finally, the method offers the possibility to develop volume 
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sculpting techniques based on the manipulation of the two-dimensional 
buffers, instead of voxel space operations [Galyean, Hughes 91], [Wang, 
Kaufman 95]. We are currently working in this direction. 
 
 
4.   Variations of the Basic Algorithm 
 
We next describe two variations of the basic algorithm: one for voxelizing 
only the contour of an object and one for the generation of volume data of 
varying density. The second technique is suitable for convex objects; 
however it can be used to voxelize certain non-convex objects, with reduced 
accuracy. 
 
4.1.   Surface Voxelization 
 
A voxel v(i,j,k) is part of the object surface, if at least one of its coordinates, 
calculated by (Eq. 1), lies close to one  of the corresponding buffer values, 
while the remaining coordinates satisfy the conditions in (Eq. 2). Therefore 
v(i,j,k) lies on the surface if the following condition (or any of the two 
analogous conditions for Y and Z axes) is true : 
 
( ),(),(),( 111 kjdkjxxkjx x+≤≤    

    OR    ),(),(),( 222 kjxxkjdkjx x ≤≤−     
) 
AND      ),(),( 21 ikyyiky ≤≤   

AND      ),(),( 21 ijzzijz ≤≤                         (3) 
 
where x, y, z are calculated from (Eq. 1) and d is a deviation threshold 
defining how close to the exact contour of the object a voxel should be. In 
other words, d is a measure of the surface thickness at each point with regard 
to the viewing axis. Surface thickness is measured from the object contour 
towards the object interior; that is why the above inequalities for x are not 
symmetrical.  

The value of d must be chosen in a way that combines two objectives 
[Kaufman, Cohen, Yagel 93]: 
1) The derived voxel set must cover the entire object surface, without 

leaving holes. 
2) The number of voxels which are included in the final set should be 

minimised. 
These conditions may not be served simultaneously with a single 

deviation threshold for the entire voxel space. Instead, it will be shown that 
optimal results can be obtained by defining a different value of d for each 
voxel with regard to each buffer  (e.g. dx1, dx2 etc).  
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As d denotes the surface thickness in a given direction (thickness 
depends on the surface orientation with regard to the viewing angle), its 
value must equal the maximum depth difference between subsequent voxels 
visible to a certain buffer.  
 

Consider the example in Fig. 3, which is reduced to two dimesions 
for simplicity. v(i,j) and v(i+1,j+3) are successive visible voxels from the z1 
buffer (voxels marked with an “X” symbol) and correctly identified as 
surface voxels. However, voxels v(i,j+e),   e=1..3, which are also surface 
voxels (voxels marked with an “O” symbol), are hidden from the z1 buffer. If 
these voxels are visible to another buffer (x2 in this example) they will be 
correctly identified as belonging to the surface. This is not always the case, 
especially in non-convex objects (e.g. v(i,j+2) is hidden to all buffers). To 
avoid this problem we calculate the surface thickness dz1(i,j) for v(i,j) as 
viewed from the z1 buffer and mark all voxels v(i,j+e),  e=1..dz1(i,j). These 
voxels belong to the object surface, provided the remaining criteria of (Eq. 
3), concerning the remaining axes, are matched.  

dz1(i,j) can be directly derived from the z1 buffer, by calculating the 
intensity differences between z1(i) and adjacent buffer points, which 
correspond to depth differences in object space : 
 



 ≥−

=
otherwise                                ,0

)()( if        ),()(
),( 1max11max1

1

iziziziz
jid z                 (4) 

 
where )}1(),1(max{)( 11max1 +−= iziziz . 

If a smaller value of dz1(i,j) is chosen, the contour will have holes, 
while a  greater   value will  produce redundant voxels in the final model. 
 

If processing the opposite buffer, z2, the comparison criterion will be 
reversed and z2min will be calculated instead.   

The same procedure is repeated for the two x buffers. 
 

Extending the procedure to three dimensions is simple. The only 
difference is that to define the surface thickness, we need to examine 4 or 8 
neighbors of a buffer point, depending on the desired connectivity. 

Surface thickness calculations are performed as a preprocessing 
stage to the surface voxelization procedure. Computational complexity is 
analogous to the buffer dimensions (O(N2)), which is not a significant 
overhead compared to the  O(N3) complexity of the voxelization. The surface 
voxelization algorithm is given below: 
 
Step1. Read the depth buffers (x1,x2,y1,y2,z1,z2). 
Step2. For each buffer: 
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              For each buffer cell: 
Calculate the maximum depth difference of the cell from its 
neighbours. Store the result in a new “thickness” buffer 
(dx1,dx2,dy1,dy2,dz1,dz2). 

Step3. For every voxel v(i,j,k) check if it is a surface voxel by using relation  
           (3). 
  
 
4.2.   Varying Density Voxelization 
  
Some volume visualization applications require images from volume data 
with more than two values per voxel, in order to reduce the “blockiness” 
effect present in binary decision methods (1 if the voxel is inside the object – 
0 otherwise). In this case voxels are assigned a value which is a function of 
their distance from the object surface, or the smoothing effect is achieved via 
filtering.  

Smoothing is in general useful on the external surface of the object, 
which is responsible for the jagged effect. Our method can easily be 
modified, for convex objects, to produce voxels of a varying density. A 
voxel’s density is estimated according to the percentage of the voxel that is 
actually inside the object. Exterior voxels have a density of 0, while voxels 
completely inside the object are assigned a density of dmax. Voxels on the 
contour have a density value proportional to the volume covered by the 
object. This percentage is calculated as follows: 

Consider first the X axis. Buffer values x1(j,k) and x2(j,k) for a voxel 
v(i,j,k) are retrieved and the result is converted to the corresponding values i1 
and i2, in the range [0,N], in a way reverse to (Eq. 1):  
 

minmax
2,12,1 depthdepth

N
xi

−
=                                    (5) 

 
Note that buffer values are defined in the range [depthmin ,depthmax] and 

are therefore converted in the range [0,N], instead of [0,N), which justifies 
the presence of N on the numerator instead of N-1 which one would expect 
from (Eq. 1).  

i  (which represents the voxel coordinate on the X axis in voxel space) has 
an integer value in [0,N), while i1 and i2 (which are the object surface depths 
on the X axis) are floating point numbers in [0,N]. Thus v(i,j,k) is a surface 
voxel with regard to the X axis, if and only if  1ii =  or  2ii = .  

- If  1ii = , the X axis voxel coverage is set to   11 iicx −+= , while if 

 2ii =  the corresponding coverage is  iicx −= 2  (Fig. 4). 

- If  1ii <  or  2ii ≥  then v(i,j,k) is an external voxel and we set 0=xc .  
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- In all other cases, i lies between  1i  and  2i  and the coverage in the 
direction of the X axis is 1. 

 
 In the same way we define the coverage in the remaining two directions 

Y and Z, as cy and cz  respectively. Total voxel density dv is a combination of 
coverage percentages in all three directions : 
 

maxdcccd zyxv ⋅⋅⋅=                                     (6) 

 
 
5.   Results 
 
All algorithms presented in this paper were implemented in C++, using 
OpenGL under Windows98 on a 400MHz Intel Pentium II system, with a 
nVIDIA Riva TNT graphics board.   

Table 1 shows the computational time for the voxelization of several 
polygonal objects, with respect to the number of faces of the original model, 
the buffer resolution and the number of voxels created. The first column 
displays the number of faces in the original triangular mesh, while the 
second gives the buffer resolution. The remaining columns show the number 
of voxels actually occupied and the time taken for simple voxelization, 
surface voxelization and density voxelization.  

The table verifies that the computational time is extremely small 
even on an average machine. It depends only on the buffer resolution and it 
is independent of the number of faces in the original mesh.  

In the case of density voxelization, there is an additional dependency 
on the percentage of voxels that are occupied (e.g. the time taken to voxelize 
the cross is greater than the time for the knot, since the percentage of voxels 
occupied for the former is significantly greater than the corresponding 
percentage for the later). This results from the fact that many calculations 
required for the density value, are omitted if a voxel is found early in the 
process to be outside the object. 

We should underline however, that the complexity depends only on 
the number of voxels calculated and retains the independency from the 
number of faces. This is an important advantage over other methods whose 
complexity depends on the number of faces in the original mesh and 
therefore become very time–consuming when used for complex meshes 
[Jones 96].  

Figs. 5 a voxelized hollow cross, while Fig. 6 shows a knot created 
using surface voxelization. Fig. 7 displays a cartoon dog, voxelized using 
buffers of decreasing dimensions to produce the model at multiple 
resolutions. Fig.8 displays a voxelized truck model. 
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 Voxelization Surface Vox/tion Density Vox/tion 
 # of 

triangles 
Buffer 
Resolution 

# of 
Voxels 

Time 
(sec) 

# of 
Voxels 

Time 
(sec) 

# of 
Voxels 

Time 
(sec) 

48 64 X 64 75156 0.06 26079 0.29 80740 0.63 
 128 X 128 622789 0.50 114895 1.90 576687 4.80 

24-
hedron 

 256 X 256 5026771 6.00 484901 15.00 4995637 41.00 
576 64 X 64 13573 0.05 9409 0.29 14985 0.27 
 128 X 128 112076 0.45 42353 1.90 117718 2.20 

Torus 

 256 X 256 910021 6.00 171203 15.00 903101 19.00 
1520 64 X 64 3169 0.06 3147 0.34 3588 0.20 
 128 X 128 22624 0.40 22327 2.00 25198 1.70 

Knot 

 256 X 256 180859 5.00 116694 15.00 195519 15.00 
1530 64 X 64 44428 0.05 20536 0.28 45330 0.45 
 128 X 128 361961 0.50 90574 1.90 369651 3.60 

Cross 

 256 X 256  2930701 6.00 367404 15.00 2962560 31.00 
3472 64 X 64 117917 0.06 25457 0.28 125255 0.87 
 128 X 128 984392 0.50 94387 1.90 998349 7.00 

Letter 
cube 

 256 X 256 7924242 6.00 403722 14.00 7947191 57.00 
23357 64 X 64 4498 0.05 4331 0.29 4424 0.21 
 128 X 128 32093 0.40 28084 1.90 35205 1.70 

Truck 

 256 X 256 267794 5.00 143424 14.00 282432 16.00 


