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Abstract

In this paper a novel, user friendly visual tool for Breast MRI Data Analysis
is presented (BreDAn). Given planar MRI images before and after IV
contrast medium injection, BreDAn generates kinematic graphs, color maps
of signal increase and decrease and finally detects high risk breast areas. The
advantage of BreDAn, which has been validated and tested successfully, is
the automation of the radiodiagnostic process in an accurate and reliable
manner. It can potentially facilitate radiologists’ workload.
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1. Introduction

Nowadays, better screening has shown that the number of breast pathol-
ogy cases increases steadily and breast cancer is their main expression [1].
Therefore, accurate and timely diagnosis of breast diseases is vital for pa-
tient’s treatment [2].

The protocol of breast imaging-screening involves at a first stage clinical
examination and X-Ray mammography. However, numerous studies have
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shown that classical X-ray mammography has a false-negative rate of 20%
[3], especially in women in the pre-menopausal period with dense breasts.
X-ray mammography fails to detect: a) cancerous sites, b) all breast cancer-
ous sites, c) infiltrating lobular carcinoma and d) ductul carcinoma in situ
(DCIS). Nowadays, the answer to an inconclusive mammography or ultra-
sound examination is the adjunctant exploitation of the imaging method of
breast MRI [4, 5].

Breast MRI is a powerful tool in breast imaging. The method, although
costly, is safe without the use of ionizing radiation, thus reducing health risks
for patients. Furthermore, studies have shown that the sensitivity of breast
MRI, especially for the detection of cancer, is the greatest of all imaging
techniques [6–14], making it very useful for the detection process [15, 16].
Reviewing related literature, breast MRI sensitivity is within the range 84-
93 % while its specificity is within 37 - 97 % [3]. This can produce high false
positive rate which would lead to unnecessary biopsies and discomfort to
patients. In general, breast MRI is an accurate method for the visualization of
the internal tissues of the breast, providing high resolution images that allow
radiologists to accurately diagnose the existence of pathologies always in
conjuction to X-ray mammography. Recent technological progress in software
issues with the development of fast pulse sequences with good fat suppression
and in hardware issues with the development of dedicated breast coils of high
signal to noise ratio [17] and sensitivity encoding [18] have established breast
MRI as an important, accurate and reliable imaging tool in the medical
community.

The contribution of breast MRI in determining breast pathologies is revo-
lutionary [5, 19, 20]: it can i) identify early stage of cancer in women at high
risk [18], due to its high sensitivity in dense breasts [5, 8]; ii) help towards de-
tecting cancerous sites previously underestimated by mammography [21], or
determining mammography’s inconclusive findings [22] of various sizes (mul-
tifocal or multicentric); iii) differentiate between pathologies; iv) determine
tumor size and v) determine image adjacent chest wall and muscle. Regarding
the pre-operative staging, breast MRI can determine vi) the surgical planning
(performance of a radical mastectomy or a modified one) [23]. It can also,
vii) assess the response to neoadjuvant chemotherapy [9, 24], where early
knowledge of a response to specific scheme of neoadjuvant chemotherapy can
help in adjusting it (change dose and/or frequency or even substituting it
with another scheme); viii) assess any residual tumor load following lumpec-
tomy and tumor recurrence at the lumpectomy site. However, this requires
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technical and radiological experience due to the surrounding scar tissue that
enhances after IV contrast medium injection causing a shining effect which
can potentially hide adjacent lesions. Finally, breast MRI can detect primary
cancerous sites in cases of patients with metastasis, so a therapeutic scheme
can be assigned, thus avoiding radical solutions, such as whole breast radi-
ation or mastectomy. Overall and despite the fact that there are rare cases
of breast pathologies that escape MRI [5, 25], breast MRI has been incor-
porated into the clinical daily routine of breast imaging and has become a
standard tool for breast evaluation.

The concept of breast MRI relies upon the angiogenesis of cancerous sites
[26, 27]. IV administrated contrast gadolinium-based media, facilitate the
imaging of those sites in an accurate and precise way. The advantage of
breast MRI as a diagnostic examination is that it produces two pieces of in-
formation that help towards the differential diagnosis of pathologies. Firstly,
it produces various types of planar images prior and after the administration
of contrast medium. Secondly, it produces dynamic information regarding
the flow of injected contrast medium within the breast tissue. Breast diag-
nosis incorporates both the morphological characteristics of breast tissue, as
well as the kinetics of the contrast medium within breast tissue. Regarding
the former, anatomical morphological characteristics of pathologies include
the shape, the size and the smoothness. Spherical or oval lesions, smooth and
well defined margins of homogeneously enhanced lesions correspond, usually,
to benign pathologies, whereas star-like or dendrite-type lesions refer to ma-
lignancy. Enhancement imaging characteristics are not, however, conclusive
by themselves for the determination of breast pathology.

The extra supplied information by breast MRI, i.e. the kinematic char-
acteristics of the injected contrast medium, can help in conjunction with
the morphological information towards the differential diagnosis and deter-
mination of type of pathology. The dynamic flow characteristics of contrast
medium during the wash-in and wash-out periods demonstrate the degree
(number, density) and type (leaky) of vascularity.

Cancerous sites are characterized by capillaries with pathological vessel
wall architecture and leaky endothelial linings. Therefore, the effect of an-
giogenic activity is twofold: there is an increased vascularity, leading to a
focally increased inflow of contrast material, plus increased vessel permeabil-
ity, leading to an accelerated extravasation of contrast material at the site of
a tumor [3]. This means that MRI signal is very intense after the contrast
medium is injected to the patient, but significantly debilitates as time goes
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by. Therefore, benign lesions are characterized by high signal intensities.
Considering a region of interest (ROI) of breast tissue, the signal inten-

sity pre and post IV contrast medium administration can be followed with
respect to time, generating a kinematic curve. There are three types of curves
(Figure 1) [3]. The structure of these curves is very closely connected to the
existance of cancer [28, 29]. Type I represents a continuously increasing
curve, reflecting a wash-in process of the contrast medium through the vas-
cularity of the ROI in a gradually increased manner. Type II is an initially
increasing curve, usually faster than that of Type I, which is followed by a
plateau, indicating an initial wash-in process that is followed by a saturation
state. Finally, Type III is an initially increasing curve which is followed by a
decreasing slope. The latter suggests an initial fast wash-in process through
the angiogenesis vascularity followed by a rapid wash-out process, due to the
architecture of the tumorous vascularity.

Figure 1: Three possible types of curves.

Curves of Type II, III indicate a malignancy and require the radiologists
to be extra vigilant [29]. The pathology probability for all three types of
curves is shown in the following Table 1.

Curve Type Pathology Probability

Type I 8.9%
Type II 33.6%
Type III 57.4%

Table 1: Pathology probability for all types of intensity curves [29].

Various types of software have been developed and are currently used for
breast MRI data analysis, i.e. Siemens syngo-BreVis [30], General Electric
FuncTool, CADstream [31]. BreDAn is a novel visual tool that performs
MRI data analysis in a fast, reproducible and reliable manner displaying
anatomical images as well as kinematic information in an accurate and precise
way. This process is automatic, user friendly and robust.

The structure of the present paper is as follows. In section 2, the technical
characteristics of MRI images are presented. In section 3, BreDAn software
is described in detail. In section 4, results of the clinical testing of BreDAn,
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are illustrated, followed by its evaluation. In section 5 conclusions and future
challenges are presented. Finally, section 6 concerns the mode of availability
of BreDAn.

2. MRI protocol - data

The breast MRI protocol consists of various types of pulse sequences.
They are implemented in different axes in order to locate, define extent and
diagnostically differentiate pathologies. MRI generates two types of informa-
tion: the imaging one, which assigns anatomical and morphological charac-
teristics of lesions and the dynamic one, which describes the kinetics of the
IV injected contrast medium within anatomical volumes [32–34]. These two
types of information that are produced within a single examination help to-
wards the differentiation of pathologies, constituting breast MRI a powerful
imaging tool [3, 4]. Superior diagnostic accuracy can be achieved by combin-
ing the aforementioned types of information with other variables (including
multivariate models [35] and b values [36]).

All MRI examinations were performed in a 1.5 Tesla Signa HDxt Gen-
eral Electric system. Patients were in the prone position. Parallel imaging
techniques along with 8 channel dedicated breast coils were used. A typical
breast MRI protocol consists of the following pulse sequences:

1. Axial T1 Fast-Spin-Echo (FSE) which elevates hemorrhagic cysts and
facilitates the simultaneous comparison between the patient’s breasts.

2. Axial T2 Fat-Saturation (FS) which pronounces cysts, pathologies, tu-
mors.

3. Axial Diffusion-Weighted-Imaging (DWI) which pronounces solid anatom-
ical damages and lymph nodes, through high magnetic signal.

4. Dynamic T1 Fat-Saturation (FS) which pronounces information about
the wash in and wash out process of the contrast medium (+C).

5. Axial T1 Fast-Spin-Echo (FSE) after IV contrast medium injection
(+C).

6. Coronal T1 Fast-Spin-Echo (FSE) after IV contrast medium injection
(+C).

Typical values of the variables for the imaging information of the above
pulse sequences are illustrated in Table 2. Typical values of the variables
for the dynamic information of the above pulse sequences are illustrated in
Table 3. At this point, it should be pointed out that there are more quantity
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parameters related to the dynamic contrast-enhanced T1-weighted MRI data
in the literature, i.e. [37].

Axial T1 FSE Axial T2 FS DWI Axial T1 FSE + C Coronal T1 FSE + C

TE (ms) 16 93 94 16 16
TI (ms) - - - - -
TR (ms) 740 5960 6300 740 480

Thickness (mm) 4 4 4 4 4
Spacing (mm) 1 1 1 1 1.5

FOV (cm) 28 28 36 28 35
Matrix 512 × 320 512 × 320 192 × 160 512 × 320 512 × 320

Table 2: Typical values of the parameters of the MRI imaging pulse sequences.

Dynamic T1 FS + C

TE (ms) 2
TI (ms) 7
TR (ms) 4

Thickness(mm) 2
Spacing (mm) 0

FOV (cm) 24
Matrix 256 × 192

Table 3: Typical values of the parameters of the MRI dynamic pulse sequences.

The total number of images accumulated in each pulse sequence is a
function of the size of the breasts to be imaged and the prescribed thickness-
spacing of each slice. MRI packages all the information of every slice in a
special file format, called dicom [38]. These files, besides the MRI image, also
contain various other information such as patient data, examination date and
others. In order to be processed, the MRI image has to be separated from
the header information contained in the dicom file.

The current visual environment makes use of the dynamic T1 Fat - Sat-
uration grayscale MRI images, acquired at sagittal plane. The images are of
dimensions 256×256, which means that each MRI image is sustained by 256
pixels horizontally and 256 pixels vertically. Each pixel has depth 8, meaning
that it can be assigned with intensity values belonging to the integer interval
of 28 = 256 elements [0, 255]. Value 0 corresponds to dark black color and
value 255 to bright white. Intermediate colors correspond to intermediate
integer values [39].
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BreDAn normalizes the intensity values of the image pixels to the float-
ing number interval [0, 1], with 0 corresponding to dark black and 1 cor-
responding to bright white. Intermediate colors correspond to intermediate
floating point values. The normalization process takes place because com-
puter arithmetic works better with floating point numbers in the interval [0,
1], minimizing floating point and rounding errors, resulting from mathemat-
ical operations.

3. BreDan: A visual tool for breat MRI data analysis

In recent years, there has been a great effort for the exploitation of pow-
erful computer systems in order to support clinical decisions. The, so called
CDSS (Clinical Decision Support Systems), provide useful diagnostic infor-
mation in order to facilitate clinical decisions and constitute a very interesting
area of research [40–49]. As a direct consequence, more sophisticated CDSS’s
attempt to detect suspicious areas in the different anatomies of the human
body using diagnostic medical images.

CDSS can be further evolved in order to provide automated diagnosis.
This is called CAD (Computer Aided Diagnosis) [50–52]. CAD in breast MRI
imaging can improve cancer detection by increasing radiologists’ sensitivity
[53, 54]. The promising science behind CAD can reduce potential errors
and variation of qualitative analysis [55] and improve standardization among
different MRI work-stations [56].

BreDAn is a CDSS. A step by step presentation of BreDAn follows.
The application, in practice, simulates the radiological diagnostic methodol-
ogy.

3.1. Step 0: Initialization

Initially, the user loads to the application the dicom files of a chosen slice
of the MRI examination, corresponding to the dynamic images before and
after the IV injection of contrast medium. BreDAn gives the user the option
of windowing. If windowing is omitted the application automatically proceeds
to the next step, taking into consideration all the pixels of the scanned images,
i.e. pixels corresponding to breast areas, pixels corresponding to background
and pixels corresponding to the header. However, this is computationally
time consuming and the use of windowing is recommended. In this case, the
user needs to define a rectangular region of interest (ROI), containing the
part of the image that represents the breast area, avoiding other information
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such as header and background. Note here that the defined ROI has to
cover the whole breast area, otherwise potentially pathological areas can be
missed. Windowing makes the application more efficient, as the algorithms
of the tool will focus only on the specific ROI (Figure 2).

Figure 2: Applying windowing.

3.2. Step 1: Intensity filter

In this step, the application requires the user to define an intensity thresh-
old, stated as prc (a similar approach is illustrated in [57]). Then, BreDAn,
for each of the input images, surrounds the areas where the pixel MRI signal
intensity exceeds the value Ithres, where:

Ithres = Iavg + prc · Iavg

Value Iavg denotes the average pixel MRI signal intensity of the current MRI
image. A low prc value will highlight areas with low pixel intensities as well
as areas with high pixel intensities. Selecting higher threshold value for prc,
only areas with high pixel intensities will be marked, which correspond to
potentially pathological areas. Figure 3 displays this step for prc = 2.5.

Figure 3: Potentially pathological areas derived for prc = 2.5 for the 8 consecutive pulse
sequences.

The user can experiment with the value of prc, which acts as a sensitivity
measure (low prc values correspond to high sensitivity, while high prc values
to low sensitivity), until the visual result of the potentially pathological areas,
are clearly pronounced. After the prc value is inserted, the selection of the
potentially pathological areas is performed automatically, minimizing the
human error.

3.3. Step 2: Intensity curve slope filter

In this step, the intensity curves of all potentially pathological areas of
all images are constructed. Let SIi be the average intensity of a potentially
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pathological area in image i and SI0 the average intensity of the same po-
tentially pathological area in the pre-contrast medium administration image.
The average intensity of the assigned area is obtained by averaging the in-
tensity values of the pixels forming this area. Then, the percentage intensity
modification in image i, with respect to the pre-contrast medium adminis-
tration image, is given by the following formula (wash-in rates formula [3]):

SIi − SI0
SI0

· 100

After the construction of the intensity curves for each potentially pathological
area, the areas whose curves appear descending in three consecutive time
points, starting from the second scan, are marked, while all other areas are
ignored. The marked areas are the high probability pathological areas. Finally,
all the high probability pathological areas are combined into a single image
and displayed on the computer screen (Figure 4) Notice that the radiologist
does not need to study one by one all the intensity curves, as used to be the
case, since this is automatically performed by BreDAn.

Figure 4: High probability pathological areas.

3.4. Step 3: Color fragment filter

After demonstrating the high probability pathological areas, BreDAn
produces color maps with respect to the maximum slope of signal increase
and the maximum slope of decrease (Figure 5). Let SIi be the average
intensity of high probability pathological areas in image i, and SIi+1 the
average intensity of the same area in image i + 1. Then, the slope between
successive pulse sequences i and i + 1, is given by:

SIi+1 − SIi
(i + 1) − i

= SIi+1 − SIi

For the maximum slope of increase color map, the signal is mapped according
to the rainbow color scale (Figure 6). In this scale, red color corresponds to
high signal intensity, i.e. fast wash-in, whereas blue color corresponds to
low signal intensity, i.e. slow wash-in. Similarly, for the maximum slope
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Figure 5: Left: Maximum slope of increase, Right: Maximum slope of decrease.

of decrease color map, red color corresponds to fast wash-out, whereas blue
color corresponds to slow wash-out processes.

In the sequel, the tool requests the user to define a chromatic thresh-
old variable (Tc) representing a desired wash-in/wash-out rate metric. This
variable takes values within the interval [0, 1] and each value is assigned to
a color based on the rainbow palette (Figure 6). 0 is mapped to blue, 1 is
mapped to red and intermediate values to intermediate colors obtained by
linear interpolation [39].

Figure 6: Left: Connection between Tc value and colors through rainbow pallet.

Based on the Tc value, for each high probability pathological area, the
application finds the average color of the corresponding area of the two (in-
crease / decrease) color maps. Then, these two color averages are mapped to
two scalar values (using inverse linear interpolation [39]). Let TColorMapIncrease

and TColorMapDecrease be the two aforementioned scalar values. If the following
statement holds:

Tc < TColorMapIncrease AND Tc < TColorMapDecrease

then the high probability pathological area is characterized as diagnos-
tically pathological area, as it introduces wash-in/wash-out rates larger than
the user selected reference value Tc, otherwise it is ignored as noise.

Finally, after Tc value is inserted, all the diagnostically pathological areas
are automatically marked and displayed in red color for emphasis (Figure 7).

Figure 7: Diagnostically pathological areas with Tc = 0.4.
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3.5. Step 4: Intensity curves display

Finally, the user can manually select multiple ROIs, and their correspond-
ing intensity curves are automatically displayed. For example, in Figure 8
two ROIs have been chosen. The blue ROI represents pathological area,
while the green ROI represents healthy tissue. The blue curve (blue ROI)
has more than three consecutive descends corresponding to wash-out process.
Biopsy showed that that was a case of malignant tumor. The green curve
(green ROI) displays a continuous wash-in process.

Figure 8: Multiple ROIs and corresponding intensity curves (green: healthy tissue, blue:
pathological tissue).
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BreDAn allows the user to select any MRI breast image to process. In
addition, it displays patient information and enables resulting image storage
on a predefined directory of the terminal. Finally, it provides instructions
on the application screen, facilitating the usage of the tool and navigating
the radiologist through the environment. Concluding, BreDAn routines
correspond to the commonly used diagnostic methodology, as indicated in
Figure 9.

Figure 9: Algorithm for MRI data interpretation [3].

4. Evaluation of BreDAn

BreDAn was extensively tested and evaluated using 534 breast MRI data
sets (522 F, age group 31-79 years old and 12 M sets, age group 55-68 years
old). All MRI examinations had been performed on the same 1.5 T Signa
HDxt GE system using the same protocol. Three characteristic clinical cases
illustrate its applicability and potential.

4.1. 1st Case: Normal case

The first clinical case concerns a normal healthy case. No pathological
areas were detected by the application. In addition, the intensity curves of
four randomly selected areas (Figure 10 left) are of Type I (Figure 10 right).
Both maximum slopes of intensity increase-decrease color maps (Figure 11)
illustrate the marked areas (ROIs), with medium signal intensities reflecting
a slow wash-in process and the absence of a wash-out one.

Figure 10: Left: ROIs randomly selected, Right: Their corresponding intensity curve.

Figure 11: Left: Maximum slope of increase color map, Right: Maximum slope of decrease
color map.
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4.2. 2rd Case: A case of benign tumor

The second clinical demonstration concerns a case of a benign tumor,
according to biopsy. A pathological site was successfully detected and clearly
marked by BreDAn (Figure 12 left). The corresponding Type II curve,
displays three consecutive signal decreases reflecting a slow wash-out process
(Figure 12 right). Maximum slope of increase color map (Figure 13 left)
displays a marked area of high signal intensities, i.e. a fast wash-in process,
while the maximum slope of decrease color map (Figure 13 right) displays
a marked area with relatively high signal intensities, i.e. a relatively slow
wash-out process.
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Figure 12: Left: High probability pathological areas as marked by the application (prc =
2.5, Tc = 0.4), Right: Its corresponding intensity curve.

Figure 13: Left: Maximum slope of increase color map, Right: Maximum slope of decrease
color map.

4.3. 3rd Case: A case of malignant tumor

The third clinical demonstration concerns a case of breasts with a malig-
nant tumor, according to biopsy. In the following Figures, BreDAn detects
and marks the cancerous area (Figure 14 left) and automatically displays its
intensity curve (Figure 14 right) which is of Type III. A wash-out process
is clearly present. Maximum slope of increase/decrease color maps are also
generated and illustrated in Figure 15. Pathological areas are displayed in
both color maps with high signal intensities, corresponding to fast wash-in
and fast wash-out processes.

Figure 14: Left: High probability pathological areas as marked by the application (prc =
2.5, Tc = 0.925), Right: Its corresponding intensity curve.

Finally, BreDAn was compared and assessed with FuncTool, a commer-
cial software package, developed by GeneralElectricMedicalSystems and
approved by the Food & Drug Administration (FDA). 534 breast MRI data
sets were analyzed using both tools and the results were found to be in signif-
icant agreement, but in the case of using BreDAn the results were produced
much faster. The nature of the data set is illustrated in Table 4 and can be
used as ground truth. In Table 5, the system evaluation on the entire testing
data sets, in terms of sensitivity and specificity, is presented. The informa-
tion that can be extracted from the aforementioned tables is very important
for the statistical evaluation of BreDAn. The high sensitivity (98%) of the
software makes it quite reliable as a clinical decision support system.

For illustration reasons an example of a breast MRI examination (F, 55
years old), with malignant tumor on the left breast, follows. The protocol
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Figure 15: Left: Maximum slope of increase color map, Right: Maximum slope of decrease
color map.

of pulse sequences and parameters used was presented in section 2. In the
left part of Figure 17, from top to bottom, the resultant maximum slope of
increase-decrease color maps and intensity curve of a selected ROI (Figure
16), generated by FuncTool are illustrated. In the right part of the same Fig-
ure, the respective color maps and intensity curve for the same ROI, derived
by BreDAn are presented. Agreement between the outputs generated by
the two applications is satisfactory. Small deviations between the intensity
curves of the applications are attributed to the different chromatic interval
of values assigned to pixels. Dicom image chromatic interval takes values
within [0, 255]. BreDAn normalizes pixel chromatic values to [0, 1]. Func-
Tool does not use a standard value interval as signal intensity increase, in
T1-weighted MRI images, is not exactly proportional to the concentration of
contrast medium accumulated within a lesion, leading to scan-by-can analy-
sis [58] (unlike, e.g., in contrast agent enhanced CT imaging where there is a
direct correlation between contrast agent concentration and Hounsfield units
[59]).

In addition, BreDAn encapsulates the exact pathological area, through
an accurate segmentation process, avoiding inaccuracies produced by the
corresponding manual processes in FuncTool. This leads to slightly different
signal intensity averages between the two applications.

Figure 16: ROI corresponding to the intensity curves of Figure 16 (left: FuncTool, Right:
BreDAn).
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Figure 17: Results of FuncTool (left) and BreDAn tool (right).
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Nr Total Cases Nr Pathological Cases (%) Nr Normal Cases (%)

534 51 (9.55%) 483 (90.45%)

Table 4: Illustration of the nature of the data set, used for testing BreDAn, confirmed
by biopsy.

Evaluation
Matrix Positives Negatives Sensitivity (%) Specificity (%)

True 50 314 98% 65%
False 169 1 - -

Table 5: Statistical evaluation of BreDAn in 534 cases.

5. Conclusions and future challenges

BreDAn is a user friendly visual environment for breast MRI data anal-
ysis that automates the process of detecting potentially pathological lesions.
To achieve its purpose, the software simulates the modern methodology that
is used by radiologists to detect, differentiate and stage breast pathologies.
It can facilitate and accelerate the work of radiologists in an accurate and
reliable manner minimizing human error. Furthermore, the BreDAn visual
platform has been tested and assessed with 534 clinical cases and produced
reliable and successful results.

A very interesting future challenge is to improve the developed software,
using statistical algorithms and other analytical methods, in order to further
increase the probability of correct suspicious areas detection. This will im-
prove the detection accuracy of the tool and will help towards the assignment
of a more specific and targeted therapy plan.

Finally, another future challenge would be the evolution of BreDAn from
a CDSS to a CAD system. To this end, the increase of the specificity levels
of BreDAn is essential. This can be made possible with the exploitation
of the 534 breast MRI data sets and the usage of specified pattern recogni-
tion methods, in order to proceed to automatic classification of the findings
(benign, malignant, invasive, noninvasive). The classification will lead to the
diagnosis and it could be realized according to the kinetic features illustrated
in [60–62] and the morphological features illustrated in [62].
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6. Mode of availability

BreDAn is not an open source application. A demonstration video is
available at http://graphics.di.uoa.gr -¿ Research -¿ Resources. If you are
interested in obtaining BreDAn, please contact a.danelakis@gmail.com.
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