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Abstract 3D object retrieval based on range image queriesepositories, thus making content-based retrieval a key op
that represent partial views of real 3D objects is presenteetration. 3D model retrieval has considerably matured and a
The complete 3D models of the database are described bynmmber of very accurate and robust descriptors have been
set of panoramic views and a Bag-of-Visual-Words model igproposed by our team [32,2,35] and others [9, 25,43,28].

built using SIFT features extracted from them. To addres3hese methodologies use a 3D model query to search a database

the problem of partial matching, we suggest a histogranef 3D models in a content-based manner. However, in prac-
computation scheme, on the panoramic views, that reprdical situations, it is often difficult to come up with a suita
sents local information by taking into account spatial con-3D model query in the first place: this has either to be found
text. Furthermore, a number of optimization techniques arer built, a random and time-consuming action, respectively
applied throughout the process, for enhancing the retrieva Nowadays, 3D scanners that typically produaage im-
performance. Its superior performance is shown by evaluakges (also called ange scans and/ordepth buffers) from real

ing it against state-of-the-art methods on standard datase world 3D objects are becoming common and cheap, e.g. Mi-

Keywords 3D Object Retrieval Range ScansPanoramic

Views - SIFT - Bag-of-Visual-Words Model

1 Introduction

crosoft Kinect [38]. It would thus, be beneficial, to use the
range scans of real objects as queries on the 3D model repos-
itories.

However, a number of challenges exist. First, a range im-
age represents only a partial object. Thus, it is not sttaigh
forward to effectively match such data against a complete
3D model representation, since an important part of it may

In the past few years, the increasing availability of lovsico P missing. Second, range images can be rough and noisy.
3D scanners has resulted in the creation of large 3D moddihird, it is not straightforward how to bridge the gap be-
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tween the 3D model representation and the range image, i.e.
how to produce descriptors that can be relatively invatiant
these two representations. The representation gap makes it
difficult to extract a signature that will be (at least pdiyia
similar when presented with a complete, clean 3D model
and when presented with a partial and noisy range image of
a similar query object.

In the proposed approach, we have extended our previ-
ous work [34] and addressed the aforementioned challenges
in the following way. For the complete database 3D mod-
els a set of panoramic views is extracted and consecutively
the SIFT algorithm [27] is applied on hierarchically divitie
spatial areas of the views. These SIFT descriptors are used
to feed a Bag-ofisual-Words (BoVW) model [12], simi-
lar to the ones used for the categorization of textual infor-
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mation [20,40]. Using the trained BoVW model, for eachet al. [1] explore the use of Depth Gradient Image (DGI)
3D model of the database, as well as for every range immodels for the recognition of 3D models. The DGI repre-
age of the query objects, a signature in the form of spatiatentation synthesizes both surface and contour informatio
histogram is defined. This signature is generated from théor a specific viewpoint, by mapping the distance between
same type of information representation (i.e. range imageach contour point and the edge of the viewpoint image in
and contains local information taking into account spatiaterms of internal and external object pixels. This measure
context, thus bridging the representation gap. The magchinis computed for the entire model, taken from the nodes of
between a query model and each of the database modelsastessellated sphere. Frome et al. [18] introduced two re-
based on these signatures. gional shape descriptors, the 3D generalization of the 2D

The remainder of the paper is structured as follows. Irshape context descriptor and the harmonic shape descriptor
Section 2, recent work in 3D model retrieval based on rang&he authors evaluate the performance of the proposed de-
image queries is presented. Section 3 details the propossdriptors in recognizing similar objects in scenes withsgoi
method and Section 4 presents experimental results achiever clutter.

in the course of the method's evaluation. Finally, conclu-  onpuchi et al. [30] proposed the Multiple Orientation

sions are drawn in Section 5. Depth Fourier Transform (MODFT) descriptor where the
model is projected from 42 viewpoints to cover all possible
2 Related Work view aspects. Each depth buffer is then transformed to the

r — 6 domain and the Fourier transform is applied. To com-

Over the past few years, the number of works addressingare two models, all possible pairs of coefficients are com-
the problems of multimodal 3D object retrieval and recogni?ared which inevitably increases comparison time. Stamiop
tion (and particularly those based on range image queries'}?s et al. [41] present a retrieval method based on the match-
have increased significantly. Although this task still remsa Ing of salient features between the 3D models and query
non-trivial, the quality of existing works shows that vemy-i ~ fange images. Salient points are extracted from verticds th
portant steps have been made in the field. Common retrievkhibit local maxima in terms of protrusion mapping for a
scenarios deal with two different query image types: (i) di-specific window on the surface of the model. A hierarchical
rectly captured range images from real 3D objects (i.egjsinmatching based scheme is used for matching. The authors
a 3D range scanner) and (ii) artificially produced range im€Xperimented on range images acquired from the SHape RE-
ages via depth buffer capturing of complete 3D models. Th&ieval Contest 2007 (SHREC'OR)atertight models [21]
first query image type is closer to real-world applicationsand the Princeton Shape Benchmark (PSB) standard [37]
and is being increasingly adopted as 3D scanning becomd&atasets. Chaouch and Verroust-Blondet[7] presenta 2D/3D
common place and corresponding datasets are created. shape descriptor which is based on either silhouette ohdept
Hetzel et al. [22] explore a view based approach for thduffer images. For each 3D model a set of six projections
recognition of free-form Objects in range images_ They Comj.n calculated for both silhouette and depth-buffers. The 2D
bine a set of local features (pixel depth, surface normal anfourier transform is then computed on the projection. Fur-
curvature metrics) in a multidimensional histogram in or-thermore, they compute a relevance index measure which
der to achieve classification. Johnson and Hebert [24], udgdicates the density of information contained in each 2D
a spin image representation scheme in order to achieve &{iew. The same authors in [8] propose a method where a
multaneous recognition of multiple 3D objects in cluttered3D model is projected to the faces of its bounding box, re-
scenes. The spin image representation is used for matcfulting in 6 depth buffers. Each depth buffer is then decom-
ing surface points. Chen and Bhanu [10] introduce a localPosed into a set of horizontal and vertical depth lines that
surface descriptor for 3D model recognition. This descrip2re converted to state sequences which describe the change
tor is computed on feature points of a 3D surface, wherdn depth at neighboring pixels. Experimentations were con-
large shape variations occur. The local surface descriptor ducted on range images artificially acquired from the PSB
characterized by its centroid, its local surface type anb a 2 dataset. Shih et al. [36] proposed the elevation descriptor
histogram. The latter shows the frequency of occurrence d¥here six depth buffers (elevations) are computed from the
shape index values (calculated from principal curvatwres) faces of the 3D model's bounding box and each buffer is de-
the angles between the normal of the reference feature poif€ribed by a set of concentric circular areas that give the su
and those of its neighbors. Ruiz-Correa et al. [33] propos€f pixel values within the corresponding areas. The models
a method for recognizing 3D objects in real range imagavere selected from the standard PSB dataset.
scenes. Initially, shape class components are learnt and ex Experimenting on the SHREC'0Querying with Par-
tracted from range images and then the spatial relatioashigial Models [15] dataset, Daras and Axenopoulos in [13]
among the extracted components are used to form a modetesent a view-based approach for 3D model retrieval. The
that consists of a three-level hiererchy of classifiers.Ada 3D model is initially pose normalized and a set of binary
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3.1 Panoramic Views Computation

For each 3D model of the database a number of panoramic
views (or cylindrical projections) are extracted. These-pr
jections are computed on cylindrical axes that are perpen-
dicular to and uniformly distributed over the surface of the
3D model’s circumscribed sphere, in accordance with the
PANORAMA [32] projection methodology.

() (b) To obtain a panoramic view, we project the 3D model
to the lateral surface of a cylinder of radisand height
Fig. 1: (a) A projection cylinder for the acquisition of a H — 2R centered at the origin with its axis parallel to one
3D model’'s panoramic view and (b) the corresponding disof the selected axes (in this example the principal axige
cretization of its lateral surface to the set of pois(ig, yv) Fig. 1a). We set the value &0 2 dmax Wheredmay is the
maximum distance of the model’s surface from its centroid.
(silhouette) and range images are extracted from predefinéa Fhe fO"O\_ng’ We param eterize the lateral surfa_ce of the
views on a 32-hedron. The set of features computed on th%’“nd?r using a set of pointkg,y) whereg € [0,27] is the
views are the Polar-Fourier transform, Zernike moments angngle_m thexy plane.y € [0,H] and we sample thg andy
Krawtchouk moments. Each query image is compared to a| oordinates at_ratesthdB, res_pectlvely (we sd8 = 360).
the extracted views of each model of the dataset. Ohbuchi thus we obtain the set of pointkq, y) whereq, = u
al. [31] extract features from 2D range images of the mode /(68), W=V H/B, ue [O.’ 68 1] andv € [0,B—1].
viewed from uniformly sampled locations on a view sphere. hese points are shown in Fig. 1b.
For every range image a set of multi-scale 2D visual fea- The next step is to determine the value at each point
tures are computed using the Scale Invariant Feature Tran§4u, Yv). The computation is carried out iteratively for=
form (SIFT) [27]. Finally, the features are integrated into0;1,-..,B—1, each time considering the set of coplas(gx, yv)
a histogram using the Bag-of-Features approach [20]. ThROINtS, i.e. a cross section of the cylinder at heigtand for
same authors enhanced their approach by pre-processing $@ch cross section we cast rays from its ceafen the @,
range images, in order to minimize interfere caused by angirections. To capture the position of the model’s surface,
existing occlusions, and also and by refining the positionfor each cross section at heightwe compute the distances
ing of SIFT interest points, so that higher resolution imﬁgefrom ¢y to the intersections of the model’s surface with the
are favored [19, 29]. Their works have experimented on anéRYs at each directioq,.
have participated on both corresponding SHREC@ry-
ing with Partial Models and SHREC'10Range Scan Re-
trieval [16] contests. Wahl et al. [44] propose a four-dimensional
feature that parameterizes the intrinsic geometricatiogla
of an oriented surface point pair (surflets). For a 3D model
set of surflet pairs is computed over a number of uniformly
sampled viewing directions on the surrounding sphere. Thi
work was one of the two contestants of the SHRE@Rafge
Scan Retrieval track.

3 The Proposed Method

In the sequel, the proposed methodology on 3D object re
trieval via range image queries will be detailed. Initially (@) (b)

let us consider that the complete 3D model dataset and the

query range image set define two different entities of the reFig. 2: (a) An example 3D model and (b) its corresponding
trieval pipeline, due to their difference in representatmd  cylindrical projection on th&-axis.

processing strategies. At each step, we will indicate wafch

the two sets is regarded. Key concepts that will be discussed

in what follows: Panoramic Views computation, SIFT de-  Let pos(q@,,yv) denote the distance of the furthest from
scriptors extraction, Bag-of-Visual-Words modelling @mh- ¢, point of intersection between the ray emanating frgm
tial Histograms. in the @, direction and the model’s surface; theim,, yv) =
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pos(qu,yv). The value of a poing(q,, yy) lies in the interval
[0,R], whereR denotes the radius of the cylinder. .

A <_:yI|ndr|caI prole_ctlon can be viewed as a 2_D gray-y(x,y) = Zl‘/x'_y' (1)
scale image where pixels correspond to $t@,,yy) inter- i
section points in a manner reminiscent of cylindrical textu
mapping [42] and their values are mapped to[hé] inter- To compare the SIFT vectors with a Hellinger kernel is a
val. The number of extracted cylindrical projections foclea simple two-step algebraic manipulation (thus easy to imple
complete 3D model is 60, which maintains acceptable proment in any existing SIFT implementation). Fitstnormal-
cessing speed and coverage of the surface of the 3D modeization of the SIFT vector, which originally h&$ norm [27,
circumscribed sphere. In Fig. 2a, we show an example 33], and then square-rooting each of its elements. Computing
model and in Fig. 2b the unfolded visual representation oEuclidean distance in the feature map space is equivalent to
its corresponding cylindrical projecticiq,, yv)- Hellinger distance in the original space:

3.2 SIFT Descriptors Extraction \/)—(T\/y —H(xY) )
After the panoramic view extraction, the SIFT (Scale Invari
ant Feature Transform) [27] descriptor is calculated on the
produced cylindrical depth images. The first step to the SIFB.3 Bag-of-Visual-Words Modelling
descriptor computation is the definition of an interest poin
set on the image, upon which the descriptors are calculatefnce the panoramic views extraction and the SIFT descrip-
The original implementation by Lowe, defines these intertor calculation steps are complete, the Bag-of-Visual-dgor
est points through the Difference of Gaussians (DoG) al{BoVW) visual model for the database is built. In visual in-
gorithm, which is geared towards enhancing the edges arf@rmation retrieval, the BovW model defines that each im-
other details present in the image. It has been experime@ge contains a number of locabual features. Since every
tally found that the calculation of the SIFT descriptorsiove Visual feature, or collection of similar visual featureanc
the complete image for a large number of randomly selectedppear with different frequencies on each image, matching
points [19,5, 6] (frequently defined as Dense SIFT/ DSIFTthe visual feature frequencies of two images, achieves cor-
in the literature), instead of selecting a limited number ofrfespondence. In our case, the SIFT descriptors are defined
interest points, yields better results in terms of retli@aea  as the BoVW model's visual features.
curacy. The basic step in the process of building the BovW model
At each interest point, an image descriptor is computedior the 3D model database is the generation obdebook
The SIFT descriptor is defined as a position-dependent higor a vocabulary), a collection of visual features that appe
togram of local gradient directions around the intereshpoi on each image. The codebook is generated by considering
To achieve scale invariance of the descriptor, the sizeisf th the visual features of a representative number of training
local neighbourhood is normalized in a scale-invariantmandatabase models. To achieve greater flexibility, rathem tha
ner. To achieve rotational invariance of the descriptog, th generating the codebook by selecting individual visual fea
dominant orientation of the neighbourhood is determinedures of the training models, the corresponding panoramic
from the orientations of the gradient vectors in this neighviews are clustered into several similar patches, abule-
bourhood and is used for orienting the grid over which thewords. One simple method is performirlgmeans cluster-
position-dependent histogram is computed. ing [26] over all the visual features. Codewords are then de-
One recently proposed improvementtechnique for SIFTfined as the centers of the learned clusters. The number of
by Arandjelovic and Zisserman [3], aims at enhancing theéhe clusters is the codebook size. Thus, each patch in an im-
similarity measure used when comparing the descriptorsige is mapped to a certain codeword through the clustering
The authors show that using a square root (Hellinger) kerngirocess and the image can be represented by the histogram
(also known as the Bhattacharyya’s coefficient [4]) insteadf the codewords.
of the standard Euclidean distance measure, for the compar- After the codebook generation procedure, the next step
ison of the SIFT descriptors (or SIFT histograms), increaseis the description of the database 3D models using the corre-
performance. The intuition behind this proposal is based osponding codewords. In a similar manner, for each panoramic
the observation that Euclidean distance can be dominated lwjew of the database 3D model set, the visual features are
large bin values, whereas Hellinger distance is more senstcomputed and matched to their closest codewords, by com-
tive to smaller bin values. paring them to the corresponding clusters, generated in the
The Hellinger kernel for twd.! normalized histograms, previous step. Again, tHemeansalgorithm is used for match-
x andy is defined as: ing. Note that thek-means clustering method makes use of
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the Euclidean distance for the comparison between the clugge, respectively. On the third level, the complete pan@ram
ters and the visual features. According to the RootSIFTstranview image is partitioned twice along the horizontal dimen-
formation, applied on the visual features, this resultssn u sion and three spatial histograms are computed for each of
ing the Hellinger distance for the operation. The set of histhe three resulting subimages. The process continuesauntil
tograms describing the frequency of occurrence of the gereertain level of progressive partitioning is reached, \hic
erated codewords, for each 3D model’s panoramic views, isur case has been selected to be 6.
stored as the corresponding 3D model’s signature. As the complete panoramic view images contain 360°of
information, each level of progressive partitioning proes
spatial histograms that reflect a fraction of that informati
3.4 Spatial Histograms (i.e. 180°, 120°, 90°, ..., etc). Therefore, the matching be
tween each spatial histogram of a 3D model and the cor-
In an extension of the standard Bag-of-Visual-Words mOdelresponding histograms of a query range image needs to be
described in the previous subsection, and targeting thefmat \yeighted based on a ratio that measures the possibility of
ing between a complete 3D model and a range image repchieving a match between the contained information of the

resenting a partial query, we have modified the histogramyyo (spatial) histograms, at each level of progressiveipart
generation in the following manner. Since a panoramic vieWjoning:

of a complete 3D model contains a 360°of information, an
attempt to match it to a query range image, which contains
only a portion of that information, will produce poor result PQratioi)
in the majority of cases. To alleviate this problem we sugges
a progressive partitioning scheme for the panoramic views o ) )
of the database 3D models. Each panoramic view image WherePangie(i) is the Field-of-View [42] of the panoramic
is iteratively split along the horizontal dimension (wijith View (sub)image at thé" level of progressive partitioning

which is perpendicular to the axis of the corresponding pro&nd Qangle is the Field-of-View of the query range image,
jection cylinder (see Fig. 3). measured in degrees. Tkinge iS based on the properties

The spatial histograms are then computed for each réf the camera used for capturing the range images and in
sulting subpart of the image. For example, on a first level oPUr €xperiments, we have estimated this angle at 60°, which

progressive partitioning, the spatial histogram is coregut Simulates the projection of the query range image to one of

on the complete panoramic view image of the 3D model. Orihe faces of a hexagon.

the second level, the panoramic view image is partitioned

once along the horizontal dimension and two spatial his- ]
tograms are computed for the resulting left and right subim3-5 Range Image Matching

Qangle
I:)angl e(i )

3)

Based on the constructed BoVW model, for the database
3D models, the matching of the query range images is per-

formed. The query range images are usually very noisy, due
to the capturing process and an extra preprocessing step is
often necessary before the actual matching. Here, we have
followed a simple strategy that attempts to fill any holes,

ll resulting from the object scanning and/or eliminate any out
liers that do not belong to the actual objects (i.e. parthef t
background).

Initially, morphological dilation [14] is performed on the

ll original query range image. This step grows the range im-
age regions, so that any moderate holes, that could have oc-
curred due to errors in the capturing process, become small
enough, in order to be considered as candidates for clos-

(b)

ing (see Fig. 4b). On the second step, morphological clos-
] ] ] ] (ing[14] is performed on the dilated image, in order to achiev
Fig. 3: (a) simulated rendering of three progressive partiz|osing of any small open areas that have been produced due
tioning levels for a complete 3D model. At each level only, the gigitization process (see Fig. 4c). The next step of
one subimage is displayed. (b) unwrapped cylindrical proghe preprocessing strategy is the morphological erosiéh [1
jections of the aforementioned progressive partition®g | of the image, so that it returns to its original form, with

els with all subimages illustrated. any small to moderate holes closed (see Fig. 4d). All of

@
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(@ (b) (© (d)

Fig. 4: An example query range image (a) before preprocgséir) after dilation, (c) closing and (d) erosion steps, in
consecutive order.

the aforementioned morphological operators are applied us The complete descriptor extraction and matching algo-
ing disk-shaped structuring elements of size 3. The finatithm is outlined inAlgorithm 1 andAlgorithm 2, respec-
step of the preprocessing strategy involves smoothing thively.

range image by convolving it with an isotropic Gaussian ker-

nel, which ensures that any rough edges are Ieyeled and.alnd:’l'gorithm 1 Bagof_VisualL.Words Model Building Algo-
small outlying regions, remote from the main object, are dis

carded rithm
) Input: 3D_model s/*Database 3D model set*/

Following the preprocessing, the range images are used: n models = card(3D_models) /*The number of 3D models of the
as queries for the 3D model database. In a strategy similar database*/
to the histogram computation for the panoramic views of the2: n-axes = 60 /*Define 60 random axis points*/
database 3D models, the queries are com_pared to the moci—; Po]?XHI::16—> n.models do
els of the database. The SIFT descriptor is extracted frons:  axes— rand(n_axes)
the range image, RootSIFT transformation is applied on thes:  for m= 1 — n_axesdo
descriptor and finally, based on the generated Bag-of-Visua /- pan(n, m) = EXTRACT_PVIEW(3D_model (), axes(m))
Words, a histogram describing the codebook frequencies of; f';;E?ET%)::DRSC')%TT(%’TE%TRWm))
occurrence is computed as the query’s descriptor. 10:  end for
The similarity between the spatial histograth®f a 3D  11: end for
model and the histogramof a query range image is calcu- 12: train-sét = randsi ft,n.model /10)

13: codebook = TRAIN_BOVW(train_set)

lated as follows: for each levelof progressive partitioning, 14. for n— 1 — n.modds do

the spatial histogramid, are compared to the query range 15:  for m= 1 — n_axes do

image histogranh using as a metric the Normalized His- 16: for | =1 — max| do _
togram Intersection distanc®; (H, h)), defined by [11] i; eng'fStolr(”=m) = EXTRACT.HIST (codebook, rsi ft(n, m))
as: 19:  end for

20: end for

21: return codebook, hist

D min(H (i), h(i
D (H.) = 5 TR @
= Note that the EXTRACIPVIEW, DSIFT, ROOTSIFT,
The best match is recorded and weightedP@aio for TRAIN_B_OVW and EXTRACIHIST functions r_eferto the
the corresponding level. Then, for all progressive pariit panoramic view extraction, Dense SIFT descriptor calcula-
’ %(I)n RootSIFT transformation, Bag-of-Visual-Words cede

ing levels, the best matches are summed to create the fin K i d tial) Hist tracti
distance between the query and the corresponding databa%%0 generation and (spatial) Histogram extraction opera-

model. We definenmax_| to be the maximum level of pro- tions of the pipeline, respectively.
gressive partitioning set to 6.

4 Evaluation

The datasets that we used for the experimental evaluation

max_|
Dist(H,h) = l; PQraIio(')[arngfT]m(DNHl(Hlvh))] ®) " of our method are the following: (i) SHREC’0Querying
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Algorithm 2 Query Range Image Matching Algorithm SHREC'09 Querying with Partial Models Dataset

Input: codebook, higt, query_image

Input: n_model s, n_axes /*The number of 3D models of the database
and the random axis points, as definedlgorithm 1*/

. siftq= DSIFT(query_image) o6
: rsiftg= ROOTSIFTE ftq)
. histq= EXTRACT_HIST(codebook, rsi ftq(n)) 05 T
for n=1— n_modelsdo
for m=1— n_axesdo j
query_dist(n,m) = Digt(hist(n), histq)

|
: endfor ’ \ \\:& A e Furuya - BF-GridSIFT
: end for 02 - PV -Bovww
. final _digt — min(query.dis) *‘\\H‘FL ,
s return  final dist 01 W

0,0 01 0,2 03 04 05 06 07 08 0,9 1,0
Recall

—&—Daras - CMVD Binary

8- Daras - CMVD Depth

= . Daras - Merged CMVD-Depth
and CMVD-Binary

——Furuya - BF-SIFT

SBooNourwnk

with Partial Models [15], (i) SHREC'10Range Scan Re- (g 5. comparative results based on the average P-R scores

trieval [16] and (iif) SHREC’11Shape Retrieval Contest of ¢ the SHREC'09Querying with Partial Models dataset.
Range Scans [39]. The target subset of the datasets used is

based on the generic shape benchmark constructed at NIET [17

On the first two datasets, SHREC'Q@ieryingwith Par-  the ranked list under the assumption that a user is lesy likel
tial Models and SHREC’1(Range Scan Retrieval, we com-  to consider elements near the end of the list [23,37].

pared against existing results of the participating cdarés. According to the SHREC'09 classification scheme, the
More specifically, on the SHREC'0Querying with Par-  target subset is composed of 720 complete 3D models, clas-
tial Models we compared against the variations of CMVD sjfied into 40 classes, each of which contains 18 models.

(Compact MultiView Descriptor) by Daras and Axenopou-The query set is composed of 20 range images taken from
los [13] and the BF-SIFT and BF-GridSIFT methods by2( objects from arbitrary view directions.

Furuya and Ohbuchi. On the SHREC'Range Scan Re- Figure 5, using the experimental results given in [15], il-

trieval dataset we compared against the variations of the BRj,ctrates the P-R scores for the complete SHREQQ#ry-
DSIFT-E method proposed by Ohbuchi and Furuya [29] angh \jith partial Models dataset for the proposed 3D model

the variations of the SURFLET method proposed by Hille- o trieval method (PV - BoVW) and the methods by Daras

brand et al. [44]. Furthermore, on this dataset we compareghy Fyryya. Table 1 shows the corresponding five quantita-
against the initial version of our method (without Bag-of- ;e measures for the same methods.

Visual-Words) presented in [34]. In the SHREC' $hape

Retrieval Contest of Range Scans competition, due to lack

of participants no results were published. We publish our reTable 1: Comparison between the proposed method and the
sults on this dataset for future reference. methods presented on the SHREC®@erying with Partial
aIYllodeIstrack using five quantitative measures. All measures

Our experimental evaluation is based on Precision-Rec . .
re in the intervalo, 1.

plots and five quantitative measures: Nearest Neighbor,(NN"i‘
First Tier (FT), Second Tier (ST), E-measure (E) and Dis
counted Cumulative Gain (DCG) [37] for the classes of the

corresponding datasets. For every query model that belong mxg:g'gfﬁj 06.345500 06.211977 06.228637 06.210704 06.552111
to a clas<, recall denotes the percentage of models of class \jerged cMvD-DEPTH 0350 0211 0281 0192 0.526
C that are retrieved and precision denotes the proportion ofand CMVD-BINARY ' : ' : :
retrieved models that belong to claSsver the total number ~ BF-SIFT 0.150 0114 0.186 0.116 0.423
of retrieved models. The best score is 100% for both quan—EC‘Gé'g\?\'; T ggg’g 822:15 8'232 8'282 822;
tities. Nearest Neighbor (NN) indicates the percentage of ' . . ' '
queries where the closest match belongs to the query class.

First Tier (FT) and Second Tier (ST) statistics, measure the

recall value for thgD — 1) and 2D — 1) closest matches Both the P-R scores of Fig. 5, as well as the quantita-
respectively, wher® is the cardinality of the query’s class. tive measures of Table 1 illustrate that the proposed method
E-measure combines precision and recall metrics into a sirachieves superior performance compared to the variations
gle number and the DCG statistic weights correct resultef the CMVD, as well as both the BF-SIFT and the BF-
near the front of the list more than correct results later inGridSIFT retrieval methods.

Method NN FT ST E DCG
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Table 2: Comparison between the proposed method and thedsgthesented on the SHREC'RAnge Scan Retrieval track
using five quantitative measures. All measures are in tleevat[0,1].

Method NN FT ST E DCG

BF-DSIFT-E (LFE) 0.573 0.380 0.524 0.367 0.683
Closing3x3.BF-DSIFT-E (LFE) 0.598 0.393 0.535 0.382 0.696
Closing6x6.BF-DSIFT-E (LFE)  0.650 0.424 0.569 0.398 0.713

Dilation_3x3.BF-DSIFT-E (LFE) 0.675 0.405 0.557 0.392 0.713
Dilation_6x6.BF-DSIFT-E (LFE) 0.547 0.395 0.550 0.386 0.696

SURFLET - mean 0.325 0.244 0.363 0.252 0.556
SURFLET - meanraw 0.171 0.153 0.242 0.163 0.462
SURFLET - meansqrd 0.231 0.197 0.322 0.213 0.513
SURFLET - median 0.282 0.226 0.325 0.224 0.528
SURFLET - mediansqrd 0.282 0.226 0.325 0.224 0.528
PanoramicViews - SIFT 0.512 0.374 0.466 0.256 0.598
PV - BovW 0.691 0.413 0.570 0.386 0.720
The next dataset, SHREC'IRange Scan Retrieval is The proposed method was tested on a Core2Quad 2.5 GHz

composed of the following two subsets: the target subsetystem, with 6 GB of RAM, running Matlab R2012a. The

which contains 800 complete 3D models, classified into 4&ystem was developed in a hybrid Matlab/C++/OpenGL ar-

classes, each of which has 20 models and the query subsstitecture, which resulted in low computational times. The

which contains 120 range images that have been acquireerage computation time ftive Bag_of_Visual Words Model

by capturing 3 range scans of 40 objects from arbitrary viewBuilding algorithm (se&\lgorithm 1) on a 1,000 3D model

directions. database is about 4,5 hours (an offline process). The aver-
In Figure 6, using the experimental results given in [16],20€ computation time required for querying a range image

we show the P-R scores for the complete SHRE@Rafge  object on the aforementioned database fdgerithm 2) is

Scan Retrieval dataset for the proposed 3D object retrievalabout 5 seconds.

method and the methods by Ohbuchi and Hillebrand. Table 2

shows the corresponding five quantitative measures for the )

same methods. 5 Conclusions

Table ZthShOWS ttha;tff[he proposed me;h_Od Tas tlhe h'gh?ﬁ}e proposed a spatial histograms strategy in a Bag-of-Visua
scores on three out of five measures (and is also close on lWords context that fits the information present in panoramic

remaining two measures, by a small margin). The P-Rscorgﬁews of 3D objects to the task of partial matching. Spe-
of Fig. 6, illustrate that the proposed method outperfoimast cial attention has been given to the query range image pre-

track contestants, as well as our previously proposed rdeth rocessing stage, where a number of consecutive filters are

(Pangraml(?\ﬁews - SIFT), presentfe-d |n. [34]. applied on the images in order to alleviate problems intro-
Finally, in the SHREC'11 classification scheme, the tar-qced by the digitization process. This improved 3D object
get subset is composed of 1000 complete 3D models, Calgsyrieval methodology, was evaluated not only against our
gorized into SQ classes, each of which C(_)ntams 20 m_OdEI%revious approach [34] and the corresponding SHREC'10
The query setis composed of 150 range images acquired ihnge Scan Retrieval track dataset but also on standard datasets
capturing 3 range scans, of each of 50 objects that corrgrqm the SHREC’09Querying with Partial Models track
spond to the above classes, from arbitrary view directions. 54 the corresponding state-of-the-art 3D object retrieva
In Table 3 we show the five quantitative measures foimethodologies and the SHREC'Shape Retrieval Contest

the complete SHREC'1$hape Retrieval Contest of Range  of Range Scanstrack. In every case, the proposed 3D object
Scansdataset for the proposed 3D model retrieval method. retrieval method Outperforms Competing descriptorsl

Table 3: Five quantitative measures for the proposed 3D
object retrieval method on the SHREC'Hhape Retrieval
Contest of Range Scans dataset. All measures are normal-
ized.

Method NN FT ST E DCG
PV-BovW 0.512 0.374 0.466 0.256 0.598
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Fig. 6: Comparative results based on the average P-R saortefSHREC'1(Range Scan Retrieval dataset.
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