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Abstract 3D object retrieval based on range image queries
that represent partial views of real 3D objects is presented.
The complete 3D models of the database are described by a
set of panoramic views and a Bag-of-Visual-Words model is
built using SIFT features extracted from them. To address
the problem of partial matching, we suggest a histogram
computation scheme, on the panoramic views, that repre-
sents local information by taking into account spatial con-
text. Furthermore, a number of optimization techniques are
applied throughout the process, for enhancing the retrieval
performance. Its superior performance is shown by evaluat-
ing it against state-of-the-art methods on standard datasets.

Keywords 3D Object Retrieval· Range Scans· Panoramic
Views · SIFT · Bag-of-Visual-Words Model

1 Introduction

In the past few years, the increasing availability of low-cost
3D scanners has resulted in the creation of large 3D model
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repositories, thus making content-based retrieval a key op-
eration. 3D model retrieval has considerably matured and a
number of very accurate and robust descriptors have been
proposed by our team [32,2,35] and others [9,25,43,28].
These methodologies use a 3D model query to search a database
of 3D models in a content-based manner. However, in prac-
tical situations, it is often difficult to come up with a suitable
3D model query in the first place: this has either to be found
or built, a random and time-consuming action, respectively.

Nowadays, 3D scanners that typically producerange im-
ages (also calledrange scans and/ordepth buffers) from real
world 3D objects are becoming common and cheap, e.g. Mi-
crosoft Kinect [38]. It would thus, be beneficial, to use the
range scans of real objects as queries on the 3D model repos-
itories.

However, a number of challenges exist. First, a range im-
age represents only a partial object. Thus, it is not straight-
forward to effectively match such data against a complete
3D model representation, since an important part of it may
be missing. Second, range images can be rough and noisy.
Third, it is not straightforward how to bridge the gap be-
tween the 3D model representation and the range image, i.e.
how to produce descriptors that can be relatively invariantto
these two representations. The representation gap makes it
difficult to extract a signature that will be (at least partially)
similar when presented with a complete, clean 3D model
and when presented with a partial and noisy range image of
a similar query object.

In the proposed approach, we have extended our previ-
ous work [34] and addressed the aforementioned challenges
in the following way. For the complete database 3D mod-
els a set of panoramic views is extracted and consecutively
the SIFT algorithm [27] is applied on hierarchically divided
spatial areas of the views. These SIFT descriptors are used
to feed a Bag-of-Visual-Words (BoVW) model [12], simi-
lar to the ones used for the categorization of textual infor-



2 Konstantinos Sfikas et al.

mation [20,40]. Using the trained BoVW model, for each
3D model of the database, as well as for every range im-
age of the query objects, a signature in the form of spatial
histogram is defined. This signature is generated from the
same type of information representation (i.e. range images)
and contains local information taking into account spatial
context, thus bridging the representation gap. The matching
between a query model and each of the database models is
based on these signatures.

The remainder of the paper is structured as follows. In
Section 2, recent work in 3D model retrieval based on range
image queries is presented. Section 3 details the proposed
method and Section 4 presents experimental results achieved
in the course of the method’s evaluation. Finally, conclu-
sions are drawn in Section 5.

2 Related Work

Over the past few years, the number of works addressing
the problems of multimodal 3D object retrieval and recogni-
tion (and particularly those based on range image queries),
have increased significantly. Although this task still remains
non-trivial, the quality of existing works shows that very im-
portant steps have been made in the field. Common retrieval
scenarios deal with two different query image types: (i) di-
rectly captured range images from real 3D objects (i.e. using
a 3D range scanner) and (ii) artificially produced range im-
ages via depth buffer capturing of complete 3D models. The
first query image type is closer to real-world applications
and is being increasingly adopted as 3D scanning becomes
common place and corresponding datasets are created.

Hetzel et al. [22] explore a view based approach for the
recognition of free-form objects in range images. They com-
bine a set of local features (pixel depth, surface normal and
curvature metrics) in a multidimensional histogram in or-
der to achieve classification. Johnson and Hebert [24], use
a spin image representation scheme in order to achieve si-
multaneous recognition of multiple 3D objects in cluttered
scenes. The spin image representation is used for match-
ing surface points. Chen and Bhanu [10] introduce a local
surface descriptor for 3D model recognition. This descrip-
tor is computed on feature points of a 3D surface, where
large shape variations occur. The local surface descriptoris
characterized by its centroid, its local surface type and a 2D
histogram. The latter shows the frequency of occurrence of
shape index values (calculated from principal curvatures)vs
the angles between the normal of the reference feature point
and those of its neighbors. Ruiz-Correa et al. [33] propose
a method for recognizing 3D objects in real range image
scenes. Initially, shape class components are learnt and ex-
tracted from range images and then the spatial relationships
among the extracted components are used to form a model
that consists of a three-level hiererchy of classifiers. Adan

et al. [1] explore the use of Depth Gradient Image (DGI)
models for the recognition of 3D models. The DGI repre-
sentation synthesizes both surface and contour information,
for a specific viewpoint, by mapping the distance between
each contour point and the edge of the viewpoint image in
terms of internal and external object pixels. This measure
is computed for the entire model, taken from the nodes of
a tessellated sphere. Frome et al. [18] introduced two re-
gional shape descriptors, the 3D generalization of the 2D
shape context descriptor and the harmonic shape descriptor.
The authors evaluate the performance of the proposed de-
scriptors in recognizing similar objects in scenes with noise
or clutter.

Ohbuchi et al. [30] proposed the Multiple Orientation
Depth Fourier Transform (MODFT) descriptor where the
model is projected from 42 viewpoints to cover all possible
view aspects. Each depth buffer is then transformed to the
r−θ domain and the Fourier transform is applied. To com-
pare two models, all possible pairs of coefficients are com-
pared which inevitably increases comparison time. Stavropou-
los et al. [41] present a retrieval method based on the match-
ing of salient features between the 3D models and query
range images. Salient points are extracted from vertices that
exhibit local maxima in terms of protrusion mapping for a
specific window on the surface of the model. A hierarchical
matching based scheme is used for matching. The authors
experimented on range images acquired from the SHape RE-
trieval Contest 2007 (SHREC’07)Watertight models [21]
and the Princeton Shape Benchmark (PSB) standard [37]
datasets. Chaouch and Verroust-Blondet [7] present a 2D/3D
shape descriptor which is based on either silhouette or depth-
buffer images. For each 3D model a set of six projections
in calculated for both silhouette and depth-buffers. The 2D
Fourier transform is then computed on the projection. Fur-
thermore, they compute a relevance index measure which
indicates the density of information contained in each 2D
view. The same authors in [8] propose a method where a
3D model is projected to the faces of its bounding box, re-
sulting in 6 depth buffers. Each depth buffer is then decom-
posed into a set of horizontal and vertical depth lines that
are converted to state sequences which describe the change
in depth at neighboring pixels. Experimentations were con-
ducted on range images artificially acquired from the PSB
dataset. Shih et al. [36] proposed the elevation descriptor
where six depth buffers (elevations) are computed from the
faces of the 3D model’s bounding box and each buffer is de-
scribed by a set of concentric circular areas that give the sum
of pixel values within the corresponding areas. The models
were selected from the standard PSB dataset.

Experimenting on the SHREC’09Querying with Par-
tial Models [15] dataset, Daras and Axenopoulos in [13]
present a view-based approach for 3D model retrieval. The
3D model is initially pose normalized and a set of binary
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(a) (b)

Fig. 1: (a) A projection cylinder for the acquisition of a
3D model’s panoramic view and (b) the corresponding dis-
cretization of its lateral surface to the set of pointss(φu,yv)

(silhouette) and range images are extracted from predefined
views on a 32-hedron. The set of features computed on the
views are the Polar-Fourier transform, Zernike moments and
Krawtchouk moments. Each query image is compared to all
the extracted views of each model of the dataset. Ohbuchi et
al. [31] extract features from 2D range images of the model
viewed from uniformly sampled locations on a view sphere.
For every range image a set of multi-scale 2D visual fea-
tures are computed using the Scale Invariant Feature Trans-
form (SIFT) [27]. Finally, the features are integrated into
a histogram using the Bag-of-Features approach [20]. The
same authors enhanced their approach by pre-processing the
range images, in order to minimize interfere caused by any
existing occlusions, and also and by refining the position-
ing of SIFT interest points, so that higher resolution images
are favored [19,29]. Their works have experimented on and
have participated on both corresponding SHREC’09Query-
ing with Partial Models and SHREC’10Range Scan Re-
trieval [16] contests. Wahl et al. [44] propose a four-dimensional
feature that parameterizes the intrinsic geometrical relation
of an oriented surface point pair (surflets). For a 3D model a
set of surflet pairs is computed over a number of uniformly
sampled viewing directions on the surrounding sphere. This
work was one of the two contestants of the SHREC’10Range
Scan Retrieval track.

3 The Proposed Method

In the sequel, the proposed methodology on 3D object re-
trieval via range image queries will be detailed. Initially,
let us consider that the complete 3D model dataset and the
query range image set define two different entities of the re-
trieval pipeline, due to their difference in representation and
processing strategies. At each step, we will indicate whichof
the two sets is regarded. Key concepts that will be discussed
in what follows: Panoramic Views computation, SIFT de-
scriptors extraction, Bag-of-Visual-Words modelling andSpa-
tial Histograms.

3.1 Panoramic Views Computation

For each 3D model of the database a number of panoramic
views (or cylindrical projections) are extracted. These pro-
jections are computed on cylindrical axes that are perpen-
dicular to and uniformly distributed over the surface of the
3D model’s circumscribed sphere, in accordance with the
PANORAMA [32] projection methodology.

To obtain a panoramic view, we project the 3D model
to the lateral surface of a cylinder of radiusR and height
H = 2R, centered at the origin with its axis parallel to one
of the selected axes (in this example the principal axisz, see
Fig. 1a). We set the value ofR to 2∗ dmax wheredmax is the
maximum distance of the model’s surface from its centroid.
In the following, we parameterize the lateral surface of the
cylinder using a set of pointss(φ ,y) whereφ ∈ [0,2π ] is the
angle in thexy plane,y ∈ [0,H] and we sample theφ andy
coordinates at rates 6B andB, respectively (we setB = 360).
Thus we obtain the set of pointss(φu,yv) whereφu = u ∗
2π/(6B), yv = v ∗H/B, u ∈ [0,6B− 1] and v ∈ [0,B− 1].
These points are shown in Fig. 1b.

The next step is to determine the value at each point
s(φu,yv). The computation is carried out iteratively forv =
0,1, ...,B−1, each time considering the set of coplanars(φu,yv)

points, i.e. a cross section of the cylinder at heightyv and for
each cross section we cast rays from its centercv in the φu

directions. To capture the position of the model’s surface,
for each cross section at heightyv we compute the distances
from cv to the intersections of the model’s surface with the
rays at each directionφu.

(a) (b)

Fig. 2: (a) An example 3D model and (b) its corresponding
cylindrical projection on theZ-axis.

Let pos(φu,yv) denote the distance of the furthest from
cv point of intersection between the ray emanating fromcv

in theφu direction and the model’s surface; thens(φu,yv) =



4 Konstantinos Sfikas et al.

pos(φu,yv). The value of a points(φu,yv) lies in the interval
[0,R], whereR denotes the radius of the cylinder.

A cylindrical projection can be viewed as a 2D gray-
scale image where pixels correspond to thes(φu,yv) inter-
section points in a manner reminiscent of cylindrical texture
mapping [42] and their values are mapped to the[0,1] inter-
val. The number of extracted cylindrical projections for each
complete 3D model is 60, which maintains acceptable pro-
cessing speed and coverage of the surface of the 3D model’s
circumscribed sphere. In Fig. 2a, we show an example 3D
model and in Fig. 2b the unfolded visual representation of
its corresponding cylindrical projections(φu,yv).

3.2 SIFT Descriptors Extraction

After the panoramic view extraction, the SIFT (Scale Invari-
ant Feature Transform) [27] descriptor is calculated on the
produced cylindrical depth images. The first step to the SIFT
descriptor computation is the definition of an interest point
set on the image, upon which the descriptors are calculated.
The original implementation by Lowe, defines these inter-
est points through the Difference of Gaussians (DoG) al-
gorithm, which is geared towards enhancing the edges and
other details present in the image. It has been experimen-
tally found that the calculation of the SIFT descriptors over
the complete image for a large number of randomly selected
points [19,5,6] (frequently defined as Dense SIFT/ DSIFT,
in the literature), instead of selecting a limited number of
interest points, yields better results in terms of retrieval ac-
curacy.

At each interest point, an image descriptor is computed.
The SIFT descriptor is defined as a position-dependent his-
togram of local gradient directions around the interest point.
To achieve scale invariance of the descriptor, the size of this
local neighbourhood is normalized in a scale-invariant man-
ner. To achieve rotational invariance of the descriptor, the
dominant orientation of the neighbourhood is determined
from the orientations of the gradient vectors in this neigh-
bourhood and is used for orienting the grid over which the
position-dependent histogram is computed.

One recently proposed improvement technique for SIFT,
by Arandjelovic and Zisserman [3], aims at enhancing the
similarity measure used when comparing the descriptors.
The authors show that using a square root (Hellinger) kernel
(also known as the Bhattacharyya’s coefficient [4]) instead
of the standard Euclidean distance measure, for the compar-
ison of the SIFT descriptors (or SIFT histograms), increases
performance. The intuition behind this proposal is based on
the observation that Euclidean distance can be dominated by
large bin values, whereas Hellinger distance is more sensi-
tive to smaller bin values.

The Hellinger kernel for twoL1 normalized histograms,
x andy is defined as:

H(x,y) =
n

∑
i=1

√
xiyi (1)

To compare the SIFT vectors with a Hellinger kernel is a
simple two-step algebraic manipulation (thus easy to imple-
ment in any existing SIFT implementation). FirstL1 normal-
ization of the SIFT vector, which originally hasL2 norm [27,
3], and then square-rooting each of its elements. Computing
Euclidean distance in the feature map space is equivalent to
Hellinger distance in the original space:

√
x

T√
y = H(x,y) (2)

3.3 Bag-of-Visual-Words Modelling

Once the panoramic views extraction and the SIFT descrip-
tor calculation steps are complete, the Bag-of-Visual-Words
(BoVW) visual model for the database is built. In visual in-
formation retrieval, the BoVW model defines that each im-
age contains a number of localvisual features. Since every
visual feature, or collection of similar visual features, can
appear with different frequencies on each image, matching
the visual feature frequencies of two images, achieves cor-
respondence. In our case, the SIFT descriptors are defined
as the BoVW model’s visual features.

The basic step in the process of building the BoVW model
for the 3D model database is the generation of acodebook
(or a vocabulary), a collection of visual features that appear
on each image. The codebook is generated by considering
the visual features of a representative number of training
database models. To achieve greater flexibility, rather than
generating the codebook by selecting individual visual fea-
tures of the training models, the corresponding panoramic
views are clustered into several similar patches, thecode-
words. One simple method is performingk-means cluster-
ing [26] over all the visual features. Codewords are then de-
fined as the centers of the learned clusters. The number of
the clusters is the codebook size. Thus, each patch in an im-
age is mapped to a certain codeword through the clustering
process and the image can be represented by the histogram
of the codewords.

After the codebook generation procedure, the next step
is the description of the database 3D models using the corre-
sponding codewords. In a similar manner, for each panoramic
view of the database 3D model set, the visual features are
computed and matched to their closest codewords, by com-
paring them to the corresponding clusters, generated in the
previous step. Again, thek-means algorithm is used for match-
ing. Note that thek-means clustering method makes use of
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the Euclidean distance for the comparison between the clus-
ters and the visual features. According to the RootSIFT trans-
formation, applied on the visual features, this results in us-
ing the Hellinger distance for the operation. The set of his-
tograms describing the frequency of occurrence of the gen-
erated codewords, for each 3D model’s panoramic views, is
stored as the corresponding 3D model’s signature.

3.4 Spatial Histograms

In an extension of the standard Bag-of-Visual-Words model,
described in the previous subsection, and targeting the match-
ing between a complete 3D model and a range image rep-
resenting a partial query, we have modified the histogram
generation in the following manner. Since a panoramic view
of a complete 3D model contains a 360°of information, an
attempt to match it to a query range image, which contains
only a portion of that information, will produce poor results
in the majority of cases. To alleviate this problem we suggest
a progressive partitioning scheme for the panoramic views
of the database 3D models. Each panoramic view image
is iteratively split along the horizontal dimension (width),
which is perpendicular to the axis of the corresponding pro-
jection cylinder (see Fig. 3).

The spatial histograms are then computed for each re-
sulting subpart of the image. For example, on a first level of
progressive partitioning, the spatial histogram is computed
on the complete panoramic view image of the 3D model. On
the second level, the panoramic view image is partitioned
once along the horizontal dimension and two spatial his-
tograms are computed for the resulting left and right subim-

(a) (b)

Fig. 3: (a) simulated rendering of three progressive parti-
tioning levels for a complete 3D model. At each level only
one subimage is displayed. (b) unwrapped cylindrical pro-
jections of the aforementioned progressive partitioning lev-
els with all subimages illustrated.

age, respectively. On the third level, the complete panoramic
view image is partitioned twice along the horizontal dimen-
sion and three spatial histograms are computed for each of
the three resulting subimages. The process continues untila
certain level of progressive partitioning is reached, which in
our case has been selected to be 6.

As the complete panoramic view images contain 360°of
information, each level of progressive partitioning produces
spatial histograms that reflect a fraction of that information
(i.e. 180°, 120°, 90°, ..., etc). Therefore, the matching be-
tween each spatial histogram of a 3D model and the cor-
responding histograms of a query range image needs to be
weighted based on a ratio that measures the possibility of
achieving a match between the contained information of the
two (spatial) histograms, at each level of progressive parti-
tioning:

PQratio(i) =

∣

∣

∣

∣

Qangle

Pangle(i)

∣

∣

∣

∣

(3)

wherePangle(i) is the Field-of-View [42] of the panoramic
view (sub)image at theith level of progressive partitioning
andQangle is the Field-of-View of the query range image,
measured in degrees. TheQangle is based on the properties
of the camera used for capturing the range images and in
our experiments, we have estimated this angle at 60°, which
simulates the projection of the query range image to one of
the faces of a hexagon.

3.5 Range Image Matching

Based on the constructed BoVW model, for the database
3D models, the matching of the query range images is per-
formed. The query range images are usually very noisy, due
to the capturing process and an extra preprocessing step is
often necessary before the actual matching. Here, we have
followed a simple strategy that attempts to fill any holes,
resulting from the object scanning and/or eliminate any out-
liers that do not belong to the actual objects (i.e. parts of the
background).

Initially, morphological dilation [14] is performed on the
original query range image. This step grows the range im-
age regions, so that any moderate holes, that could have oc-
curred due to errors in the capturing process, become small
enough, in order to be considered as candidates for clos-
ing (see Fig. 4b). On the second step, morphological clos-
ing [14] is performed on the dilated image, in order to achieve
closing of any small open areas that have been produced due
to the digitization process (see Fig. 4c). The next step of
the preprocessing strategy is the morphological erosion [14]
of the image, so that it returns to its original form, with
any small to moderate holes closed (see Fig. 4d). All of
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(a) (b) (c) (d)

Fig. 4: An example query range image (a) before preprocessing, (b) after dilation, (c) closing and (d) erosion steps, in
consecutive order.

the aforementioned morphological operators are applied us-
ing disk-shaped structuring elements of size 3. The final
step of the preprocessing strategy involves smoothing the
range image by convolving it with an isotropic Gaussian ker-
nel, which ensures that any rough edges are leveled and any
small outlying regions, remote from the main object, are dis-
carded.

Following the preprocessing, the range images are used
as queries for the 3D model database. In a strategy similar
to the histogram computation for the panoramic views of the
database 3D models, the queries are compared to the mod-
els of the database. The SIFT descriptor is extracted from
the range image, RootSIFT transformation is applied on the
descriptor and finally, based on the generated Bag-of-Visual-
Words, a histogram describing the codebook frequencies of
occurrence is computed as the query’s descriptor.

The similarity between the spatial histogramsH of a 3D
model and the histogramh of a query range image is calcu-
lated as follows: for each levell of progressive partitioning,
the spatial histogramsHl are compared to the query range
image histogramh using as a metric the Normalized His-
togram Intersection distance (DNHI(H,h)), defined by [11]
as:

DNHI(H,h) =
n

∑
i=1

min(H(i),h(i))
H(i)+ h(i)

(4)

The best match is recorded and weighted byPQratio for
the corresponding level. Then, for all progressive partition-
ing levels, the best matches are summed to create the final
distance between the query and the corresponding database
model. We definemax l to be the maximum level of pro-
gressive partitioning set to 6.

Dist(H,h) =
max l

∑
l=1

PQratio(l)[arg min
Hl

(DNHI(Hl ,h))] (5)

The complete descriptor extraction and matching algo-
rithm is outlined inAlgorithm 1 andAlgorithm 2 , respec-
tively.

Algorithm 1 Bag of Visual Words Model Building Algo-
rithm
Input: 3D models /*Database 3D model set*/
1: n models = card(3D models) /*The number of 3D models of the

database*/
2: n axes = 60 /*Define 60 random axis points*/
3: max l = 6
4: for n = 1→ n models do
5: axes = rand(n axes)
6: for m = 1→ n axes do
7: pan(n,m) = EXTRACT PVIEW(3D model(n),axes(m))
8: si f t(n,m) = DSIFT(pan(n,m))
9: rsi f t(n,m) = ROOTSIFT(si f t(n,m))

10: end for
11: end for
12: train set = rand(rsi f t,n model/10)
13: codebook = TRAIN BOVW(train set)
14: for n = 1→ n models do
15: for m = 1→ n axes do
16: for l = 1→ max l do
17: histl(n,m) = EXTRACT HIST(codebook, rsi f t(n,m))
18: end for
19: end for
20: end for
21: return codebook,hist

Note that the EXTRACTPVIEW, DSIFT, ROOTSIFT,
TRAIN BOVW and EXTRACTHIST functions refer to the
panoramic view extraction, Dense SIFT descriptor calcula-
tion, RootSIFT transformation, Bag-of-Visual-Words code-
book generation and (spatial) Histogram extraction opera-
tions of the pipeline, respectively.

4 Evaluation

The datasets that we used for the experimental evaluation
of our method are the following: (i) SHREC’09Querying



3D Object Retrieval via Range Image Queries in a Bag-of-Visual-Words Context 7

Algorithm 2 Query Range Image Matching Algorithm

Input: codebook,hist,query image
Input: n models,n axes /*The number of 3D models of the database

and the random axis points, as defined inAlgorithm 1 */
1: si f tq = DSIFT(query image)
2: rsi f tq = ROOTSIFT(si f tq)
3: histq = EXTRACT HIST(codebook, rsi f tq(n))
4: for n = 1→ n models do
5: for m = 1→ n axes do
6: query dist(n,m) = Dist(hist(n),histq)
7: end for
8: end for
9: f inal dist = min(query dist)

10: return f inal dist

with Partial Models [15], (ii) SHREC’10 Range Scan Re-
trieval [16] and (iii) SHREC’11Shape Retrieval Contest of
Range Scans [39]. The target subset of the datasets used is
based on the generic shape benchmark constructed at NIST [17].

On the first two datasets, SHREC’09Querying with Par-
tial Models and SHREC’10Range Scan Retrieval, we com-
pared against existing results of the participating contestants.
More specifically, on the SHREC’09Querying with Par-
tial Models we compared against the variations of CMVD
(Compact MultiView Descriptor) by Daras and Axenopou-
los [13] and the BF-SIFT and BF-GridSIFT methods by
Furuya and Ohbuchi. On the SHREC’10Range Scan Re-
trieval dataset we compared against the variations of the BF-
DSIFT-E method proposed by Ohbuchi and Furuya [29] and
the variations of the SURFLET method proposed by Hille-
brand et al. [44]. Furthermore, on this dataset we compared
against the initial version of our method (without Bag-of-
Visual-Words) presented in [34]. In the SHREC’11Shape
Retrieval Contest of Range Scans competition, due to lack
of participants no results were published. We publish our re-
sults on this dataset for future reference.

Our experimental evaluation is based on Precision-Recall
plots and five quantitative measures: Nearest Neighbor (NN),
First Tier (FT), Second Tier (ST), E-measure (E) and Dis-
counted Cumulative Gain (DCG) [37] for the classes of the
corresponding datasets. For every query model that belongs
to a classC, recall denotes the percentage of models of class
C that are retrieved and precision denotes the proportion of
retrieved models that belong to classC over the total number
of retrieved models. The best score is 100% for both quan-
tities. Nearest Neighbor (NN) indicates the percentage of
queries where the closest match belongs to the query class.
First Tier (FT) and Second Tier (ST) statistics, measure the
recall value for the(D− 1) and 2(D− 1) closest matches
respectively, whereD is the cardinality of the query’s class.
E-measure combines precision and recall metrics into a sin-
gle number and the DCG statistic weights correct results
near the front of the list more than correct results later in
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Fig. 5: Comparative results based on the average P-R scores
for the SHREC’09Querying with Partial Models dataset.

the ranked list under the assumption that a user is less likely
to consider elements near the end of the list [23,37].

According to the SHREC’09 classification scheme, the
target subset is composed of 720 complete 3D models, clas-
sified into 40 classes, each of which contains 18 models.
The query set is composed of 20 range images taken from
20 objects from arbitrary view directions.

Figure 5, using the experimental results given in [15], il-
lustrates the P-R scores for the complete SHREC’09Query-
ing with Partial Models dataset for the proposed 3D model
retrieval method (PV - BoVW) and the methods by Daras
and Furuya. Table 1 shows the corresponding five quantita-
tive measures for the same methods.

Table 1: Comparison between the proposed method and the
methods presented on the SHREC’09Querying with Partial
Models track using five quantitative measures. All measures
are in the interval[0,1].

Method NN FT ST E DCG

CMVD-BINARY 0.350 0.217 0.283 0.200 0.521
CMVD-DEPTH 0.450 0.197 0.267 0.174 0.511
Merged CMVD-DEPTH

0.350 0.211 0.281 0.192 0.526
and CMVD-BINARY
BF-SIFT 0.150 0.114 0.186 0.116 0.423
BF-GridSIFT 0.450 0.225 0.297 0.204 0.532
PV - BoVW 0.600 0.251 0.292 0.206 0.553

Both the P-R scores of Fig. 5, as well as the quantita-
tive measures of Table 1 illustrate that the proposed method
achieves superior performance compared to the variations
of the CMVD, as well as both the BF-SIFT and the BF-
GridSIFT retrieval methods.



8 Konstantinos Sfikas et al.

Table 2: Comparison between the proposed method and the methods presented on the SHREC’10Range Scan Retrieval track
using five quantitative measures. All measures are in the interval [0,1].

Method NN FT ST E DCG

BF-DSIFT-E (LFE) 0.573 0.380 0.524 0.367 0.683
Closing 3x3 BF-DSIFT-E (LFE) 0.598 0.393 0.535 0.382 0.696
Closing 6x6 BF-DSIFT-E (LFE) 0.650 0.424 0.569 0.398 0.713
Dilation 3x3 BF-DSIFT-E (LFE) 0.675 0.405 0.557 0.392 0.713
Dilation 6x6 BF-DSIFT-E (LFE) 0.547 0.395 0.550 0.386 0.696
SURFLET - mean 0.325 0.244 0.363 0.252 0.556
SURFLET - meanraw 0.171 0.153 0.242 0.163 0.462
SURFLET - meansqrd 0.231 0.197 0.322 0.213 0.513
SURFLET - median 0.282 0.226 0.325 0.224 0.528
SURFLET - mediansqrd 0.282 0.226 0.325 0.224 0.528
PanoramicViews - SIFT 0.512 0.374 0.466 0.256 0.598
PV - BoVW 0.691 0.413 0.570 0.386 0.720

The next dataset, SHREC’10Range Scan Retrieval is
composed of the following two subsets: the target subset
which contains 800 complete 3D models, classified into 40
classes, each of which has 20 models and the query subset
which contains 120 range images that have been acquired
by capturing 3 range scans of 40 objects from arbitrary view
directions.

In Figure 6, using the experimental results given in [16],
we show the P-R scores for the complete SHREC’10Range
Scan Retrieval dataset for the proposed 3D object retrieval
method and the methods by Ohbuchi and Hillebrand. Table 2
shows the corresponding five quantitative measures for the
same methods.

Table 2 shows that the proposed method has the highest
scores on three out of five measures (and is also close on the
remaining two measures, by a small margin). The P-R scores
of Fig. 6, illustrate that the proposed method outperforms the
track contestants, as well as our previously proposed method
(PanoramicViews - SIFT), presented in [34].

Finally, in the SHREC’11 classification scheme, the tar-
get subset is composed of 1000 complete 3D models, cate-
gorized into 50 classes, each of which contains 20 models.
The query set is composed of 150 range images acquired by
capturing 3 range scans, of each of 50 objects that corre-
spond to the above classes, from arbitrary view directions.

In Table 3 we show the five quantitative measures for
the complete SHREC’11Shape Retrieval Contest of Range
Scans dataset for the proposed 3D model retrieval method.

Table 3: Five quantitative measures for the proposed 3D
object retrieval method on the SHREC’11Shape Retrieval
Contest of Range Scans dataset. All measures are normal-
ized.

Method NN FT ST E DCG

PV - BoVW 0.512 0.374 0.466 0.256 0.598

The proposed method was tested on a Core2Quad 2.5 GHz
system, with 6 GB of RAM, running Matlab R2012a. The
system was developed in a hybrid Matlab/C++/OpenGL ar-
chitecture, which resulted in low computational times. The
average computation time forthe Bag of Visual Words Model
Building algorithm (seeAlgorithm 1 ) on a 1,000 3D model
database is about 4,5 hours (an offline process). The aver-
age computation time required for querying a range image
object on the aforementioned database (seeAlgorithm 2 ) is
about 5 seconds.

5 Conclusions

We proposed a spatial histograms strategy in a Bag-of-Visual-
Words context that fits the information present in panoramic
views of 3D objects to the task of partial matching. Spe-
cial attention has been given to the query range image pre-
processing stage, where a number of consecutive filters are
applied on the images in order to alleviate problems intro-
duced by the digitization process. This improved 3D object
retrieval methodology, was evaluated not only against our
previous approach [34] and the corresponding SHREC’10
Range Scan Retrieval track dataset but also on standard datasets
from the SHREC’09Querying with Partial Models track
and the corresponding state-of-the-art 3D object retrieval
methodologies and the SHREC’11Shape Retrieval Contest
of Range Scans track. In every case, the proposed 3D object
retrieval method outperforms competing descriptors.
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Fig. 6: Comparative results based on the average P-R scores for the SHREC’10Range Scan Retrieval dataset.
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