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Abstract

Facial landmark detection is a crucial first step in facial analysis for biomet-

rics and numerous other applications. However, it has proved to be a very

challenging task due to the numerous sources of variation in 2D and 3D fa-

cial data. Although landmark detection based on descriptors of the 2D and

3D appearance of the face has been extensively studied, the fusion of such

feature descriptors is a relatively under-studied issue. In this paper, a novel

generalized framework for combining facial feature descriptors is presented,

and several feature fusion schemes are proposed and evaluated. The proposed

framework maps each feature into a similarity score, combines the individual

similarity scores into a resultant score, used to select the optimal solution

for a queried landmark. The evaluation of the proposed fusion schemes for

facial landmark detection clearly indicates that a quadratic distance to sim-

ilarity mapping in conjunction with a root mean square rule for similarity
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fusion achieves the best performance in accuracy, efficiency, robustness and

monotonicity.

Keywords: Facial Landmarks, Feature Extraction, Feature Fusion,

Landmark Detection.

1. Introduction

Facial landmark detection is a crucial first step in facial analysis for bio-

metrics and numerous other applications. However, it has proved to be a

very challenging task due to the numerous sources of variation in 2D and

3D facial data. These variations can be environment-based (illumination

conditions and occlusions), subject-based (pose and expression variations)

and acquisition-based (image scale, distortion, noise, spikes and holes). Both

2D and 3D facial landmark detection suffers from occlusion and expression

variations. In addition, 2D facial landmark detection suffers from pose and

illumination variations.

2D and 3D facial landmark detectors have to possess the properties of

robustness to data variations, repeatability and distinctiveness. To ful-

fill these properties and constrain the detection process, landmark detec-

tors use trained landmark classifiers or 2D/3D appearance landmark mod-

els/templates and 2D/3D geometry models for global topological consistency.

2D landmark detectors use view-based 2D geometry and appearance models

or 3D geometry models. 3D landmark detectors use solely 3D geometry and

3D appearance models. Fused 2D/3D landmark detection methods use 3D

geometry and 2D+3D appearance models. 2D and 3D landmark detection is

based mostly on variations of the seminal work on Active Appearance Models
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of Cootes et al. [1, 2, 3, 4]. Fused 2D/3D landmark detection is presented in

Boehnen & Russ [5], Jahanbin et al. [6], Lu & Jain [7], Passalis et al. [8] and

Perakis et al. [9, 10].

Although many 2D/3D descriptors of facial features are used in the litera-

ture, a crucial issue has not been answered yet. How can these facial features

be fused together in order to exploit their individual strengths and create a

robust and accurate landmark detector?

Different feature descriptors can have complementary strengths and weak-

nesses, so combining them can increase system accuracy, efficiency and ro-

bustness, featuring monotonicity. Accuracy can be increased by exploiting

data content from multiple sources (3D/2D) or the strengths of different data

descriptors. In addition, using multiple descriptors can improve efficiency by

limiting the landmarks’ likelihood area. Finally, fusion can increase system

robustness by limiting deficiencies inherent in using a single descriptor. For

example a corner/edge detector is very sensitive in illumination variations,

but the shape index is not. Thus, using multiple descriptors is a form of un-

certainty reduction, since one descriptor may pick up what the other misses.

A landmark detector has four important levels (Fig. 1). At the acquisition

level a sensor acquires the facial data. At the feature extraction level the

data are transformed into features that represent the landmark classes. At

the matching score level the extracted features are compared with feature

templates that represent each landmark class in order to detect candidate

landmarks with an associated matching score. Finally, at the decision level

the matching scores (or ranks) are used to select a candidate landmark as

the optimal solution for the queried landmark class.
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Figure 1: Pipeline of feature fusion procedure for landmark detection.

Fusion can be applied at the acquisition or feature extraction level (pre-

classification fusion) and at the matching score or decision level (post-classification

fusion) [11, 12]. Fusion at the matching score level can be viewed in two dis-

tinct ways. In the first, fusion is approached as a classification problem,

while in the second, it is approached as a combination problem [11, 13]. In

the classification approach, a composite feature vector (by weighted concate-

nation) is constructed using the values of the fused features, which is further

classified by a composite classifier (e.g., Neural Network, K-NN, Decision

Trees, SVM). In the combination approach, the matching scores of the fused

features are combined to generate a single resultant feature score which is

used for the final decision. The common characteristic of all combination

techniques is that the individual feature classifiers are separately trained and

the combination relies on simple fixed rules [13]. These rules are the sum
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rule, product rule, max rule, min rule, median rule and majority voting [14].

The various schemes for combining classifiers can be grouped into three main

categories according to their architecture: (i) parallel, (ii) cascading (serial),

and (iii) hierarchical (tree-like) [15].

For landmark detection, although the construction of a composite feature

classifier might be a potential solution, the combination method can be more

easily applied to features whose values can be mapped to images, is more

transparent (having also the strength of visualization), and possesses all the

other fundamental properties required by a fusion scheme [16].

Feature fusion techniques have been proposed in the past (see Section 2),

but in an entirely different context, that of multimodal biometrics or that of

abstract feature fusion. The problem that is investigated in this paper is the

behavior of fusion schemes under the strict context of landmark detection on

facial datasets, which is an entirely different problem, since fusion techniques

for landmark detection have to be also “locally consistent”, which means

that they have to boost results on a constrained area on facial surfaces. This

problem has not yet been investigated.

This paper provides a novel generalized framework of fusion methods and

their application to landmark detection and comes as an extension to our

previous work for landmark detection [10]. The proposed framework fills

a gap in existing research, which is dominated by methods that use single

landmark descriptors of 3D or 2D appearance of the face, without combin-

ing them (see Section 2). The fusion scheme proposed acts after the “fea-

ture extraction level”, transforms features to similarities and then combines

them to generate a resultant feature similarity, which is considered as the
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matching score, and is used at the “matching level” for the detection of the

queried landmarks (Fig. 1). The proposed approach of feature fusion offers

significant dimensionality reduction and is easily extendable by adding new

feature-components in feature space and changing the resultant similarity

appropriately. This approach works equally well for any feature extracted

either from 3D or 2D facial data. The only prerequisite is the availability

of a common (u,v) parameterization so that the 3D and 2D data can be

combined at the “acquisition level”.

The rest of this paper is organized as follows: Section 2 presents related

work in the field, Section 3 details the theoretical background of the pro-

posed method, Section 4 presents its application to the detection of facial

landmarks, Section 5 presents our results, and Section 6 summarizes our

method.

2. Related Work

A number of studies showing the advantages of information fusion in

pattern recognition and especially in multimodal biometrics have appeared

in the literature.

Xu et al. [12] (1992) grouped different fusion methods into categories

and proposed methods for classifier fusion at different levels (measurement,

rank and abstract) for recognizing handwritten numerals. They reported a

significant improvement over the performance of individual classifiers.

Kittler et al. [14] (1998) have developed a theoretical framework for the

combination approach to fusion at the matching score level of multimodal

biometric applications. In their approach the matching scores of individual
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classifiers are interpreted as posterior probabilities and the resultant scores

are the outcome of simple fixed fusion rules (sum rule, product rule, max

rule, min rule, median rule and majority voting). They have experimented

with face and voice biometrics and found that the sum rule outperformed

the others.

Jain et al. [15] (2000) conducted experiments concerning the characteris-

tics of combining twelve different classifiers using five different combination

rules and six different feature sets generated from handwritten numerals (0-

9). Reported results show that each case favors its own combining rule and

that combining does not necessarily lead to improved peformance.

Ross and Jain [17] (2003) addressed the problem of information fusion

in biometric verification systems by combining face, fingerprint and hand

geometry modalities using sum, decision-tree and LDA based methods. They

reported that the sum rule outperforms the others.

Jain et al. [11] (2005) presented a thorough classification of information

fusion approaches in biometric systems. They experimented with different

normalization techniques (i.e., min-max, z-score, median, sigmoid, tanh and

Parzen) and fusion rules (i.e., sum rule, max rule, min rule and weighted-sum

rule) to combine score from different matchers in a multimodal recognition

system. They concluded that the tanh normalization is the most robust and

efficient for a recognition system, and that weighted summation of matching

scores resulted in a significant improvement in recognition rates.

Ross and Govindarajan [18] (2005) have experimented with fusion at the

feature level in 3 different scenarios: (i) fusion of PCA and LDA coefficients

of face; (ii) fusion of LDA coefficients corresponding to the R,B,G channels
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of a face image; and (iii) fusion of face and hand modalities. They concluded

that it is difficult to predict the best fusion strategy for a given scenario.

Snelick et al. [19] (2005) examined the performance of multimodal bio-

metric authentication systems using fusion techniques over fingerprint and

face modalities on a population approaching 1,000 individuals. They also in-

troduced adaptive normalization techniques and weighted fusion rules. They

concluded that multimodal fingerprint and face biometric systems can achieve

better performance than unimodal systems.

Gökberk and Akarun [20] (2006) have presented fusion techniques for 3D

face recognition. Their fusion schemes combine four face classifiers which are

used for the comparison of gallery and probe faces. Reported results show

that their serial fusion technique offers the best solutions.

Theoharis et al. [21] (2008) presented a multimodal biometric recogni-

tion system using the fusion of face and ear modalities. They reported that

the fused multimodal system achieved better performance (99.7% rank-one

recognition rate) than the unimodal systems. The high reported accuracy

was attributed to the low correlation of the two modalities.

In landmark detection literature on the other hand the combination of

landmark descriptors is an under-studied issue.

Lu and Jain [7] (2005) used the combination of shape index response

derived from the range map (3D) and the cornerness response from the in-

tensity map (2D) to determine the positions of the corners of the eyes and

the mouth. They used a fusion scheme of a pixel-wise summation of the

normalized shape index and cornerness response values, for the “resultant”

feature values of mouth and eye corners.
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Boehnen and Russ [5] (2005) used color images (2D) and range data

(3D). A skin detection algorithm is applied using the YCbCr transformation

of the initial RGB image. The face region that results from skin detection

is refined by using z-erosion exploiting the range data. Thus, at first a face

segmentation is applied; next, eye and mouth likelihood maps are calculated

(using Cb and Cr values), to locate the corresponding landmarks. Thus this

method is not a fusion method but merely a 2D/3D filtering method.

Jahanbin et al. [6] (2011) used Gabor jets to represent intensity (2D)

and range (3D) data. Next, the jets of each pixel were compared (using the

appropriate similarity measure) to a target bunch (describing the queried

landmark) in order to create similarity maps for each modality and landmark

class. Finally, intensity and and range similarity maps were combined into a

“hybrid” similarity map (“resultant”). For the calculation of the “resultant”

similarity map different approaches of fusion were examined such as taking

the pixel-wise sum, product or maximum of the similarity scores. They

concluded that summation is the most appropriate.

In our previous work [9, 8, 10], we presented a 3D facial landmark detec-

tion system using the fusion of shape index and spin image feature descrip-

tors. Our previous fusion system operated in a cascade (sequential) fashion so

that the candidate landmarks extracted from the shape index transformation

were classified and filtered out according to their similarity with precalcu-

lated spin image templates. We also used a product rule fusion of landmarks’

geometric distance to a landmark model and spin image similarities at the

decision level. We reported high landmark detection accuracy under large

facial yaw rotations.
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3. Feature Fusion for Landmark Detection

The features used for facial landmark detection have very different char-

acteristics, but in general can be distinguished in scalar features (such as the

Shape Index and Cornerness/Edge Response), and vector features (1D/2D

histogram features, such as the SIFT descriptor and Spin Images). For each

scalar feature we can statistically compute a corresponding target value, while

for each vector feature we can compute a corresponding vector target (tem-

plate), which represent a landmark in feature space.

Thus, the main idea of the proposed method is that instead of fusing

features by weighted concatenation, the features are first transformed to

similarities with a target value or template, and then each similarity can

act as a component in a normalized feature similarity space (Fig. 2), fused

together to form a resultant similarity, using simple combination rules (such

as sum, product, max, min, etc.). In this manner a dramatic dimensionality

reduction is achieved since, instead of using multiple components for a vector

feature, only the similarity with its template is used.

Each feature for a landmark class has a target value or template (tf ) that

describes the landmark in its feature space. Furthermore, we can consider

a cut-off value (cf ) for each feature to incorporate the notion of an outlier.

Feature values out of the range [tf − cf , tf + cf ] can be filtered out, so that

threshold masking is implemented. The cut-off value can also be considered

as a scaling factor for the normalization of each feature’s range (Fig. 2).

The target and cut-off values can be estimated by examining the proba-

bility density function (pdf) of feature values or set to specific values based

on a priori knowledge. A good choice for the target value could be the mean
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Figure 2: Example of the transformation from raw feature value space to normalized

feature similarity space. Shape Index (v1) and Spin Image (v2) raw values are

mapped onto Shape Index (S⃗1) and Spin Image (S⃗2) normalized similarity vectors.

Note that the raw Spin Image values represent un-normalized similarity to the

corresponding template.

of the pdf of feature values and for the cut-off value could be a multiple of

standard deviation (std) (e.g., 3 × std as a first approximation), although

the distribution of the values of every feature is not a Gaussian. Another

choice for the target value could be the mode or the median of the pdf and

the cut-off value could be determined so that a certain proportion of feature

values (e.g., 99%) are within the range [tf − cf , tf + cf ].

For a good normalization scheme, the estimates of target (location), cut-

off (scale) parameters and of the normalization function must be robust and

efficient, and has to closely simulate the initial pdfs. In addition, a properly

designed fusion method exploits information from each descriptor without

degrading performance below that of the most accurate descriptor (mono-

tonicity). This is the major challenge of adopting a fusion scheme.
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3.1. Feature similarity mapping

Given a feature value vf , a target value tf and a cut-off value cf for each

feature descriptor f , we introduce a normalized distance measure to target

Df for each of the N feature descriptors of each landmark point:

Df =


|vf − tf |

cf if |vf − tf | ≤ cf

1 otherwise
(1)

Note that the above definition is a generalization of the z-score normal-

ization and median normalization, presented in [11].

A normalized similarity measure to target Sf can be derived from Df as:

a. Linear mapping:

Sf = 1−Df . (2)

This is the classic linear distance to similarity transformation [13].

b. Quadratic mapping:

Sf = 1−D2
f . (3)

We introduce quadratic mapping, which favors close to target feature values.

Note that D2
f behaves like the potential energy of elasticity.

c. Gaussian mapping:

Sf = exp(−αD2
f ) , (4)

where α is the drop-off parameter. We introduce Gaussian mapping, for

smoothing out large distance measures. Note that the Gaussian tails can be

cut at the cut-off values.
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(a) (b)

(c)

Figure 3: Depiction of fusion of similarities: (a) after linear mapping; (b) after

quadratic mapping; and (c) after Gaussian mapping.

3.2. Feature similarity fusion

The resultant similarity measure to the target vector in the normalized

similarity space describes the way by which the N feature descriptors can be

fused together or combined into a resultant feature similarity for each queried

landmark class:

a. Sum rule:

SA =
1

N

N∑
f=1

Sf , (5)

which is the arithmetic mean or the Manhattan (L1) metric (Fig. 2). Note

that if the similarity measure is considered as the probability that the sample

point is similar to the target, then this metric is equivalent to the sum rule

for feature fusion [14, 13].
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b. Root-mean-square rule:

SE =
1√
N

(
N∑

f=1

S2
f

) 1
2

, (6)

which is the root mean square (rms) of the similarities and actually a Eu-

clidean (L2) metric in the resultant similarity space. We introduce this novel

rms rule so that feature similarities to targets can be considered as vectors

and added according to vector addition (Fig. 2).

c. Product rule:

SG =

(
N∏

f=1

Sf

) 1
N

, (7)

which is the geometric mean metric. Note that if the similarity measure is

considered as the probability that the sample point is similar to the target,

then this metric is equivalent to the product rule for feature fusion [14, 13].

d. Max rule:

Smax =
N

max
f=1

(Sf ) , (8)

which is the L∞ metric or max rule [14] and favors the feature with maxi-

mum similarity. Note that if the similarity measure is considered as a fuzzy

variable, then this metric is equivalent to a fuzzy OR rule for feature fusion

[13].

e. Min rule:

Smin =
N

min
f=1

(Sf ) , (9)

which is the min rule [14] and favors the feature with minimum similarity.

Note that if the similarity measure is considered as a fuzzy variable, then

this metric is equivalent to a fuzzy AND rule for feature fusion [13].
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To illustrate the behavior of the proposed distance to similarity map-

pings and fusion schemes we depict the various combinations in Fig. 3. For

simplicity the fusion of similarity mapping functions is presented in a single

dimension. We also depict in Fig. 4 the behavior of the proposed distance

to similarity mappings and fusion schemes in the neighborhood of the Eye

Outer Corner (EOC).

L

Q

G

SI SS L1 L2 Lg Lmax Lmin

Figure 4: Depiction of the 2D similarity maps in the neighborhood of the Eye Outer

Corner (EOC) for the various distance to similarity mappings and the various fu-

sion methods: (blue) low similarity values (0.0); (green) medium similarity values

(0.5); and (red) high similarity values (1.0). Rows depict: (top) L mapping; (mid-

dle) Q mapping; and (bottom) G mapping. Columns depict from left to right: SI

and SS similarity; L1, L2, Lg, Lmax and Lmin fusion.

Remarks:

a. Linear mapping raises discontinuities in the superposed similarities, so it

is expected to give unreliable results.
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b. The “smoothest” results are given by the Gaussian and the Quadratic

mapping, allowing a “locally smoother” combination of features.

c. SG and Smin give results in the “AND Area” and SA, SE and Smax give

results in the “OR Area”. The “AND area” is more restricted and can be

used to restrict the search space of candidate landmarks. The “OR area” is

wider, which has the implication of a larger number of candidate landmarks

to be detected, raising the “curse of dimensionality” at the decision level.

d. SG and Smin give almost the same peak, approximately in the middle of

the initial peaks of the fused features, having a similar behavior to an “AND

operator”. This peak is “smoother” for SG and “sharper” for Smin.

e. Smax gives the same peaks as the initial peaks of the fused features, having

a similar behavior to an “OR operator”.

f. Smax gives as a result the similarity of the most “intensive” feature. Se-

lecting the most “intensive” feature is unreliable, because it could be the one

that makes the largest errors.

g. Smin gives as a result the similarity of the least “intensive” feature, which

is not appropriate for landmark fusion, because it doesn’t take into consid-

eration the other features’ similarities.

h. SG and Smin may completely eliminate a feature’s similarity peak which

is not inside the “AND masking area”, and thus are not appropriate for land-

mark fusion.

i. The SA resultant similarity (L1 metric) is equivalent to the normalized

projection of the SE similarity vector (L2 metric) onto the target similarity

vector ST (see Fig. 2) (i.e. it is a normalized inner product metric, or the

cosine similarity measure [13]).
−→
SE√
N
·

−→
ST√
N

= 1
N

∑N
f=1 Sf · 1 = SA.
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4. Similarity mapping and fusion paradigms

To illustrate the characteristics of the proposed distance to similarity

mappings and the fusion schemes we apply them for the detection of specific

facial anatomical landmarks.

The landmark classes are: the Eye Outer Corner (EOC), the Eye Inner

Corner (EIC), the Nose Tip (NT), the Mouth Corner (MC), and the Chin

Tip (CT).

The descriptors that are used are: the Shape Index (SI), the Spin Image

(SS), and the Edge Response (ER).

The distance to similarity mappings are: the Linear mapping (L), the

Quadratic mapping (Q), and the Gaussian mapping (G).

The fusion schemes are: the sum rule using the arithmetic mean SA (L1),

the rms rule using the Euclidean mean SE (L2), the product rule using the

geometric mean SG (Lg), the max rule using Smax (Lmax), and the min rule

using Smin (Lmin).

4.1. Landmark Descriptors

To detect landmark points, we have used two 3D local shape descrip-

tors that exploit the 3D geometry-based information of the facial datasets

and one 2D local appearance descriptor that exploits the 2D intensity-based

information: the shape index, the spin images and the edge response.

A facial scan belongs to a subclass of 3D objects which is a surface S

expressed in parametric form with native (u, v) parameterization which also
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(a) (b) (c) (d) (e)

Figure 5: Depiction of spin image templates: (a) EOC; (b) EIC; (c) NT; (d) MC;

and (e) CT.

incorporates texture data. This parameterization allows to map 3D informa-

tion onto 2D space and vice-versa, thus the 3D and 2D information can be

cross-referenced [10, 8, 9].

The Shape Index [22, 23] is a continuous mapping of principal curvature

values (kmax, kmin) of a 3D object point p onto the interval [0,1], and is

computed as:

SI(p) =
1

2
− 1

π
tan−1kmax(p) + kmin(p)

kmax(p)− kmin(p)
. (10)

The shape index captures the “local” shape of a surface. Five well-known

shape types are: Cup = 0.0, Rut = 0.25, Saddle = 0.5, Ridge = 0.75, and

Cap = 1.0.

A Spin Image [24] encodes the coordinates of points on the surface of a

3D object with respect to a so-called oriented point (p,n), where n is the

normal vector at a point p of a 3D object surface. A spin image is a 2D grid

accumulator of 3D points, as the grid is rotated around n by 360◦. Thus,

a spin image is a descriptor of the local shape of an object, invariant under

rigid transformations.

The similarity measure between a spin image P and a spin image template
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Q is expressed by the normalized linear correlation coefficient [24]:

SS(P,Q) =
N
∑

piqi −
∑

pi
∑

qi√
[N
∑

p2i − (
∑

pi)2] [N
∑

q2i − (
∑

qi)2]
, (11)

where pi, qi denote each of the N elements of spin images P and Q, respec-

tively.

The Edge Response is based on the well known Harris corner and edge

detector [25], and encodes the intensity gradient of a point p on an image:

ER(p) = I2x(p) + I2y (p) , (12)

where Ix = ∂I
∂x

and Iy = ∂I
∂y

denote the partial derivatives of the intensity

image I in x and y respectively. ER(p) is high in edge regions and close to

zero in flat regions.

4.2. Training of the descriptors

To train the landmark descriptors we used 300 frontal facial datasets of

different subjects, manually annotated at the specific landmark positions.

These datasets come from FRGC v2 database [26, 27] and contain subjects

with varying expressions and illumination conditions. The available 3D scans

were used to train the shape index and spin image descriptors and the cor-

responding 2D texture images to train the edge response descriptor.

The pdf of the shape index values (SI) and edge response values (ER)

for each landmark class were computed and used for the estimation of the

shape index and edge response target and cut-off values. We computed spin

image templates for each landmark class. Spin image templates represent

the mean spin image associated with the five classes of landmarks (Fig. 5).

The pdfs of the similarity values (SS) between the pre-computed spin image
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Table 1: Target (t) and cut-off (c) values of the landmark descriptors for each

landmark class

EOC EIC NT MC CT

t c t c t c t c t c

SI 0.32 0.53 0.12 0.60 1.00 0.40 0.09 0.68 0.96 0.70

SS 1.00 0.48 1.00 0.80 1.00 0.75 1.00 0.72 1.00 0.56

ER 0.20 0.72 0.16 0.62 0.10 0.40 0.22 0.70 0.02 0.17

templates and the spin images of each landmark class, were computed for

the estimation of the cut-off values. The spin image target values are set to

the maximum similarity (1.00).

The estimated target and cut-off values for each descriptor (SI, SS, ER)

and for each landmark class (EOC, EIC, NT, MC, CT) are presented in

Table 1, and the correlation coefficients between the landmark descriptors

for each landmark class are presented in Table 2. Note that the introduction

of distance to similarity mappings improves the correlation coefficients in

comparison to the raw values.

4.3. Landmark Labeling

General-purpose feature detection methods are not capable of identifying

and labeling the detected candidate landmarks; some topological properties

of faces must be taken into consideration. To address the problem of labeling

the detected landmarks, we use our method presented in [10, 8, 9]. At the

training phase, a Facial Landmark Model (FLM) is created by first aligning

the training landmark sets and calculating a mean landmark shape using Pro-

crustes Analysis, and then applying Principal Component Analysis (PCA)
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Table 2: Correlation coefficients between landmark descriptors for each landmark

class

EOC EIC NT MC CT

Raw values

SI / SS 0.0358 −0.1242 0.3202 −0.1823 0.1925

SI / ER 0.1458 0.0024 −0.0895 0.0000 0.0001

SS / ER −0.0377 −0.1358 −0.1794 −0.2481 −0.0075

Linear mapping similarity values (L)

SI / SS 0.1781 0.1806 0.3202 0.2669 0.2290

SI / ER 0.1665 0.0360 0.0638 0.1354 −0.0265

SS / ER 0.1080 0.0813 0.1002 0.1991 −0.0013

Quadratic mapping similarity values (Q)

SI / SS 0.2095 0.1965 0.3098 0.2366 0.5241

SI / ER 0.1968 −0.0101 0.0572 0.0543 −0.0222

SS / ER 0.1184 0.0907 0.0370 0.1849 −0.0093

Gaussian mapping similarity values (G)

SI / SS 0.2084 0.1921 0.3170 0.2508 0.3459

SI / ER 0.2023 0.0003 0.0524 0.0882 −0.0241

SS / ER 0.1205 0.0989 0.0614 0.2052 −0.0018

to capture the shape variations. The FLM serves as a 3D geometric model

of the landmark points. At the detection phase, the algorithm first detects

candidate landmarks on the queried facial datasets according to the previ-

ously described feature fusion schemes. The extracted candidate landmarks

are then filtered out and labeled by matching them with the FLM.
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(a) (b) (c) (d) (e)

Figure 6: Depiction of feature similarity maps with Q−L2 fusion: (blue) low simi-

larity values (0.0); (green) medium similarity values (0.5); and (red) high similarity

values (1.0). (1st row) SI similarity; (2nd row) SS similarity; (3rd row) ER sim-

ilarity; and (4th row) Q−L2 resultant similarity. (a) eye outer corner; (b) eye

inner corner; (c) nose tip; (d) mouth corner; and (e) chin tip.

5. Experimental Results

5.1. Test Databases

For the purposes of this evaluation, we used two databases:

(i) a database with 975 frontal facial datasets obtained from 149 different

subjects, selected from the FRGC v2 database [26, 27], including subjects

with varying degrees of expressions (45.44% “neutral”, 36.41% “mild” and

18.15% “extreme”), acquired under varying illumination conditions. This
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database will henceforth be referred as DB00F.

(ii) a composite database with the datasets of 39 common subjects found in

the FRGC v2 database and in the UND Ear database [28]. This database

consists of 117 (3x39) facial scans having three poses, frontal (39 scans) and

45 degrees left (39 scans) and right (39 scans), and will henceforth be referred

as DB00F45RL.

5.2. Performance Evaluation of Fusion Schemes

Table 3: Qualitative evaluation of proposed fusion schemes

Accuracy Efficiency Robustness Monotonicity

L−L1 Fair High Fair Fair

L−L2 Fair Low Fair Fair

L−Lg High Fair Fair Fair

Q−L1 High High Fair Fair

Q−L2 High High High High

Q−Lg High Fair Fair Fair

G−L1 High High High High

G−L2 High High Fair Fair

G−Lg High Fair Fair Fair

L−Lmax Low Low Low Low

Q−Lmax Low Low Low Low

G−Lmax Low Low Low Low

L−Lmin Unreliable Fair Fair Low

Q−Lmin Unreliable Fair Fair Low

G−Lmin Unreliable Fair Fair Low

The evaluation of the performance of the proposed distance to similar-
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ity mappings and fusion schemes for landmark detection is not a straight-

forward task, since there are many factors that characterize performance. As

already stated, fusion techniques are expected to improve system’s accuracy,

efficiency and robustness. An equally important characteristic of a fusion

scheme is that of monotonicity, i.e., the addition of a new feature descriptor

should improve prior results.

Thus, we evaluate performance according to these four characteristics.

Accuracy is evaluated according to the distance between the selected opti-

mal landmark and the manually annotated landmark, which is considered

as ground-truth. The selected optimal landmark is the 1st rank candidate

landmark for each landmark class (i.e., the candidate landmark which has

the maximum resultant similarity score). Efficiency is evaluated according

to the reduction of the likelihood area of a landmark class (see the high simi-

larity areas in Figs. 4 and 6). The likelihood area of a landmark class is very

important since its reduction means that fewer candidate landmarks have to

be retained and fed to the “selection level”. Robustness is evaluated by the

use of testing datasets which contain subjects acquired under large yaw rota-

tions, varying expressions and different illumination conditions, and also by

the use of five different landmark classes. Monotonicity is evaluated accord-

ing to the accuracy improvement between the use of individual descriptors,

the fusion of the two richest descriptors, the shape index (SI) and the spin

image (SS), and the fusion with the addition of a third poorer descriptor, the

edge response (ER).
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Table 4: Landmark localization distance-error (mm) results of Shape Index (SI),

Spin Image (SS) and Edge Response (ER) fusion, in DB00F and DB00F45RL

DB00F DB00F45RL

EOC EIC NT MC CT Mean EOC EIC NT MC CT Mean

SI 11.72 7.71 14.66 5.98 10.81 10.18 10.99 7.20 12.51 4.68 11.26 9.33

SS 7.31 4.42 3.84 8.47 7.56 6.32 9.16 4.83 3.68 7.03 7.24 6.39

ER 12.26 13.05 10.54 9.27 11.74 11.37 11.31 12.10 11.79 9.16 12.29 11.33

L−L1 6.40 4.60 4.12 4.82 7.16 5.42 6.97 4.94 4.40 4.09 7.56 5.59

L−L2 6.72 4.74 4.19 4.78 7.24 5.53 7.22 5.11 4.88 4.09 7.57 5.77

L−Lg 6.31 4.52 4.08 4.85 7.23 5.40 6.98 4.95 4.20 4.14 7.69 5.59

Q−L1 6.21 4.15 3.97 4.90 7.31 5.31 6.89 4.59 3.82 3.83 7.80 5.39

Q−L2 6.19 4.14 3.97 4.87 7.28 5.29 6.80 4.59 3.82 3.83 7.73 5.35

Q−Lg 6.20 4.15 3.95 4.92 7.29 5.30 6.77 4.59 3.80 3.83 7.79 5.36

G−L1 6.19 4.14 3.97 4.86 7.28 5.29 6.80 4.59 3.82 3.83 7.73 5.35

G−L2 6.16 4.15 3.98 4.89 7.28 5.29 6.85 4.64 3.84 3.83 7.73 5.38

G−Lg 6.21 4.15 3.97 4.90 7.31 5.31 6.89 4.59 3.82 3.83 7.80 5.39

L−Lmax 11.93 11.57 14.66 8.45 11.63 11.65 11.89 10.86 12.51 7.91 11.96 11.03

Q−Lmax 12.17 11.50 14.69 8.49 12.05 11.78 12.01 10.79 12.51 7.91 12.44 11.13

G−Lmax 12.17 11.50 14.69 8.49 12.05 11.78 12.01 10.79 12.51 7.91 12.44 11.13

L−Lmin 7.21 3.97 3.88 5.23 8.41 5.74 8.53 4.64 3.53 4.42 7.88 5.80

Q−Lmin 7.21 3.97 3.88 5.23 8.41 5.74 8.53 4.64 3.53 4.42 7.88 5.80

G−Lmin 7.21 3.97 3.88 5.23 8.41 5.47 8.53 4.64 3.53 4.42 7.88 5.80

A qualitative performance evaluation of the proposed fusion schemes ac-

cording to the aforementioned characteristics is presented in Table 3. De-

tailed landmark localization errors are presented in Tables 4 and 5.
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Table 5: Landmark localization distance-error (mm) results of Shape Index (SI)

and Spin Image (SS) fusion, in DB00F and DB00F45RL

DB00F DB00F45RL

EOC EIC NT MC CT Mean EOC EIC NT MC CT Mean

SI 11.72 7.71 14.66 5.98 10.81 10.18 10.99 7.20 12.51 4.68 11.26 9.33

SS 7.31 4.42 3.84 8.47 7.56 6.32 9.16 4.83 3.68 7.03 7.24 6.39

L−L1 7.58 4.81 3.85 5.85 7.30 5.88 8.82 5.11 3.67 5.04 7.38 6.00

L−L2 7.70 4.84 3.85 5.81 7.16 5.87 8.80 5.06 3.67 5.03 7.53 6.02

L−Lg 7.54 4.80 3.85 5.80 7.38 5.87 8.53 5.05 3.67 4.99 7.35 5.92

Q−L1 7.54 4.73 3.84 5.84 7.28 5.85 8.39 4.98 3.62 4.72 7.53 5.85

Q−L2 7.52 4.72 3.85 5.84 7.28 5.84 8.33 4.97 3.62 4.72 7.53 5.83

Q−Lg 7.53 4.73 3.85 5.87 7.29 5.85 8.39 4.97 3.62 4.72 7.54 5.85

G−L1 7.52 4.72 3.85 5.84 7.28 5.84 8.33 4.97 3.62 4.72 7.53 5.83

G−L2 7.53 4.72 3.84 5.84 7.28 5.84 8.34 4.97 3.67 4.72 7.53 5.85

G−Lg 7.54 4.73 3.84 5.84 7.28 5.85 8.39 4.98 3.62 4.72 7.53 5.85

L−Lmax 11.72 7.71 14.66 6.06 10.81 10.19 11.00 7.23 12.51 4.68 11.26 9.34

Q−Lmax 11.72 7.72 14.66 6.06 10.81 10.19 10.99 7.20 12.51 4.68 11.26 9.33

G−Lmax 11.72 7.72 14.66 6.06 10.81 11.78 10.99 7.20 12.51 4.68 11.26 9.33

L−Lmin 7.34 4.61 3.84 5.91 7.39 5.82 8.53 4.64 3.53 4.42 7.88 5.80

Q−Lmin 7.34 4.61 3.84 5.91 7.39 5.82 9.20 4.88 3.51 5.03 7.27 5.98

G−Lmin 7.34 4.61 3.84 5.91 7.39 5.82 9.20 4.88 3.51 5.03 7.27 5.98

Our experimental findings are similar to those of [15], which are summa-

rized in the following:

i) There is no single combination rule that scores best for all cases.

ii) Combining does not necessarily lead to improved performance.

iii) There are cases where none of the combining rules does better than the
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best individual detector.

Despite these general findings a more detailed examination of the results

shows that there are some fusion schemes that perform better in most cases

and can be adopted, and others that perform quite poorly and should be

avoided (see also the Remarks of Section 3.2).

Our results show that, in general, the Quadratic (Q) and Gaussian (G)

mappings behave better than the Linear (L) mapping. For the Linear map-

ping the product rule (Lg) behaves better than other rules. For the Quadratic

mapping the rms rule (L2) behaves better than other rules. For the Gaussian

mapping the sum rule (L1) behaves better than other rules. Quadratic and

Gaussian mappings have almost the same performance.

The introduction of the Edge Response (ER) descriptor improves the

results for the EOC, EIC and MC landmarks, but degrades the results for

NT and CT. Note that, although ER is a poor descriptor, the improvement

in accuracy is more dramatic in MC and EOC where the ER descriptor is

more correlated with the SI and SS descriptors. Also note that the decline

in accuracy is more dramatic in NT and CT where the ER descriptor is

uncorrelated with the SI and SS descriptors (Table 2).

Accuracy improvement is more dramatic when the information fused is

correlated. In correlated features the performance of one descriptor predicts

to some extent the performance of the other and strengthens the results.

On the other hand highly uncorrelated features have similarity peaks that

do not coincide and degrade the results. Efficiency improvement is achieved

by excluding obvious non-matches, reducing the number of candidate land-

marks, for each landmark class. Fusion, also, reduces system sensitivity to
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sample-specific, poor-quality or erroneous descriptors.

We can thus deduce that the best performance in terms of accuracy is

exhibited by the Q-L2 and G-L1 fusion schemes, with the Q-L2 exhibiting

a slight better performance than the G-L1 in landmarks’ likelihood area

reduction. Q-L2 and G-L1 also exhibit high robustness in yaw, expression

and illumination variations, and strong monotonicity.

5.3. Performance Evaluation of Landmark Detection

General-purpose feature detection methods are not capable of identifying

and labeling the detected candidate landmarks; some topological properties

of faces must be taken into consideration. To have a fully functional land-

mark detector the detected, through the feature fusion procedure, candidate

landmarks have to be identified and labeled. For this purpose we utilized a

Facial Landmark Model (FLM) [10].

The performance of the proposed landmark detection method against

other state-of-the-art methods, landmark localization errors are presented

in Tables 6 and 7. Note that each method uses a different facial database,

making direct comparisons difficult. However, these results indicate that

our method for landmark detection by feature fusion outperforms previous

methods.

Landmark localization using the Q-L2 fusion scheme improved the accu-

racy and robustness of the landmark detector (with mean landmark localiza-

tion error within a range of 3.5− 5.5 mm), indicating the superiority of the

fusion approach against our previously published approaches.
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Table 6: Comparison of the proposed landmark detection method using Fusion

Schemes against state-of-the-art on almost-frontal complete facial datasets

Mean Localization Error (mm)

Method REIC LEIC REOC LEOC NT CT MRC MLC

Yu et al. [29] (GA model) 4.74 5.59 - - 2.18 - - -

Nair et al. [30] (w/o PDM) 25.01 26.68 31.84 34.39 14.59 - - -

(w PDM) 12.11 11.89 20.46 19.38 8.83 - - -

Lu et al. [31] (3D) 8.30 8.20 9.50 10.30 8.30 - 6.00 6.20

Lu et al. [7] (3D+2D) 6.00 5.70 7.10 7.90 5.00 - 3.60 3.60

Colbry [32] (w/o CFDM) 5.50 6.30 - - 4.10 11.00 6.90 6.70

(w CFDM) 5.60 6.00 - - 4.00 11.70 5.40 5.40

Perakis et al. [9] (SISI–NP) 7.02 7.46 8.13 9.21 5.23 6.71 8.30 9.83

Passalis et al. [8] (UR3D-S) 5.03 5.48 5.79 5.62 4.91 6.31 5.65 6.47

Perakis et al. [10] (SISI–NPSS) 4.15 4.41 5.58 5.83 4.09 4.92 5.56 5.42

Fusion scheme Q–L2(SI+SS) 4.00 4.13 4.78 5.39 3.65 4.13 4.21 4.48

Fusion scheme Q–L2(SI+SS+ER) 3.53 4.26 4.48 5.53 3.78 4.09 3.91 4.51

Table 7: Comparison of the proposed landmark detection method using Fusion

Schemes against state-of-the-art on mixed (frontal and profile) facial datasets

Mean Localization Error (mm)

Method REIC LEIC REOC LEOC NT CT MRC MLC

Lu et al. [31] (3D) 9.00 7.10 13.60 13.30 6.40 - 6.70 5.20

Passalis et al. [8] (UR3D-S) 5.97 6.87 6.51 6.71 4.60 6.59 5.52 6.10

Perakis et al. [10] (SISI–NPSS) 4.65 4.90 5.32 6.06 4.41 4.80 5.01 4.91

Fusion scheme Q–L2(SI+SS) 4.35 4.86 4.74 5.39 4.14 4.86 4.02 3.73

Fusion scheme Q–L2(SI+SS+ER) 4.10 5.23 4.60 5.48 4.41 5.29 3.54 4.21

Comparative results of landmark localization errors on almost-frontal fa-

cial datasets are presented in Table 6. Note that the FRGC v1 database

used in Yu et al. [29], Lu et al. [31], Lu et al. [7], and Colbry [32] is con-
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sidered less challenging than the FRGC v2 used in our experiments, since

FRGC v1 contains subjects with neutral expressions, while FRGC v2 con-

tains subjects with various facial expressions. Furthermore, the database

used by Colbry [32] contains a small portion (≈ 5%) of proprietary datasets

with pose variations, occlusions and expressions. The BU-3DFE database

[33] used in Nair et al. [30] contains frontal only 3D facial datasets, which

were created by the fusion of facial data acquired at ±45◦ yaw, from 100

subjects that perform seven universal expressions.

Comparative results of landmark localization errors on mixed (frontal and

profile) facial datasets are presented in Table 7. Note that the proprietary

MSU database used in Lu et al. [31] contains 300 3D facial scans from 100

subjects, three scans for each subject captured at 0 and ±45◦ yaw angles.

The DB00F45RL database used in our experiments, despite having fewer

subjects, is considered more challenging, since yaw angles lie in the range

[−65◦, +67◦] (for more details see [10]).

5.4. Computational Cost

For the evaluation of the presented method’s computational efficiency, a

PC with the following specifications was used: Intel Core i5 2.5 GHz with

4 GB RAM. Using this PC, 13.76 s (on avg.) was required to locate and la-

bel the landmarks for each facial scan. The average time taken for each step

of the method is: Data loading 0.04 s, shape index similarity maps compu-

tation 0.66 s, spin image similarity maps computation 3.34 s, edge response

similarity maps computation 0.42 s, resultant similarity map computation

and candidate landmarks detection 2.45 s, FLM5L-FLM5R matching and

landmark labeling 3.85 s, and FLM8 matching and optimal landmark set
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selection 3.02 s. Speedups through parallelization are possible and thus the

computational efficiency of the presented landmark detector makes it appli-

cable to real-world applications.

6. Conclusion

A novel generalized framework for feature fusion and its application to

landmark detection has been presented. The proposed fusion scheme acts

after the “feature extraction level”, transforms features to similarities and

combines them to generate a resultant feature similarity, which is considered

as the matching score used at the “matching level” for the detection of queried

landmarks. The proposed fusion scheme is easily extendable to new feature-

components in feature space, offers significant dimensionality reduction and

works equally well for features extracted from 3D or 2D facial data.

For the proposed fusion scheme different distance to similarity mappings

(linear, quadratic and Gaussian) and different fusion rules (sum rule, rms

rule, product rule, max rule and min rule) have been evaluated according to

accuracy, efficiency, robustness and monotonicity. The results indicate that

the quadratic distance to similarity mapping in conjunction with the rms

rule for fusion (Q-L2) exhibits the best performance. Landmark localization

using this fusion scheme achieved state-of-the-art accuracy (with 3.5−5.5mm

mean landmark localization error), indicating the superiority of the fusion

approach against other previous methods.
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