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ABSTRACT

Facial landmark detection is a crucial first step in facial analysis for biometrics and numerous other
applications. However, it has proved to be a very challenging task due to the numerous sources
of variation in 2D and 3D facial data. The unconstrained acquisition of data from uncooperative
subjects may result in facial scans with significant pose variations which can cause extensive
occlusions that result in missing data. In this dissertation a novel method for 3D landmark de-
tection and pose estimation, suitable for both frontal and side 3D facial scans, is presented. The
proposed method exploits 3D and 2D information by using local shape descriptors to extract
candidate interest points that are subsequently identified and labeled as anatomical landmarks.
Additionally, a novel generalized framework for combining facial feature descriptors that can be
used for landmark detection is introduced, and several feature fusion schemes are proposed and
evaluated. However, feature detection methods which use general purpose shape descriptors can-
not identify and label the detected candidate landmarks. Therefore, the topological properties of
the human face need to be taken into consideration. To this end, a 3D Facial Landmark Model
(FLM) of facial anatomical landmarks is introduced. Candidate landmarks, irrespectively of the
way they are generated, can be identified and labeled by matching them with the FLM. Finally,
a novel method for unconstrained face recognition is introduced. It employs the 3D landmark
detector to provide an initial pose estimation and to indicate occluded areas with missing data for
each facial scan. Subsequently, a 3D Annotated Face Model (AFM) is registered and fitted to
the scan using facial symmetry to complete the occluded areas. Using a wavelet representation
of the geometry and normal images produced from the fitted AFM, the proposed method can
perform comparisons among interpose facial scans, unlike existing methods that require frontal
only scans.

Subject Area Computer Graphics, Computer Vision, Image Processing, Pattern Recogni-

tion, Biometrics.

Keywords Biometrics, Face Recognition, Landmark Detection, Shape Models, Feature

Descriptors, Feature Extraction, Feature Fusion, Pose Estimation, Partial

Matching, Deformable Models.
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Landmark Detection for Unconstrained Face Recognition

Preface

Biometrics is the science of establishing the identity of a person based on the physical (e.g.,
fingerprints, face, hand geometry, and iris) or behavioral (e.g., gait, signature, and keyboard
dynamics) attributes associated with an individual [116].

Face recognition, as one of the primary biometric modalities, became more important ow-
ing to rapid advances in technologies such as digital cameras of visible or infrared spectrum,
surveillance video cameras, 3D scanners, and increased demand on security. Face recognition
has several advantages over other biometric technologies: it is non-intrusive, since the facial
region is generally exposed, and potentially easy to use [75]. Thus, research and development
in automatic face recognition followed naturally.

The performance of face recognition systems has improved significantly since the first
automatic face recognition system was developed by Kanade [66]. Furthermore face recogni-
tion can now be performed in “realtime” for images captured under constrained situations.
Although progress in face recognition has been encouraging, the task has also turned out
to be a difficult endeavor, especially for unconstrained tasks where view point, illumination,
inter-object occlusions, facial expressions and facial accessories vary considerably [75].

Face recognition is a task that humans perform routinely and effortlessly in their everyday
life. Analysis and understanding of objects is one of the most fundamental tasks in our
interaction with the surrounding world. For most of us, the most significant information
about the surrounding world comes from our visual system. This information is actually
a two-dimensional projection of the three dimensional world. When we see a picture, we
recognize the depicted objects by relating them to concepts we have learned throughout our
lives. In our every day experience, we are often unaware of how extremely complex the
shape analysis performed by the brain is, because it is done mostly subconsciously, without
involving our higher level of cognition. Faces are probably the most important class of
objects in human perception. Infants learn about faces faster than other objects, suggesting
that we may have special neural hardware for dealing with them [58].

In the era of computers, attempts to imitate the ability of the human visual system to
analyze objects gave birth to the fields of computer vision and pattern recognition. Object
recognition is one of the hardest problems in computer vision [120]. The most significant
sources of difficulty in object recognition are the large changes in appearance of an object
under different viewing, illumination and inter-object occlusion conditions. An object recog-
nition system must be invariant to such changes, while being able to discriminate between
different objects with similar appearance. This fundamental problem of IT systems is solved
by a biological sensory system in the neocortex, offering recognition of objects relatively
independent of size, contrast, spatial frequency, position in the retina or view angle [127].

In computer vision, as in neuroscience, object recognition is frequently divided into two
schools of thought, which might be labeled object-based and view-based. In the object-based
paradigm, the computational model of an object is inherently three-dimensional, and recog-
nition is a matter of deciding which object is seen (classification), in which 3D orientation
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(pose estimation). In the view-based paradigm, the many different appearances of an ob-
ject are each modeled independently in 2D, and no explicit 3D computations are performed
[127]. The view-based paradigm is supported by the evidence that not all views of an object
are equally easy to be recognized by humans [94, 104]. This theory of object recognition
proposes that we recognize objects by matching the visual information with internally stored
view-point specific “prototypes” [38, 37]. These views are not simple snapshots; they allow
recognition despite simple geometric distortions of the image, although, in the case of face
recognition, this task is considerably impaired if the face images are shown upside down
[110].

Figure 1: Depiction of the relation between the fields of computer graphics, computer vision,

geometry and image processing and pattern recognition (adapted from [18]).

Similarity and correspondence are the two fundamental problems of shape analysis in
computer vision. Because of the flexibility of facial tissues and our ability to express a wide
range of emotions, the face is considered a non-rigid object. Therefore, face recognition falls
into the category of non-rigid shape similarity problems [18]. Also, due to the anatomic
constraints of the motion of the human neck, frontal to profile rotations of the face are very
common. A natural way to estimate pose and facial similarity is based on landmark points’
correspondence between the compared facial datasets.

Usually, some model that relates the shapes to the underlying objects is assumed. Since
faces have a certain degree of flexibility and they are non-rigid, the models that represent
this kind of objects have to be considered as deformable models. Being able to analyze the
properties of such shapes and describe their behavior is a key concept in facial similarity and
correspondence.

Modeling facial expressions as deformations and using deformation-invariant similarity
criteria, we can distinguish between features resulting from expressions and those character-
izing the person’s identity, or in other words, make our face recognition system expression-
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invariant. Also, by modeling faces as 3D shapes instead of 2D shapes we can avoid view-based
modeling and make our face recognition system pose- and illumination-invariant.

Thus, in a broad sense, the face recognition and face modeling problem belongs to the
realm of the following fields [18] (Fig. 1): Computer vision deals with extracting information
about faces from their two-dimensional image representation, and the connection with their
geometric representation, addressing the problem of 2D to 3D correspondence. Computer
graphics on the other hand deals with the problem of how to realistically render an image of
a face from its geometric (3D) and texture (2D) representation, addressing the problem of
3D to 2D correspondence and “morphing” between faces. Geometry processing deals with
the geometric models of faces, trying to improve their quality, transform them or extract
information from their 3D geometric representation. Image processing operates on facial
images themselves, trying to improve their quality, transform them or extract information
from their 2D representation. Pattern recognition, at the other end, deals with the assignment
of labels to objects or to features extracted from an object or an image, addressing the
problem of similarity and classification.

The above divisions are becoming less obvious in our days since methods from the above
fields are interrelated. Considering images as geometric objects and operating on them us-
ing geometric tools created a revolution in image processing. Conversely, by representing
geometric objects as images, many efficient and powerful methods can be borrowed from
image processing and adapted to geometry processing. Projective and differential geometry,
transformations in vector and affine spaces, illumination models, deformable models and
morphing, all provide common tools to computer graphics and computer vision.

Thesis Overview

The uncontrolled conditions of real-world biometric applications pose a great challenge to
any 3D face recognition approach. The unconstrained acquisition of data from uncooperative
subjects may result in facial scans with significant pose and expression variations.

In this dissertation, an integrated novel method is proposed, in order to handle efficiently
facial pose and expression variations, in the implementation of a pose- and expression-
invariant face recognition system, that works under uncontrolled conditions and with un-
cooperative subjects.

The proposed landmark detection and face recognition system employs an automatic
pose and expression invariant landmark detector, using local facial feature descriptors and
a deformable Facial Landmark Model (FLM) to ensure global topological consistency of the
detected landmarks. The landmark detector provides an initial pose estimation and indicates
occluded areas with missing data for each facial scan resulting from pose variations. Facial
landmark detection is a crucial first step for the registration of the facial datasets that
have to be compared. Subsequently, an Annotated Face Model (AFM) is registered and
fitted by deformation to each facial probe scan. During fitting, facial symmetry is used to
complete the occluded areas of the face. Signature metadata are extracted using a wavelet
transformation on the geometry and normal images of the fitted AFM. A similarity measure
between signature metadata of probe and gallery facial datasets provide the face recognition
results. This system is suitable for real-world applications as the only requirement is that
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half of the face is visible to the sensor.

Structure of the Dissertation

This dissertation is organized as follows:

Introduction introduces the problem under consideration, the challenges, the motivation and

the novelties that were introduced in addressing it.

Related Work describes related work in the fields of 3D and 2D facial landmark detection, facial

features fusion and unconstrained partial face recognition.

Shapes and Landmarks presents the theoretical background of statistical shape analysis for

describing shapes through landmarks, introduces the Facial Landmark Model (FLM) and defines

its deformations. The FLM is constructed using Procrustes Analysis and Principal Component

Analysis (PCA) over facial landmarks, pre-annotated on exemplar facial datasets.

Facial Data presents various facial dataset representations and the approaches used in this dis-

sertation to process these 3D and 2D facial data. The algorithms presented in this chapter include:

data cleaning and preprocessing, resolution and scale adjustments, curvature computations, 3D

and 2D data registration, and 2D maps of 3D data. It also describes the Annotated Face Model

(AFM) as a generic 3D geometric model of facial datasets.

Landmarks and Features presents various feature descriptors that are used in this dissertation

to represent facial landmarks. These include the Shape Index, the Spin Image, the Extruded

Points and the Edge Response descriptors. It also introduces various feature fusion schemes for the

combination of these descriptors into a more descriptive resultant feature descriptor.

Landmark Detection presents the proposed landmark detection methods in detail, using the

combination of the landmark feature models and the geometric landmark models (FLMs) for land-

mark consistency. Landmark detection is a key requirement for generic face recognition, calculating

the coarse transformation for registration, and transforming a test scan into a canonical AFM.

Partial Face Recognition presents the proposed partial face recognition method in detail. It

presents the two-step method used to register 3D facial surfaces, the deformation procedure involved

in fitting the AFM to a facial dataset, the extraction of facial signature metadata using wavelet

transformations of the geometry and normal images of the fitted AFM and finally their use in a

similarity measure for face recognition.

Experimental Results presents the experimental results that evaluate the proposed methods.

The proposed landmark detector achieves state-of-the-art accuracy, while the proposed partial face

recognition method also achieves state-of-the-art performance, considerably outperforming existing

methods, even when tested on the most challenging data, which contain scans with yaw variations

up to 80◦ and strong expressions.

Conclusion discusses the conclusions of this dissertation and presents directions for future work.

List of Publications

Work from this dissertation has appeared in the following co-authored publications (Citations
are according to “Google Scholar”):
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1 Introduction

God ever geometrizes.

– Plato

1.1 Challenges & Motivation

In recent years, among many biometric modalities, the face has received the most interest.
Not only is face recognition one of the most widely accepted modalities, but advances in pro-
cessing power have allowed the development of more complex algorithms while still providing
a rapid response to queries. Face recognition requires no contact with the subject, thus being
more easily accepted by the public, compared to other biometrics such as fingerprints or iris
detection.

Face recognition has been traditionally performed using 2D (visible spectrum) images,
while hybrid approaches have used infrared images and 3D geometry. Infrared face recog-
nition has not been widely adopted due to the high cost of the infrared cameras necessary
to acquire the data. In contrast, as scanning methods have become more accessible due to
lower cost and greater flexibility, 3D facial datasets are more easily available, and therefore
the interest in developing algorithms that use 3D data has increased.

However, face recognition has proved to be a very challenging task due to the numerous
sources of variation in 2D and 3D facial data. These variations can be environment-based
(illumination conditions, occlusions by other objects or accessories), subject-based (pose and
expression variations) and acquisition-based (image scale, distortion, noise, spikes and holes).

The main reason for using information from 3D data as a biometric is that the data
acquired by 3D acquisition devices are invariant to pose and lighting conditions, these being
the major challenges with which face recognition algorithms must cope. Moreover, image-
based face recognition algorithms are more susceptible to impostors. Indeed, an impostor
may use a printout of an image of a subject allowed to enter a facility in order to break in.
To avoid this, a face recognition algorithm must be coupled with liveness test algorithms.
Attempting such an attack on a system based on 3D data would be much more difficult,
since the attackers would need to obtain an accurate 3D model (sculpture) of the person
whom they would like to impersonate.

The challenges of a 3D face recognition system are the following [65]:

• Robustness : The system must perform robustly and reliably under a variety of condi-
tions (e.g., lighting, pose variation, facial features variation).

Panagiotis B. Perakis 27



Landmark Detection for Unconstrained Face Recognition

• Accuracy Gain: A significant gain in accuracy with respect to 2D face recognition
systems must justify the introduction of 3D recognition systems.

• Efficiency : 3D capture devices generate substantially more information than 2D cam-
eras. Using this large volume of information is expensive in terms of computation time
and storage requirements. Therefore, the algorithms developed need to be efficient
both in time and space, by using appropriate metadata.

• Automation: The system must be completely automated. It is therefore not acceptable
to assume user intervention, such as for the location of key landmarks in a 3D facial
scan.

• Capture Devices : 3D capture devices were mostly developed for medical and other
low-volume applications and suffer from a number of drawbacks, including artifacts,
small depth of field, long acquisition time and multiple types of output. A deployable
3D face recognition system must be able to address these issues.

With the increase in the availability of 3D data, several 3D face recognition approaches
have been proposed. These approaches aim to overcome the limitations of 2D face recognition
by offering pose invariance. However, although they claim pose invariance, they mostly utilize
frontal 3D scans assuming that the entire face is visible to the sensor. This assumption is not
always valid in real-world applications, since unconstrained acquisition may lead to facial
scans with extensive occlusions that result in missing data due to pose variations.

Thus, existing 3D face recognition methods, fail to address large pose variations and to
confront the problem of missing facial areas in an automatic way (Chapter 2). The main
assumption of these methods is that even though the head can be rotated with respect to the
sensor, the entire face is always visible. However, this is true only for “almost frontal” scans
or “reconstructed” complete face meshes, or “pre-aligned” scans to frontal pose. Side scans
usually have large missing areas, due to self-occlusion, that depend on pose variations. These
scans are very common in realistic scenarios such as uncooperative subjects or uncontrolled
environments. Therefore, to take advantage of the full pose invariance potential of 3D face
recognition, the problem of missing data must be addressed. Thus, in a face recognition
system, an initial registration step, based on landmark points’ correspondence, is necessary
in order to make a system fully pose invariant [64, 97].

However, facial landmark detection also suffers from the same sources of variation in 2D
and 3D facial data that face recognition does. Both 2D and 3D facial landmark detection
suffer from occlusion, pose and expression variations. In addition, 2D facial landmark detec-
tion also suffers from illumination variations. Thus, a landmark detection algorithm must
be pose-invariant to address the problem of missing facial areas and, at the same time, must
be expression-invariant in order to allow the registration of the various instances of the face
liable to expression variations.

1.2 Aim & Methodology

The main aim of the research presented in this dissertation is to automatically detect land-
marks on 3D facial scans that exhibit pose and expression variations, and hence consistently
register and compare any pair of facial datasets subjected to missing data due to self-occlusion
in a pose- and expression-invariant face recognition system.
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The proposed landmark detection and face recognition system employs an automatic
pose- and expression-invariant landmark detector, using local facial feature descriptors and
a deformable 3D Facial Landmark Model (FLM) to ensure global topological consistency of
the detected landmarks.

At the training phase, a Facial Landmark Model (FLM) is created by first aligning the
training landmark sets and calculating a mean landmark shape using Procrustes Analysis,
and then applying Principal Component Analysis (PCA) to capture the shape variations.
The FLM serves as a 3D geometric model of the landmark points. Also, templates for each
shape descriptor that represents each landmark point are calculated from training facial
datasets.

The shape templates serve as feature descriptors for each landmark point. The feature
descriptors that have been used, depending on the case, include the Shape Index, a continuous
map of principal curvature values of a 3D object’s surface, the Spin Image, a local descriptor
of the object’s 3D point distribution, the Extruded Points, a local descriptor of a 3D object’s
points that extrude most and the Edge Response descriptor, a local descriptor of the 2D
texture gradient of a 3D object.

Figure 2: Process pipeline of landmark detection: (a) extracted candidate landmarks; (b) Facial

Landmark Model (FLM); (c) landmark sets consistent with FLM; (d) resulting optimal landmark

set.

At the detection phase, the algorithm first detects candidate landmarks on the queried
facial datasets according to the similarity of the extracted facial features with the feature
templates. The extracted candidate landmarks are then filtered out and labeled by matching
them with the FLM (Fig. 2).

The landmark detector provides an initial pose estimation (frontal, right, left) and indi-
cates occluded areas with missing data for each facial scan resulting from pose variations.
Facial landmark detection is a crucial first step for the registration of the facial datasets that
have to be compared.

Subsequently, a generic Annotated Face Model (AFM) is registered and fitted to each
facial probe scan, using a subdivision-based deformable model framework. During fitting,
facial symmetry is used to complete the occluded areas of the face. Signature metadata are
extracted using a wavelet transformation on the geometry and normal images of the fitted
AFM (Fig. 3). A similarity measure between signature metadata of probe and gallery facial
datasets provide the face recognition results.

The presented method is extensively evaluated against a variety of 3D facial databases.
The proposed 3D landmark detector achieves state-of-the-art accuracy (with 4.5 − 6.3 mm
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Figure 3: Interpose matching using the proposed method: (a) and (b) opposite side facial scans

with extensive missing data and detected landmarks; (c) generic Annotated Face Model (AFM); (d)

and (e) registered and deformed AFM for each scan (facial symmetry used); (f) and (g) extracted

geometry images.

mean landmark localization error), and the proposed partial face recognition method state-
of-the-art performance (with average rank-one recognition rate 83.7%), considerably outper-
forming existing methods, even when tested on the most challenging data, which contain
scans with yaw variations up to 80◦ and strong expressions.

The proposed system is suitable for real-world applications as the only requirement is
that half of the face is visible to the sensor, and its computational cost is low.

1.3 Contributions & Novelties

The contributions of this thesis fall under the fields of computer graphics, computer vision,
geometry and image processing and pattern recognition (Fig. 1). Furthermore, it establishes
new links between the synthesis methods of computer graphics and the analysis methods
of computer vision, introducing novel techniques to the image-based and geometry-based
approaches.

Specifically, the main contributions of the conducted research are the following:

• The design and optimization of a fast and fully automatic facial landmark detector. The
proposed detector is useful for face alignment and is shown to be tolerant to changes in
pose, lighting and expression, and fills a gap in existing research, which is dominated by
methods that use pre-aligned or manually aligned data. By developing methods for the au-
tomatic registration of two facial scans in real time, a foundation for building fully automatic
face processing algorithms is provided, without the need of being manually annotated with
landmarks before analysis.
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• A novel generalized framework of fusion methods and their application to landmark detection
is investigated. The proposed fusion scheme transforms features to similarities and combines
them to generate a resultant feature similarity score. The proposed approach of feature
fusion offers dimensionality reduction, is easily extensible and works equally well for any
feature extracted either from 3D or 2D facial data.

• Experimental analysis and study of a real-world face recognition system for use with un-

cooperative subjects. The proposed 3D face recognition method addresses the problem of

missing facial areas due to large pose variations in an automatic way, completing missing

facial data using symmetry. Experiments show that this 3D face recognition system is robust

to the types of variations that would be expected in a real world application, such as yaw

rotations and expression variations.

This dissertation also explores and improves upon the use of 3D/2D facial data, intro-
ducing several novelties to face processing research, including the following:

• Introduction of a deformable geometric 3D Facial Landmark Model (FLM) that incorporates
size and expression variations of the human face.

• Introduction of three alternative FLMs (frontal, right and left) to address the problem of
self-occluded data due to yaw rotations in order to detect landmarks on frontal and side
facial scans.

• The three alternative FLMs (frontal, right and left) offer dimensionality reduction of the
search space of consistent landmark sets.

• Efficient resampling of facial scans for creating a unified regular parametric surface. Such a
surface mesh is able to represent the curved surface of a face as accurately as required.

• Efficiently performing differential operations on the u,v parametric surface of facial scans.

• Efficient representation of 3D differential information of facial surfaces with 2D image maps,
using the u,v representation of facial data.

• Efficient registration of 3D geometry and 2D texture information, even from scans where the
texture map may not be contiguous.

• Efficient fusing of feature descriptors from 2D and 3D data, using the u,v representation of
facial data.

• Fusing feature descriptors at the similarity level offers significant dimensionality reduction of
the resultant feature space.

• FLMs are used to classify “unseen” scans in categories such as frontal, right or left with
almost no error.

• FLMs are used to classify areas of “unseen” face scans in categories such as nose, mouth, left
eye etc.

• Efficient registration of “unseen” complete (frontal) and partial (semi-profile and profile)
facial data to a generic Annotated Face Model (AFM).

• Alignment and registration can be done by using a small number of facial landmarks (5 or
8), instead of the thousands of points used in the AFM that is fitted afterwards.
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• Registration using automatically detected landmark is done within an accuracy comparable
to that of manual landmark placement.

• Efficient integration of occluded facial data by filling the model using symmetric facial data.

• The independent handling of left and right sides of frontal scans, fully allowing partial face
matching.

• The applicability of the method to large pose variations (up to 80◦ of yaw rotation).

• The computational efficiency of the proposed method makes it suitable for real-world appli-

cations.

Thorough experimental analysis provides substantial evidence supporting the aforemen-
tioned assertions.
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2 Related Work

The world is complex, dynamic, multidimensional;
the paper is static and flat.

– E. R. Tufte

Facial feature detectors can be distinguished into two main categories: those that de-
tect feature points (landmarks) from the appearance characteristics of 2D intensity or color
images and those that detect feature points from the geometric information of 3D objects
or 2.5D scans. Facial feature detectors can also be classified into those that rely solely on
geometric information and those that are supported by trained statistical feature models.

Landmark detectors use trained feature classifiers or 2D/3D appearance feature mod-
els/templates and 2D/3D geometry models for global topological consistency. There exist
detectors that are based on 2D data, 3D data or fused combinations.

Even though existing 3D facial landmark detection methods claim pose invariance, they
fail to address large pose variations. The main assumption of these methods is that even
though the head can be rotated with respect to the sensor, the entire face is always visible.
However, this is true only for “almost frontal” scans or “reconstructed” complete facial
meshes. Side scans usually have large missing areas, due to self-occlusion, and the size of
the missing areas depends on the amount of pose variation. These scans are very common
in realistic scenarios such as in the case of imaging under uncontrolled conditions.

The same holds true for several 3D face recognition approaches that have been proposed.
These approaches, although they aim to overcome the limitations of 2D face recognition
by offering pose invariance, mostly utilize frontal 3D scans assuming that the entire face is
visible to the sensor. This assumption is not always valid in real-world applications, since
the unconstrained acquisition may lead to facial scans with extensive occlusions that result
in missing data due to pose variations.

This Chapter describes related work in the fields of 3D and 2D facial landmark detection,
facial features fusion for landmark detection and unconstrained partial face recognition.

2.1 3D Facial Landmark Detection

Development of 3D modeling and digitizing techniques has sparked research interest in 3D
facial feature extraction for landmark detection and is reported in a number of publications.

Lu, Colbry, Stockman and Jain [83, 21, 84, 85, 20], in a series of publications, presented
methods to locate the positions of eye and mouth corners, and nose and chin tips, based
on a fusion scheme of shape index [34] on range maps and the “cornerness” response [56]
on intensity maps. They also developed a heuristic method based on cross-profile analysis
to locate the nose tip more robustly. Candidate landmark points were filtered out using a
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static (non-deformable) statistical model of landmark positions, in contrast to the presented
approach. The 3D feature extraction method presented in [21] addresses the problem of
pose variations in a unified manner, and is tested against a composite database consisting of
953 scans from the FRGC database and 160 scan from a proprietary database with frontal
scans extended with variations of pose, expressions, occlusions and noise. Their multimodal
algorithm [83] uses 3D+2D information and is applicable to almost-frontal scans (< 5◦ yaw
rotation). It is tested against the FRGC database with 946 near frontal scans. The 3D
feature extraction method presented in [84] also addresses the problem of pose variations,
and is tested against the FRGC database with 953 near frontal scans along with their
proprietary MSU database consisting of 300 multiview scans (0◦,±45◦) from 100 subjects.
Results of the methods [83, 84, 20] are presented in Table 15, and of the method [84] in
Table 16, for comparison.

Conde et al. [22] introduced a global face registration method by combining clustering
techniques over discrete curvature and spin images for the detection of eye inner corners and
nose tip. The method was tested on a proprietary database of 51 subjects with 14 captures
each (714 scans). Their database consists of scans with small pose variations (< 15◦ yaw
rotation). Although they presented a feature localization success rate of 99.66% on frontal
scans and 96.08% on side scans, they do not define what a successful localization is.

Xu et al. [138] presented a feature extraction hierarchical scheme to detect the positions
of nose tip and nose ridge. They introduced the “effective energy” notion to describe the
local distribution of neighboring points and detect the candidate nose tips. Finally, an SVM
classifier is used to select the correct nose tips. Although it was tested against various
databases, no exact localization results were provided.

Lin et al. [78] introduced a coupled 2D and 3D feature extraction method to determine
the positions of eye sockets by using curvature analysis. The nose tip is considered to be
the extreme vertex along the normal direction of eye sockets. The method was used in
an automatic 3D face authentication system, but was tested on only 27 human faces with
various poses and expressions.

Segundo et al. [119] introduced a face and facial feature detection method by combining
a method for 2D face segmentation on depth images with surface curvature information, in
order to detect the eye corners, nose tip, nose base, and nose corners. The method was tested
on the FRGC v2 database. Although they claim over 99.7% correct detections, they do not
define a correct detection. Additionally, nose and eye corner detection presented problems
when the face had a significant pose variation (> 15◦ yaw and roll).

Wei et al. [136] introduced a nose tip and nose bridge localization method to determine
facial pose. The method was based on a Surface Normal Difference algorithm and shape
index estimation, and was used as a preprocessing step in pose-variant systems to determine
the pose of the face. They reported an angular error of the nose tip - nose bridge segment less
than 15◦ in 98% of the 2500 datasets of BU-3DFE facial database, which contains complete
frontal facial datasets with capture range ±45◦.

Mian et al. [88] introduced a heuristic method for nose tip detection. The method is
based on a geometric analysis of the nose ridge contour projected on the x − y plane. It is
used as a preprocessing step to cut out and pose correct the facial data in a face recognition
system. However, no clear localization error results were presented. Additionally, their nose
tip detection algorithm has limited applicability to near frontal scans (< 15◦ yaw and pitch).
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Table 1: Comparison of 3D landmark detection methods

No Ref No of Method Test Remarks
Lmks Datasets

1 Colbry et al. [21]
(2005), [20] (2006)

6 Shape Index map + 3D Statis-
tical Landmark Contraints

FRGC v1 (953 scans)
+ propriatary DB (160
scans)

3D localization error in mm per
landmark. No side scans. No ex-
pressions.

2 Conde et al. [22]
(2005)

3 Discrete curvature + Spin Im-
ages + Clustering

Proprietary DB: 714
scans, almost-frontal

NO localization results.

3 Xu et al. [138]
(2006)

1 Local distribution of points +
SVM

Near-frontal NO localization results.

4 Lin et al. [78]
(2006)

3 Curvature and topological
analysis

Proprietary DB: 27
faces, pose and expres-
sion variations

NO localization results.

5 Lu & Jain [84]
(2006)

7 Shape Index map + Corner-
ness map + 3D Statistical
Landmark Contraints

FRGC v1 (953 scans) 3D localization error in mm per
landmark. No side scans. No ex-
pressions.

6 Segundo et al. [119]
(2007)

8 Face segmentation + curvature
analysis on depth images

FRGC v2: almost-
frontal

NO localization results. Problems
under significant pose variations.

7 Wei et al. [136]
(2007)

1 Shape index + surface normal
analysis

BU3DFE: 2,500 frontal
scans

NO localization results.

8 Mian et al. [88]
(2007)

1 Geometric analysis (heuristic) Almost-Frontal NO localization results. Problems
under significant pose variations.

9 Faltemier et al. [41]
(2008)

1 Curvature and Shape index
analysis + Template matching

FRGC v2: 4,007
almost-frontal scans

NO localization results.

10 Faltemier et al. [42]
(2008)

1 Rotated Profile Signatures NDOff2007: 7,317 fa-
cial scans in various
yaw and pitch angles.

NO localization results. 2D-
assisted 3D method (it uses skin
segmentation)

11 Dibeklioğlu et al. [32,
33] (2008)

4 Model of the local gradient of
depth map

FRGC v1 + Bospho-
rus: Near-Frontal

NO localization results. Problems
under significant pose variations.

12 Yu & Moon [142]
(2008)

3 Trained model w. genetic algo-
rithm

FRGC v1: Near-
Frontal

3D errors per landmark (mm).
Not applicable under significant
pose variations.

13 Romero-Huertas &
Pears [113] (2008)

3 convex and concave areas +
graph model matching

FRGC v1 (509 scans)
+ FRGC v2 (3271
scans): Near-Frontal

NO localization results.

14 Nair & Cavallaro
[92] (2009)

5 3D PDM + Shape Index +
curvedness index

BU3DFE: 2,500 frontal
scans

NO localization results. Not appli-
cable under significant pose varia-
tions.

15 Perakis et al. [103]
(2009), [100] (2013)

8 Shape Index + Spin Images +
FLM

FRGC v2 + UND Ear:
Frontal to profile scans

State-of-the-art. 3D errors per
landmark (mm). Applicable un-
der significant yaw and expression
variations.

Faltemier et al. [41] introduced a heuristic method for nose tip detection. The method
is a fusion of curvature and shape index analysis and a template matching algorithm using
ICP. The nose tip detector had a localization error less than 10 mm in 98.2% of the 4007
facial datasets of FRGC v2 where it was tested. However, no exact localization distance error
results were presented. They also introduced a method called “Rotated Profile Signatures”
[42], based on profile analysis, to robustly locate the nose tip in the presence of pose, expres-
sion and occlusion variations. Their method was tested against NDOff2007 database which
contains 7,317 facial scans, 406 frontal and 6,911 in various yaw and pitch angles. They
reported a 96% to 100% success rate, with distance error threshold 10 mm, under significant
yaw and pitch variations. Although their method achieved high success rate scores, it is a
2D-assisted 3D method since it uses skin segmentation to eliminate outliers, and is limited
to the detection of the nose tip only. Finally, no exact localization distance error results
were presented.

Dibeklioğlu, Salah and Akarun [32, 33] presented methods for detecting facial features
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on 3D facial datasets to enable pose correction under significant pose variations. They in-
troduced a statistical method to detect facial features, based on training a model of local
features, from the gradient of the depth map. The method was tested against the FRGC
v1 and the Bosphorus databases, but data with pose variations were not taken into con-
sideration. They also introduced a nose tip localization and segmentation method using
curvature-based heuristic analysis. However, the proposed system shows limited capabili-
ties on facial datasets with yaw rotations greater than 45◦. Additionally, even though the
Bosphorus database used consists of 3,396 facial scans, they are obtained from 81 subjects.
Finally, no exact localization distance error results were presented.

Yu and Moon [142] presented a nose tip and eye inner corners detection method on 3D
range maps. The landmark detector is trained from example facial data using a genetic
algorithm. The method was applied on 200 almost-frontal scans from FRGC v1 database.
However, a limitation of the proposed system is that it is not applicable to facial datasets
with large yaw rotations since it always uses the three aforementioned control points. Results
of the method are presented in Table 15 for comparison reasons.

Romero-Huertas and Pears [113] presented a graph matching approach to locate the
positions of nose tip and inner eye corners. They introduced the “distance to local plane”
notion to describe the local distribution of neighboring points and detect convex and concave
areas of the face. Finally, after the graph matching algorithm has eliminated false candidates,
the best combination of landmark points is selected from the minimum Mahalanobis distance
to the trained landmark graph model. The method was tested against FRGC v1 (509 scans)
and FRGC v2 (3,271 scans) databases. They reported a success rate of 90% with thresholds
for the nose tip at 15 mm, and for the inner eye corners at 12 mm.

Nair and Cavallaro [92] presented a method for detecting facial landmarks on 2.5D scans.
Their method used the shape index and the curvedness index to extract candidate feature
points (nose tip and inner and outer eye corners). A statistical shape model (PDM) of feature
points is fitted to the facial dataset by using three control points (nose tip and left and right
inner eye corners) for coarse registration, and the rest for fine registration. The localization
accuracy of the landmark detector was tested against the BU-3DFE facial database, which
only contains complete frontal facial datasets with capture range ±45◦. Furthermore, their
method is not applicable to missing data resulting from pose self-occlusion, since it always
uses the aforementioned three control points for model fitting. Results of the method are
presented in Table 15 for comparison purposes.

Finally, Perakis et al. [103, 100] presented methods for detecting facial landmarks (eye
inner and outer corners, mouth corners, and nose and chin tips) on 2.5D scans. Local shape
and curvature analysis utilizing shape index, extrusion maps and spin images were used
to locate candidate landmark points. These are identified and labeled by matching them
with a statistical facial landmark model. The method addresses the problem of extreme yaw
rotations and missing facial areas, and it is tested against FRGC v2 and UND Ear databases.

2.2 2D Facial Landmark Detection

Two-dimensional landmark detection is based mostly on variations of the seminal work on
Active Appearance Models of Cootes et al. [23, 27, 25, 28], and is reported in a number of
publications.

Cootes et al. [25] presented an extension of the Active Appearance Model (AAM) algo-
rithm, using multi-view 2D statistical landmark models (for −90◦, −45◦, 0◦, +45◦, +90◦ yaw
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angles) to estimate head orientation and track faces through large angles. They learned a
coupled model describing the relationship between the frontal appearance and the profile of
a face to predict new views of a face and to constrain search algorithms which seek to locate
a face in multiple views simultaneously.

Felzenszwalb and Huttenlocher [44] presented a computationally efficient framework for
part-based modeling of objects based on the pictorial structure models. An object is repre-
sented by a collection of parts arranged in a deformable configuration. The appearance of
each part is modeled separately, and the deformable configuration is represented by spring-
like connections between pairs of parts. They demonstrated the technique by learning models
that represent facial landmarks.

Vukadinovic and Pantic [134] presented a method for fully automatic detection of 20
facial feature points in images of expressionless faces using Gabor wavelet feature templates
and GentleBoost based classifiers. The method tested on the Cohn-Kanade database, and
achieved average detection rates of 93%.

Gu and Kanade [51] presented a method for aligning a 3D deformable model to a single
face image. The model consists of a set of sparse 3D points and the view-based texture
patches associated with every point. Assuming a weak perspective projection model, their
algorithm iteratively deforms the model and adjusts the 3D pose to fit the image. Alignment
experiments demonstrated that their approach can effectively handle unseen faces with a
variety of pose and illumination variations.

Gu and Kanade [52] presented a face alignment system that is capable of dealing with
exaggerated expressions, large occlusions, and a wide variety of image noises. Their system
used a gradient-based landmark detector and a Gaussian shape distribution model. The
inference algorithm iteratively examines the best candidate positions and updates face shape
and pose, using an EM approach. Their system can effectively recover sufficient shape details
from very noisy observations.

Romdhani and Vetter [112] introduced a probabilistic shape model based on the 3D Mor-
phable Model (3DMM) that can be used to localize feature points in 2D images. Candidate
feature points are detected using the SIFT descriptor. Using weak perspective projection of
the 3D model to the 2D image and an optimization process based on maximum likelihood
(ML) estimation, the relative position of the feature points, their appearance, scale, orien-
tation and occlusion state are determined. Computational efficiency is obtained by using
the Bellman principle and an early rejection rule based on 3D to 2D projection constraints.
Evaluations of the detection algorithm on the CMU-PIE face images and on a large set of
non-face images show high levels of accuracy (zero false alarms for more than 90% detection
rate).

Cristinacce and Cootes [29] presented an extension of the Active Shape Model (ASM)
framework. Two different types of non-linear boosted feature models represented by haar
wavelets were trained using GentleBoost. The first type is a conventional feature detector
classifier, which learns a discrimination function between the appearance of a feature and
the local neighborhood. The second local model type is a boosted regression predictor which
learns the relationship between the local neighborhood appearance and the displacement
from the true feature location. They showed that the second regression model is much more
efficient providing improved localization and increasing search speed.

Cristinacce and Cootes [28] introduced the Constrained Local Model (CLM) framework
an extension of Active Appearance Model (AAM) framework. From a training set they
constructed a joint model of the appearance of each feature together with their relative posi-
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tions. The model is fitted to an unseen image in an iterative manner by generating templates
using the joint model and the current parameter estimates, correlating the templates with
the target image to generate response images and optimizing the shape parameters so as to
maximize the sum of responses. They showed that the CLM algorithm is more robust and
more accurate than the AAM search method, demonstrating improved localization accuracy
on photographs of human faces.

Milborrow and Nicolls [89] presented extensions to the Active Shape Model, and use it
to locate features in frontal views of upright faces. Their extensions were (i) fitting more
landmarks than actually needed (ii) using 2D intensity gradients as landmark templates (iii)
adding noise to the training set (iv) relaxing the constrains imposed by the shape model
(v) trimming covariance matrices used for landmark similarity, and (vi) running two Active
Shape Models in series.

Liang et al. [77] proposed a component-based discriminative approach for face alignment
without requiring initialization. They first detect a number of candidate facial landmarks
and construct an initial shape. Then, a discriminative search algorithm searches a new
position for each facial landmark. The searching direction is determined by learned direction
classifiers. Each landmark is represented by a Haar wavelet template, trained with Adaboost.
Their approach gives excellent alignment results on the commonly used datasets created
under controlled conditions, and also on a more challenging dataset containing facial images
with a large range of variations in pose, lighting, expression and background.

Wu et al. [137] introduced the Boosted Ranking Model, a face model that is aligned by
maximizing a score function, which was learned from training data. It is an extension of AAM
and ASM approaches, with Haar wavelets used for landmark representation. GentleBoost
was used for learning the detection scores.

Liu [79] introduced the Boosted Appearance Model (BAM), a discriminative framework
for efficiently aligning images. During the modeling stage, a conventional Point Distribution
Model (PDM) and a GentleBoost classifier, which acts as an appearance model, were trained.
Haar wavelets were used for landmark representation. Using extensive experimentation, he
showed that, compared to the AAM-based approach, this framework greatly improves the
robustness, accuracy, and efficiency of face alignment by a large margin, especially for unseen
data.

Zhou et al. [144] introduced the Combined Active Shape Model. It exploits the Scale
Invariant Feature Transform (SIFT) as landmark descriptors and the Active Shape Model
(ASM) as the landmark model. In order to have a better representation of face images, the
landmarks on the face region and the face contour are modeled and processed separately.
The performance of the proposed Combined-ASM algorithm is tested on the BioID and
FRGC v2 face image databases.

Zhou et al. [145] presented a 3D Active Shape Model (3DASM) algorithm to automatically
locate facial landmarks from different views. The 3DASM is trained by setting different shape
and texture parameters on a 3D Morphable Model (3DMM). Using 3DMM to synthesize
training data, landmarks have one to one correspondence between the 2D points detected
from the image and 3D points on 3DMM. The Scale Invariant Feature Transform (SIFT)
was used as a landmark descriptor. During fitting, 3D rotation parameters are computed
using PCA. The experimental results show that the method is robust to pose variations.
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Table 2: Comparison of 2D landmark detection methods

No Ref No of Method Test Remarks
Lmks Datasets

1 Cootes et al. [25]
(2002)

Multi-view models Frontal to profile NO localization results. Performs
poorly on unseen faces and low-res
images.

2 Felzenswalb &
Huttenlocher [44]
(2005)

5 - 7 Pictorial structure model Near-frontal NO localization results.

3 Vukadinovic &
Pantic [134] (2005)

20 GentleBoost classifier using
Gabor and texture templates

Cohn-Kanade DB: 300
images, frontal, no ex-
pressions

NO localization results. The lack
of a global shape model can lead to
non-plausible facial configurations.

4 Gu & Kanade [51]
(2006)

83 Trained 3D model + 2D inten-
sity image patches + weak per-
spective projection estimation
by EM

CMU-PIE: Frontal to
profile

NO localization results.

5 Gu & Kanade [52]
(2008)

83 Trained 3D model + gradient
landmark descriptors + weak
perspective projection estima-
tion by EM

CMU-PIE + AR + in-
ternet images: Frontal
to profile, expressions,
occlusions

NO localization results.

6 Romdhani & Vet-
ter [112] (2007)

83 3D morphable model + SIFT
+ 2D/3D fitting process by
weak perspective projection

CMU-PIE: Frontal to
profile

NO localization results. Optimiza-
tion process hampered by the curse
of dimensionality

7 Cristinacce &
Cootes [29] (2007)

22 2D ASM + Haar wavelets +
Gentleboost

BioID + XM2VTS:
Near-frontal

NO localization results.

8 Cristinacce &
Cootes [28] (2008)

22 Constrained Local Model +
Texture patches w. PCA

BioID + XM2VTS:
Near-frontal

NO localization results.

9 Milborrow &
Nicolls [89] (2008)

68 2D Extended ASM + simi-
larity or affine transformation
constraints + gradient descent
optimization

BioID: Near-frontal NO localization results.

10 Liang et al. [77]
(2008)

33 Haar wavelets + Discrimina-
tive Classifier based on Ad-
aboost

AR + FERET +
CMU-PIE + LFW:
2,469 images frontal to
side, expressions and
lighting variations

NO localization results.

11 Wu et al. [137]
(2008)

33 Boosted Ranking Model
(BRM): 2D PDM + Haar-like
local features + GentleBoost

ND1 + BioID: Frontal
to side

NO localization results.

12 Liu [79] (2009) 33 Boosted Appearance Model
(BAM): 2D PDM + Haar-like
local features + GentleBoost

ND1 + FERET +
IMM + BioID

NO localization results.

13 Zhou et al. [144]
(2009)

58 2D ASM + SIFT BioID + FRGC v2:
11,204 near-frontal im-
ages

NO localization results.

14 Zhou et al. [145]
(2010)

45 3D ASM + SIFT + Probabilis-
tic PCA

IMM: 80 images +
CMU-PIE: 280 images

NO localization results.

15 Valstar et al. [133]
(2010)

22 SVM regression for localization
+ Markov Random Fields for
global consistency + Haar-like
local features

MMI + FERET +
BioID: 1,855 images w.
expression and occlu-
sions

State-of-the-art. 2D normalized
errors per landmark (mean error /
interoccular dist.). Not real time
(50 sec per image).

16 Zeng et al. [143]
(2010)

45 Personalized 3D landmark
model + multiview DAISY
descriptors + Data-Driven
Sample Consensus (DDSAC)

CMU Multi-PIE +
UHDB14

NO localization results. Cannot be
used on “unseen” faces.

17 Efraty et al. [39,
40] (2011)

12 PDM of landmarks + IMRA
local descriptors + Adaptive
Bag-of-Words Representation

CMU Multi-PIE NO localization results.

18 Belhumeur et al. [4]
(2011)

29 Combined outputs of local de-
scriptors using Bayesian infer-
ence with a consensus of non-
parametric global model

LPFW: 300 images +
BioID. Frontal to side,
w. expressions and
lighting variations.

NO localization results. State-of-
the-art. Most accurate in uncon-
trolled imaging conditions. Not
real time (1 sec per landmark)

19 Dantone et al. [30]
(2012)

10 Image patches + Conditional
Regression Forests

LFW: 2,469 images.
Frontal to side w. ex-
pressions and lighting
variations.

State-of-the-art. 2D normalized
errors per landmark (mean error /
interoccular dist.) Close to human
accuracy + Real time.
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Valstar et al. [133] presented a method based on a combination of Support Vector Regres-
sion and Markov Random Fields to search for a landmark point’s location. Using Markov
Random Fields they constrained the search space by exploiting the constellations that facial
points can form. The regressors on the other hand learn a mapping between the appearance
of the area surrounding a point and the positions of these points, which makes detection of
the points robust to variations of appearance due to facial expression and moderate changes
in head pose. They adopted Haar-like filters as the descriptors of the local appearance of
the landmark points. The proposed point detection algorithm was tested on 1,855 images,
and the results showed that it outperformed previous landmark detectors.

Zeng et al. [143] presented a personalized landmark localization method that leverages
information available from 2D/3D gallery data. To realize a robust correspondence between
gallery and probe key points, they used: (i) a hierarchical DAISY descriptor that encodes
contextual information, (ii) a Data-Driven Sample Consensus (DDSAC) algorithm that lever-
ages the image information to reduce the number of required iterations for robust transform
estimation, and (iii) a 2D/3D gallery pre-processing step to build personalized landmark
metadata (i.e., local descriptors and a 3D landmark model). They validated their approach
on the Multi-PIE and UHDB14 databases.

Efraty et al. [40, 39] presented a fully-automated system for facial component-landmark
detection based on multi-resolution isotropic analysis and adaptive bag-of-words descrip-
tors incorporated into a cascade of boosted classifiers. Specifically, first each component-
landmark detector is applied independently and then the information obtained is used to
make inferences for the localization of multiple components. The advantage of their ap-
proach is that it has robustness to pose as well as illumination. They demonstrated that
using their method for the initialization of a point landmark detector results in a performance
comparable with that of state-of-the-art methods.

Belhumeur et al. [4] presented a novel approach which combines the output of local
detectors with a non-parametric set of global models for localizing parts in images of human
faces. Assuming that the global models generate the part locations as hidden variables, they
derived a Bayesian objective function, which was optimized using a consensus of models for
these hidden variables. They showed excellent performance on a database gathered from the
internet and showed that their localizer achieved state-of-the-art performance on the less
challenging BioID database.

Dantone et al. [30] presented a real-time method that estimates feature points even on
low quality images, using the conditional regression forest approach on image patches for this
task. In their experiments, they used the head pose as a global property and demonstrated
that conditional regression forests outperform regression forests for facial feature detection.
They evaluated the method on the challenging Labeled Faces in the Wild database where
close-to-human accuracy was achieved while processing images in real-time.

2.3 Feature Fusion

Feature fusion in multi-modal biometrics: A number of studies showing the advantages
of information fusion in pattern recognition and especially in multi-modal biometrics have
appeared in the literature.

Xu et al. [140] (1992) grouped different combining methods into categories and proposed
methods for classifier fusion at different levels (measurement, rank and abstract). These
combining methods were applied to recognizing handwritten numerals. They reported a
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significant improvement over the performance of individual classifiers.

Kittler et al. [70] (1998) have developed a theoretical framework for the combination
approach to fusion at the matching score level of multimodal biometric applications. In their
approach the matching scores of individual classifiers are interpreted as posterior probabilities
and the resultant scores are the outcome of simple fixed fusion rules. They have experimented
with several fusion rules (sum rule, product rule, max rule, min rule, median rule and
majority voting) for face and voice biometrics and found that the sum rule outperformed the
others. They also concluded that the sum rule is not significantly affected by the probability
estimation errors and this explains its superiority.

Jain et al. [60] (2000) conducted experiments concerning the characteristics of combining
twelve different classifiers using five different combination rules and six different feature sets
generated from handwritten numerals (0-9). Reported results show that each case favors its
own combining rule and that combining does not necessarily lead to improved peformance.

Duin [36] (2002) presents fusion techniques in a general abstract context. His presen-
tation is an intuitive discussion on the use of trained combiners. There is no conducted
experimentation.

Ross and Jain [115] (2003) addressed the problem of information fusion in biometric
verification systems by combining face, fingerprint and hand geometry modalities using sum,
decision-tree and LDA based methods. They reported that the sum rule outperforms the
others.

Jain et al. [61] (2005) presented a thorough classification of information fusion approaches
in biometric systems. They also experimented with different normalization techniques (min-
max, z-score, median, sigmoid, tanh and Parzen) and fusion rules (sum rule, max rule and
min rule and weighted-sum rule) to combine score from different matchers in a multimodal
biometric recognition system. They concluded that the tanh normalization is the most robust
and efficient for a recognition system, and that weighted summation of the matching scores
resulted in a significant improvement in recognition rates.

Ross and Govindarajan [114] (2005) have experimented with fusion at the feature level
in 3 different scenarios: (i) fusion of PCA and LDA coefficients of face; (ii) fusion of LDA
coefficients corresponding to the R,B,G channels of a face image; and (iii) fusion of face and
hand modalities. They concluded that it is difficult to predict the best fusion strategy for a
given scenario.

Snelick et al. [124] (2005) examined the performance of multimodal biometric authenti-
cation systems using fusion techniques over fingerprint and face modalities on a population
approaching 1,000 individuals. They also introduced adaptive normalization techniques and
weighted fusion rules. They concluded that multimodal fingerprint and face biometric sys-
tems can achieve better performance than unimodal systems.

Gökberk and Akarun [47] (2006) have presented fusion techniques for 3D face recognition.
Their fusion schemes combine four face classifiers which are used for the comparison of
gallery and probe faces. Reported results show that their serial fusion technique offers the
best solutions.

Theoharis et al. [130] (2008) presented a multimodal biometric recognition system using
the fusion of face and ear modalities. They reported that the fused multimodal system
achieved better performance (99.7% rank-one recognition rate) than the unimodal systems.
The high reported accuracy was attributed to the low correlation of the two modalities.
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Landmark feature fusion: In landmark detection literature on the other hand the combi-
nation of landmark descriptors is an under-studied issue.

Lu and Jain [83] (2005) used the combination of shape index response derived from the
range map (3D) and the cornerness response from the intensity map (2D) to determine
the positions of the corners of the eyes and the mouth. They used a fusion scheme of a
pixel-wise summation of the normalized shape index and cornerness response values, for the
“resultant” feature values of mouth and eye corners. A statistical 3D feature location model is
applied after aligning the model with the nose tip for landmark topological consistency. This
automatic feature extraction algorithm has been integrated in an automatic face recognition
system.

Boehnen and Russ [12] (2005) used color images (2D) and range data (3D). A skin
detection algorithm is applied using the YCbCr transformation of the initial RGB image.
The face region that results from skin detection is refined by using z-erosion exploiting the
range data. Thus, at first a face segmentation is applied; next, eye and mouth likelihood
maps are calculated (using Cb and Cr values), to locate the corresponding landmarks. Thus
this method is not a fusion method but merely a 2D/3D masking/filtering method. Their
algorithm runs in approximately 4 sec on a 640× 480 image with registered range data. On
a database of 1,500 images their algorithm achieved a facial feature detection rate of 99.6%.

Table 3: Comparison of 2D/3D landmark detection methods

No Ref No of Method Test Remarks
Lmks Datasets

1 Lu & Jain [83]
(2005)

7 Shape Index map + Corner-
ness map + 3D Statistical
Landmark Contraints

FRGC v1 3D localization error in mm per
landmark. No side scans. No ex-
pressions.

2 Boehnen &
Russ [12]
(2005)

4 Fusion scheme of 2D color +
3D depth images

UND: Frontal w. expres-
sions

NO localization results. 4 sec per
img. Frontal only.

3 Jahanbin
et al. [59]
(2011)

11 Trained Gabor jets on inten-
sity and depth images. Fusion
of intensity and depth images
similarity maps of trained Ga-
bor jets. + 2D statistical land-
mark constrain model w. fixed
2D search areas.

T3DFRD: 1,146 2D/3D co-
registered frontal datasets

State-of-the-art. 3D errors per
landmark (mm). 2D normalized
errors per landmark (mean error
/ interoccular dist.) Most accu-
rate in controlled imaging condi-
tions. Applicable to cropped and
aligned frontal faces only.

Jahanbin et al. [59] (2011) used Gabor jets to represent intensity (2D) and range (3D)
data. Next, the jets of each pixel were compared (using the appropriate similarity measure)
to a target bunch (describing the queried landmark) in order to create similarity maps for
each modality and landmark class. Finally, intensity and and range similarity maps were
combined into a “hybrid” resultant similarity map. For the calculation of the resultant
similarity map different approaches of fusion were examined such as taking the pixel-wise
sum, product or maximum of the similarity scores. They concluded that summation is
the most appropriate for robust landmark detection. Their goal was the construction of a
unified multimodal (2D + 3D) face recognition system with boosted performance. Although
their landmark detection method is the most accurate in controlled imaging conditions, it
is applicable to cropped and registered frontal faces only, since they use a 2D landmark
constrain model which is not generalized.
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Perakis et al. [103] (2009), [100] (2013) and Passalis et al. [97] (2011) presented a 3D
facial landmark detection system using the fusion of shape index and spin image feature
descriptors. Their fusion system operated in a cascade (sequential) fashion so that the
candidate landmarks extracted from the shape index transformation were classified and
filtered out according to their similarity with precalculated spin image templates. They also
used a product rule fusion of landmarks’ geometric distance to a landmark model and spin
image similarities at the decision level. They reported high landmark detection accuracy
under large facial yaw rotations.

2.4 Partial Face Recognition

Most face recognition methods focus on frontal scans only (see the surveys of Bowyer
et al. [15] and Chang et al. [19]). As a result, the performance of these methods is not
evaluated with data that exhibit significant pose variations. In previous work of our team
[96, 64], a 3D face recognition method has been presented (ranked first in the shape-only
section of NIST’s Face Recognition Vendor Test 2006). However, only frontal scans were
used as the method did not handle missing data. In subsequent work involving this thesis
[101, 97], this method was extended to handle missing data by introducing a pose invariant
landmark detection step. The methods that are evaluated using data with pose variations
are mentioned below. Note that none of them handles the extreme pose variations and the
extensive missing data that the proposed method does.

Face Recognition under extreme poses: Lu et al. [83, 84, 85], in a series of works, have
presented methods to locate the positions of eye and mouth corners, and nose and chin
tips, based on a fusion scheme of shape index on range maps and the “cornerness” response
on intensity maps. They also developed a heuristic method based on cross-profile analysis
to locate the nose tip more robustly. Candidate landmark points were filtered out using a
static (non-deformable) statistical model of landmark positions, in contrast to the presented
approach. Although they report a 90% rank-one matching accuracy in an identification
experiment, no claims where made with respect to the effects of pose variations in Face
Recognition. Note that their pure 3D approach [84] (evaluated using multiview scans with
yaw rotations up to 45◦ from MSU) that can handle pose variations has worse 3D Landmark
Detection accuracy than their multimodal approach [83] (evaluated using near frontal scans
from FRGC v1).

Dibeklioglu et al. [32, 33] introduced a nose tip localization and segmentation method
using curvature-based heuristic analysis to enable pose correction in a face recognition system
that allows identification under significant pose variations. However, a limitation of the
proposed system is that it is not applicable to facial scans with yaw rotations greater than
45◦. Additionally, even though the Bosphorus database used consists of 3,396 facial scans,
they are obtained from only 81 subjects.

Blanz et al. [11, 10, 111] presented works on 3D face reconstruction by fitting their
3D Morphable Model on 3D facial scans. Their method is a well established approach
for producing 3D synthetic faces from scanned data. However, face recognition testing is
performed on FRGC database with frontal facial scans, and on FERET database with faces
under pose variations which do not exceed 40◦.

Bronstein et al. [17] presented a face recognition method that can handle missing data.
Their method is based on their previous work of “isometric embedding” for a canonical
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representation of the face [16]. On a limited database of 30 subjects they reported high
recognition rates. However, the database they use has no side scans. The scans with missing
data that they use are derived synthetically by randomly removing certain areas from frontal
scans.

In Nair and Cavallaro’s [91] work on partial 3D face matching, the face is divided into
areas and only certain areas are used for registration and matching. The assumption is
that the areas of missing data can be excluded. Using a database of 61 subjects, they show
that using parts of the face rather than the whole face yields higher recognition rates. As
is the case with their subsequent work on 3D landmark detection [92], their method is not
applicable to missing data resulting from pose self-occlusion, especially when holes exist
around the nose region.

Lin et al. [78] introduced a coupled 2D and 3D feature extraction method to determine the
positions of eye sockets using curvature analysis. The nose tip is considered as the extreme
vertex along the normal direction of eye sockets. The method was used in an automatic 3D
face authentication system but was tested on only 27 human faces with various poses and
expressions.

Mian et al. [88] introduced a heuristic method for nose tip detection and used it in a face
recognition system. The method is based on a geometric analysis of the nose ridge contour
projected on the x−y plane. It is utilized as a preprocessing step to cut out and pose correct
the facial data. Even though it allows up to 90◦ roll variation, it requires yaw and pitch
variation less than 15◦, thus limiting the applicability to near frontal scans.

Facial Asymmetry: It is a well known fact that the human face is not perfectly symmetrical.
The exact level of facial asymmetry was recently quantified in the work of Liu and Palmer
[80]. It was shown that, given a reasonable range of sensor noise, facial asymmetry is
statistically significant. Additionally, facial asymmetry has been used as a biometric in
several works, such as the works of Kompanets [73], Liu et al. [81] and Mitra et al. [90]. In
these works, facial asymmetry offered promising biometric results particularly in the presence
of facial expressions. As pointed out by Liu and Palmer [80], facial asymmetry should not be
ignored without a justification. The idea that partial facial data can be used for biometric
purposes has also been investigated by Gutta et al. [55] in the 2D face recognition domain
with promising results.

The proposed method, on the other hand, exploits facial symmetry. This method does not
rely on the assumption that the human face is perfectly symmetrical. The main assumption
is that the difference (caused by facial asymmetry) between the left and the right region of
a subject’s face is less than the difference between these regions and the regions of another
subject’s face. The experimental results presented in Chapter 8 justified this assumption for
the databases that were used.
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3 Shapes and Landmarks

Do you see that cloud,
that’s almost in shape like a camel?

– W. Shakespeare

In a wide variety of disciplines it is of great practical importance to measure, describe
and compare the shapes of objects. In biometric applications, computer vision and computer
graphics, the class of objects is often the human face. In almost any application, requiring
processing of 3D facial data, an initial registration step based on feature points (landmarks)
correspondence is the most crucial step in order to make a system fully automatic. Facial
landmark detection can be used for face registration, face recognition, facial expression
recognition, facial shape analysis, segmentation and labeling of facial parts, facial region
retrieval, partial face matching, facial mesh reconstruction, face relighting, face synthesis,
face animation and motion capture.

Statistical shape analysis is concerned with methodology for analyzing shapes in order to
estimate population average shapes and the structure of shape variability. The foundation
of statistical shape analysis was the pioneering work of Kendall [68] (1984) and Bookstein
[13] (1986). Main contributions in shape analysis were the “Snakes” paper by Kass, Witkin
and Terzopoulos [67] (1988) and subsequent papers published as “Active Shape Models:
Smart Snakes” [26](1992) and “Active Shape Models: their training and application” by
Cootes, Taylor, Cooper and Graham [27] (1995). Snakes and Active Shape Models are
both deformable models but, contrary to Snakes, Active Shape Models (ASMs) have global
constraints w.r.t. shape. These constraints are learned through observation, giving the model
flexibility, robustness and specificity, as the model only can synthesize plausible instances
w.r.t. the observations.

This Chapter presents the theoretical background of statistical shape analysis for describ-
ing shapes through landmarks, introduces the Facial Landmark Model (FLM) and defines its
deformations. The FLM is constructed using Procrustes Analysis and Principal Component
Analysis (PCA) over facial landmarks which have been manually pre-annotated on exemplar
facial datasets.

3.1 The Shape Space

The word “shape” is very commonly used in everyday language, but what do we actually
understand by the concept of shape? Dryden and Mardia [35] adopt the definition by D.G.
Kendall:

Shape is all the geometrical information that remains when location, scale and rotational
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effects are filtered out from an object.

According to this, shape is, in other words, invariant to Euclidean similarity transforma-
tions. This is reflected in Fig. 4.

Two objects have the same shape if they can be translated, scaled and rotated to each
other so that they match exactly. Scale is sometimes considered a distinguishing character-
istic.

Rigid shape is all the geometrical information that remains when location and rotational
effects are filtered out from an object.

So, two objects have the same size-and-shape if they can be translated and rotated to
each other so that they match exactly, i.e rigid shapes are rigid-body transformations of each
other.

Figure 4: The same face shape under different Euclidean transformations.

The next question that naturally arises is: How should one describe a shape? One way
to describe a shape is by locating a finite number of points on the outline or other specific
points. Consequently, the concept of a landmark is adopted. According to Dryden & Mardia
[35]:

Landmark is a point of correspondence on each object that matches between and within
populations.

Dryden and Mardia [35] sort landmarks into the following categories:

Anatomical landmarks: Points assigned by an expert that corresponds between organisms
in some biologically meaningful way, e.g. the corner of an eye.

Mathematical landmarks: Points located on an object according to some mathematical
or geometrical property, e.g. a high curvature or an extremum point.

Pseudo-landmarks: Constructed points on an object either on the outline or between
anatomical or mathematical landmarks.
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Labeled landmarks: Landmarks that are associated with a label (name or number), which
is used to identify the corresponding landmark.

Synonyms for landmarks include homologous points, interest points, nodes, anchor points,
model points, key points, fiducial markers etc.

The mathematical representation of an n-point landmark shape in d dimensions can be
defined by concatenating all landmark point coordinates into a k = nd vector and establishing
a Shape Space [35, 125, 23]. The vector representation for a 3D landmark shape x ∈ Rk would
then be:

x = [[p1]x, . . . , [pn]x, [p1]y, . . . , [pn]y, [p1]z, . . . , [pn]z]
T , (1)

where ([pi]x, [pi]y, [pi]z) represent the coordinates of n landmark points pi in the original
Euclidean 3D space R3.

If a relationship between the distance in shape space and Euclidean distance in the
original space can be established, then we have a metric space. This relationship is called a
shape metric. A set of shapes actually forms a Riemannian manifold containing the shape
object under consideration (Kendall shape space).

Often used shape metrics include the Hausdorff distance, the strain energy and the Pro-
crustes distance. In the following the celebrated Procrustes distance will be used.

The squared Procrustes distanceDP between two shapes, x1 and x2, is simply a Euclidean
metric in the k = nd dimensional shape space Rk:

D2
P = ∥x1 − x2∥2 =

k∑
j=1

([x1]j − [x2]j)
2 . (2)

The centroid c of a landmark shape is the center of mass (CM) of the physical system
consisting of unit masses at each landmark pi. This is easily calculated in the original
Euclidean 3D space R3 as:

c = [cx, cy, cz]
T =

[
1

n

n∑
i=1

[pi]x,
1

n

n∑
i=1

[pi]y,
1

n

n∑
i=1

[pi]z

]T
. (3)

The centroid size is used as a shape size metric. It is the square root of the sum of the
squared Euclidean distances of each landmark pi from the centroid c:

S(x)2 =
n∑
i=1

∥pi − c∥2 (4)

in the original Euclidean 3D space. The centroid size has the property that 2nS(x)2 equals
the sum of the inter-landmark distances.

3.1.1 Shape Alignment

Since shape has to be invariant to 3D Euclidean similarity transformations, translational,
scale and rotational effects need to be filtered out by minimizing the Procrustes distance DP :

D2
P = ∥xi − xm∥2 =

k∑
j=1

([xi]j − [xm]j)
2 , (5)
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between each example shape xi and the mean shape xm.
The alignment procedure is commonly known as Procrustes Analysis [35, 125, 23] and is

used to calculate the mean shape of the landmark shapes. Although there are analytic solu-
tions, a typical iterative approach (adapted from [23]), is used. This approach is presented
in Algorithm 1.

Algorithm 1 “Procrustes Analysis”

input: Example landmark shapes xi.
output: Landmarks’ mean shape xm.
1: Compute the centroid ci of each example shape xi.
2: Translate each example shape xi so that its centroid ci is at the origin (0,0,0).
3: Scale each example shape xi so that its size is 1.
4: Assign the first example shape to the mean shape xm.
5: repeat
6: Assign the mean shape xm to a reference shape x0.
7: Align all example shapes xi to the reference shape x0 by an optimal rotation R.
8: Recompute the mean shape xm.
9: Translate the mean shape xm so that its centroid is at the origin (0,0,0).
10: Scale the mean shape xm so that its size is 1.
11: Align the mean shape xm to the reference shape x0 by an optimal rotation R.
12: Compute the Procrustes distance ∥x0 − xm∥ between the mean shape xm and the

reference shape x0.
13: until Convergence: ∥x0 − xm∥ < ε.
14: return Mean shape xm.

Thus, the mean shape of landmark shapes (Fig. 7) is created and all example shapes are
aligned to it. The mean shape xm is the Procrustes mean in Rk

xm =
1

N

N∑
i=1

xi (6)

of all N example shapes xi.

Remarks: Note that in our case, where the size of the facial landmark shape is of great
importance, scaling shapes to unit size is omitted in Algorithm 1. In such cases, the shapes
are aligned by performing only the translational and rotational transformations. Thus, facial
landmark distances are used as constraints that are incorporated during the training phase
into the model. For this purpose, it is assumed that 3D facial data capture devices record
the actual facial size. During the detection phase, landmark distances serve as constraints
for rejecting outlier landmark shapes (Sections 3.2.2 and 6.2.1).

3.1.2 Alignment Transformations

As mentioned previously, to obtain a true representation of landmark shapes, location, scale
and rotational effects need to be filtered out by bringing shapes to a common frame of
reference. This is carried out by performing translational, scaling and rotational transfor-
mations. Notice that different approaches to alignment can produce different distributions
of the aligned shapes.
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Translation of an example shape x so that its centroid is at the origin is performed by
applying to its n landmark points pi the following transformation in 3D original space:

p′
i = pi − c (7)

where c denotes the centroid of x and i ∈ {1, ..., n}.
Scaling of an example shape x to unit size is performed by applying to its n landmark

points pi the following transformation in 3D original space:

p′
i = αpi (8)

where α = 1/S(x) is the scaling factor, S(x) is the shape’s size, and i ∈ {1, ..., n}.
Rotation in the original 3D space is slightly more complicated. A rotational transforma-

tion R(x) has to be computed so as to minimize the Procrustes distance ∥R(x)−x0∥ between
the transformed shape R(x) and a reference shape x0. The rotational transformation R can
be expressed as a product of three rotations around the three principal axes:

R = Rx,θ ·Ry,ϕ ·Rz,ψ (9)

These can be expressed in a matrix form:

Rx,θ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (10)

Ry,ϕ =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 (11)

Rz,ψ =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (12)

After setting partial derivatives of ∥R(x) − x0∥2 w.r.t. each parameter to zero it is
obtained that (Appendix A):

θ = tan−1

(
Sz0,y − Sy0,z
Sy0,y + Sz0,z

)
(13)

ϕ = tan−1

(
Sx0,z − Sz0,x
Sz0,z + Sx0,x

)
(14)

ψ = tan−1

(
Sy0,x − Sx0,y
Sx0,x + Sy0,y

)
(15)

where:

Sx0,x =
n∑
j=1

x0jxj, Sx0,y =
n∑
j=1

x0jyj, Sx0,z =
n∑
j=1

x0jzj,

Sy0,x =
n∑
j=1

y0jxj, Sy0,y =
n∑
j=1

y0jyj, Sy0,z =
n∑
j=1

y0jzj,

Sz0,x =
n∑
j=1

z0jxj, Sz0,y =
n∑
j=1

z0jyj, Sz0,z =
n∑
j=1

z0jzj.
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Hence, the rotational transformation of every landmark point pi in the original 3D space
gives:

p′
i = R · pi , (16)

with i ∈ {1, ..., n}.
Alignment of a shape x to a reference shape x0 is performed by minimizing the Procrustes

distance in an iterative way, as described in Algorithm 2.

Algorithm 2 “Shape Alignment”

input: Landmark shapes x0 and x.
output: Rotational transformation R.
1: Translate x0 so that its centroid is at the origin (0,0,0).
2: Translate x so that its centroid is at the origin (0,0,0).
3: R := 1.
4: repeat
5: Compute Rx,θ.
6: Apply Rx,θ to the landmark points of shape x.
7: R := Rx,θ ·R.
8: Compute Ry,ϕ.
9: Apply Ry,ϕ to the landmark points of shape x.
10: R := Ry,ϕ ·R.
11: Compute Rz,ψ.
12: Apply Rz,ψ to the landmark points of shape x.
13: R := Rz,ψ ·R.
14: Compute the Procrustes distance ∥x0 − x∥ between the transformed shape x and the

reference shape x0.
15: until Convergence: ∥x− x0∥ < ε.
16: return R.

Remarks:

a. Note that the proposed Algorithm 2 leaves us the discretion to permit certain rotations
(e.g., only yaw rotations around the y-axis). For the case of a 2D shape only the Rz,ψ(pi)
transformation is applied.

b. Also, the implementation of Algorithm 2 avoids the gimbal lock problem, which lies
in the fact that Euler angles (θ, ϕ, ψ) have to express a global rotation by a fixed order
succession of only three global rotations around the main axes, (Rx,θ,Ry,ϕ,Rz,ψ). In this
implementation the gimbal lock problem is avoided since to express the overall rotation a
single triplet of rotations is not used. Instead, as many rotations as are needed are used.
These rotations are computed in an iterative way and are finally accumulated in the overall
R transformation (Rx,θ,Ry,ϕ,Rz,ψ,Rx,θ,Ry,ϕ,Rz,ψ, ...).

c. Algorithm 2 is a generalization in 3D of the method for aligning two shapes in 2D,
presented by Cootes & Taylor in [23]. It is simple, transparent and converges in at most 8
iterations. It provides an efficient solution for registering 3D shapes, when a 1-1 correspon-
dence between vertices is available, avoiding the use of more complex algorithms, such as the
standard Iterative Closest Point (ICP) [8] (see also the Remarks in Sections 6.4 and 7.2).
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3.1.3 Shape Variations

After bringing landmark shapes into a common frame of reference and computing the land-
marks’ mean shape, further analysis can be done to describe the shape variations. This
shape decomposition is performed by applying Principal Component Analysis (PCA) to the
aligned shapes.

Due to size normalization of Procrustes analysis, all shape vectors live in a hyper sphere
manifold in shape space, which introduces non-linearities if large shape scalings occur. Since
PCA is a linear procedure, all aligned shapes are at first projected to the tangent space of
the mean shape (Fig. 5). This way, shape vectors lie in a hyper plane instead of a hyper
sphere, and non-linearities are filtered out.

Figure 5: Tangent space projection xt of a shape vector x to the mean shape xm.

The tangent space projection linearizes shapes by scaling them with a factor α:

xt = αx =
∥xm∥2

xm · x
x (17)

where xt is the tangent space projection of shape x and xm is the mean shape. If no size
normalization is applied, then tangent space projection is omitted.

Aligned shape vectors form a distribution in the k = nd dimensional shape space. If
landmark points were not representing a certain class of shapes, then they would be totally
uncorrelated (i.e., purely random). On the other hand, if landmark points represent a certain
class of shapes, as is in our case, then they will be correlated to some degree. This fact will
be exploited by applying PCA to reduce dimensionality and obtain this correlation as shape
deformations.

Since landmark points have a specific distribution, we can model this distribution by
estimating a vector b of parameters that describes the landmark shape’s deformations [27,
23, 24, 125].

After applying Procrustes analysis, the mean shape is calculated and example shapes
are aligned and placed with their centroids at the origin and projected to the mean shape’s
tangent space. Typically, PCA is applied on variables with zero mean, but since this is not
our case we replace each vector by x− xm [128]. The approach is described in Algorithm 3.

The covariance matrix Cx of the N aligned original example shape vectors x is computed
according to

Cx =
1

N − 1

N∑
i=1

(xi − xm)(xi − xm)T (18)
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Algorithm 3 “Principal Component Analysis”

input: Example landmark shapes xi.
output: The mean shape xm, the eigenvectors Ai and the eigenvalues λi .
1: Apply Proctrustes Analysis to align example shapes xi and compute their mean shape

xm.
2: Transform the example shapes xi to their projections xt onto the tangent space.
3: Compute the covariance matrix Cx of the projected example shapes xt.
4: Compute the eigenvectors Ai and corresponding eigenvalues λi of Cx, sorted in descend-

ing order.

If A contains (in columns) the k = nd eigenvectors Ai of Cx, by projecting aligned
original example shapes to the eigenspace we uncorrelate them as

y = AT · (x− xm) (19)

and the covariance matrix Cy of projected example shapes y

Cy =
1

N − 1

N∑
i=1

(yi − ym)(yi − ym)T (20)

becomes a diagonal matrix of the eigenvalues λi, so as to have

Cx ·A = A ·Cy , Cy = AT ·Cx ·A = Λ (21)

and
λ = diag(Λ) . (22)

The resulting transform is known as the Karhunen-Loéve transform (KLT), and achieves
our original goal of creating mutually uncorrelated shapes [128].

To back-project uncorrelated shape vectors into the original shape space, we can use

x = xm +A · y . (23)

Hence, if A contains (in columns) the p eigenvectors Ai corresponding to the p largest
eigenvalues, we can approximate by x′ any example shape x using

x ≈ x′ = xm +A · b (24)

where b is a p-dimensional vector given by

b = AT · (x− xm) (25)

The vector b is the projection of x onto the subspace spanned by the p most significant
eigenvectors of the eigenspace (principal components). By selecting the p largest eigenvalues,
the mean square error (MSE) between x and its approximation x′ is minimized, since the
last k − p components are frozen to their respective mean values [128].

The vector b defines the deformation parameters of the model. By varying the compo-
nents of b we can create shape deformations (Figs. 9, 10 and 11). By setting the following
limits to each bi:

bi = ±3
√
λi (26)
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we can create marginal shape deformations, since each eigenvalue represents the data variance
at the corresponding eigenspace axis [23, 128].

The number p of most significant eigenvectors and eigenvalues to retain (modes of vari-
ation) can be chosen so that the model represents a given proportion of the total variance
of the data, that is the sum VT of all the eigenvalues

p∑
i=1

λi ≥ f · VT (27)

where factor f represents the percentage of the total shape variations of the training datasets.

Remarks: The computation of all eigenvalues and eigenvectors of a real symmetric ma-
trix is done in a two step process [48, 109]: (i) application of the “Housholder reduction”
algorithm for its reduction to tridiagonal form (O(8n3/3) operations), followed by (ii) the
“QR iteration with implicit shifts” algorithm for computing its eigenvectors and eigenvalues
(O(n) operations per iteration). The above combination is the most efficient technique for
finding all the eigenvectors and eigenvalues of a real symmetric matrix, according to [109].

3.2 The 3D Facial Landmark Models

The proposed method for 3D landmark detection and pose estimation uses 3D information
to extract candidate interest points which are identified and labeled as anatomical landmarks
by matching them with a Facial Landmark Model (FLM) [103, 101, 97, 100].

(a) (b) (c)

Figure 6: Depiction of: (a) FLM8 landmark model as a 3D object; (b) FLM5R and FLM5L
landmark models; and (c) FLM8 landmark model overlaid on a 3D facial dataset.

For the creation of the FLM, a set of eight anatomical landmarks is used(Fig. 6):
(1) the Right Eye Outer Corner (REOC),
(2) the Right Eye Inner Corner (REIC),
(3) the Left Eye Inner Corner (LEIC),
(4) the Left Eye Outer Corner (LEOC),
(5) the Nose Tip (NT),
(6) the Mouth Right Corner (MRC),
(7) the Mouth Left Corner (MLC) and
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(8) the Chin Tip (CT).

Note that five of these points are visible on profile and semi-profile face scans. Hence,
the complete set of eight landmarks can be used for frontal and almost-frontal faces and two
reduced sets of five landmarks (right and left) for semi-profile and profile faces. The right
side landmark set and the left side landmark set contain the points (1, 2, 5, 6, 8), and (3, 4,
5, 7, 8), respectively.

Each of these sets of landmarks constitutes a corresponding Facial Landmark Model
(FLM). Henceforth, the model of the complete set of eight landmarks will be referred to as
FLM8 and the two reduced sets of five landmarks (right and left) as FLM5R and FLM5L,
respectively.

The main steps to create the FLMs are:

• The landmark models (FLM8, FLM5L and FLM5R) are computed from a manually
annotated training set of 300 frontal facial scans of different subjects with varying
expressions, which are chosen from the FRGC v2 database subset I (Fig. 51). The
exact datasets that were used from the source databases for training (DB TRAIN)
can be found from the landmark annotation files available through the website [132].
Specifically, regarding faces there is a great variability in the visibility of landmarks
according to pose changes. For this reason frontal face scans were used. It is important
that the training set contains subjects that express the variations that the system is
likely to face in practice (such as size, age and ethnicity). Training the FLMs with
expressions allows the fitting procedure (Section 3.2.2) to capture candidate landmarks
on faces exhibiting expressions.

• A statistical mean shape for each landmark set (FLM8, FLM5L and FLM5R) is com-
puted from the manually annotated training set using Procrustes Analysis (Fig. 7).

• Variations of each Facial Landmark Model are computed using Principal Component
Analysis (PCA) (Figs. 9, 10 and 11).

To retain the actual landmark shape model, Procrustes analysis and Principal Component
Analysis have been carried out on the example shapes, according to Algorithm 3. Thus, the
Facial Landmark Model (FLM) is created [103, 101, 97, 100], and is represented by the set
{xm,Ai, λi}, with i ∈ {1, ..., p}.

(a) (b) (c) (d)

Figure 7: Depiction of FLM8: (a) unaligned landmarks; (b) aligned landmarks; (c) landmarks’

mean shape; and (d) landmark clouds and mean shape at 60◦.

By applying PCA, we decompose landmark shape variations by projecting shapes to
the eigenspace which has an ordered basis of eigenvectors. Thus each shape component
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is ranked after the corresponding eigenvalue. This gives the components an order of sig-
nificance (Fig. 8). Each eigenvalue represents the variance in eigenspace axes which are
orthogonal. Note that the correlation matrix of shape vectors in the eigenspace has only
diagonal elements: the eigenvalues (Fig. 12).

Figure 8: Landmark shape eigenvalues for FLM8 and percentage of total variations they capture.

In FLM8 14 eigenvalues (out of the total 24) are incorporated, and in FLM5L and FLM5R
seven eigenvalues (out of the total 15), which represent 99.0% of the total shape variations
of each model. The least significant eigenvalues that are not incorporated into the FLMs are
considered to represent noise [23, 128].

The incorporated eigenvalues represent the principal modes of variation. These variations
can be rendered in the original 3D space as shape deformations x′ of the mean landmark
shape xm, using:

x′ = xm +A · b . (28)

where b is a p-dimensional vector of deformation parameters.
By setting bi = ±3

√
λi = ±3σi and all the other bj = 0 the marginal shape deforma-

tions for each mode of variation i are obtained, which represent fi =
λi
VT

of the total shape
variations incorporated into FLM [35, 23, 24].

(a)
b1 = −3

√
λ1

(b)
b1 = 0

(c)
b1 = +3

√
λ1

Figure 9: First mode of FLM8 deformations at 0◦.
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(a)
b2 = −3

√
λ2

(b)
b2 = 0

(c)
b2 = +3

√
λ2

Figure 10: Second mode of FLM8 deformations at 70◦.

(a)
b3 = −3

√
λ3

(b)
b3 = 0

(c)
b3 = +3

√
λ3

Figure 11: Third mode of FLM8 deformations at 60◦.

The first mode captures the face size and shape (circular vs. oval) and represents 35.6%
of the total shape variations of FLM8 (Fig. 9). The second mode captures the nose shape
(peaked vs. flat) and represents 21.8% of the total shape variations of FLM8 (Fig. 10). The
third mode captures the chin tip movement (down vs. up), due to open mouth and close
mouth expressions, and represents 11.2% of the total shape variations of FLM8 (Fig. 11).
The first three principal modes of FLM8 capture 59% of the total shape variations.

Remarks: The principal modes represent the marginal deformations of the landmark model
(FLM), which are described by the deformation parameters bi. These are used to establish
whether a detected landmark shape is plausible or not (Section 3.2.2) and for computing
the distance constraints of every pair of landmarks (Section 6.2.1). Note that, facial size is
incorporated into the FLM by the first deformation parameter b1. If scale normalization was
applied, then size would not be incorporated into the FLM. Thus, at the detection phase,
candidate landmark shapes consisting of outlier points (located on the hair or shirt), which
are of “small sizes”, would eventually be considered as plausible, resulting in more false
detections.

3.2.1 Statistical Analysis of Landmarks

Unaligned landmark points (Fig. 7 a) are aligned by applying Procrustes analysis (Fig. 7 b).
Point clouds of aligned landmarks seem to have a multivariate Gaussian distribution in 3D
space. The axes of the Gaussians are analogous to the three standard deviations. The
centroid of each landmark cloud coincides with the corresponding landmark point of the
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mean shape (Fig. 7 c and d).
Point clouds of aligned landmarks represent landmark “movements” in 3D space. Look-

ing at the correlation matrix it is obsereved that these “movements” are highly correlated
(Fig. 12 a). Black squares denote negative correlation values, white, positive correlation
values and mean gray, zero correlation.

Note that the shape vectors of the example shapes of FLM8 live in R24 shape space (8
landmarks × 3 coordinates each) and are presented by the vector

x = [[p1]x, . . . , [p8]x, [p1]y, . . . , [p8]y, [p1]z, . . . , [p8]z]
T , (29)

where ([pi]x, [pi]y, [pi]z) represent the coordinates of the 8 landmark points pi in the original
Euclidean 3D space R3.

The main diagonal of the covariance matrix contains the variances of each shape vector
component xi

Var[xi] =
1

N − 1

N∑
k=1

([xk]i − [xm]i)
2 (30)

and non-diagonal values the covariances between any two components xi and xj

Covar[xi, xj] =
1

N − 1

N∑
k=1

([xk]i − [xm]i)([xk]j − [xm]j) (31)

where xm is the mean shape, xk any example shape and N the examples number. The
covariance matrix is symmetrical about the main diagonal, since Covar[xi, xj] = Covar[xj, xi].

The values of the covariance indicate the strength of each relationship, and the sign
whether the relationship is positive or negative. If the value is positive, the two components
increase (or decrease) together. If it is negative, then if one component increases the other
decreases.

(a) (b)

Figure 12: Statistical analysis of FLM8: (a) Correlation Matrix of its 24 components; (b) Selected
14 strongest eigenvalues.

Consider the black square (1,4) in Fig. 12(a); it represents the correlation between
([p1]x, [p4]x), which are the x coordinates of left and right eye outer corners. They are
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negatively correlated; when the right eye moves right, the left eye moves left and vice versa.
This is also indicated in the first mode of variations - circular vs. oval face (Fig. 9). Con-
sider the black square (6,7); it represents the correlation between ([p6]x, [p7]x), which are the
x coordinates of mouth left and right corners. They are also negatively correlated; when
the mouth right corner moves right, the left corner moves left and vice versa. Black squares
(24,22) and (24,23) represent the correlation between ([p8]z, [p6]z) and ([p8]z, [p7]z), which are
the z coordinates of chin tip versus mouth left and right corners. There is a negative correla-
tion, which means that chin tip and mouth corners move in opposite directions on the z-axis.
This is also indicated in the third mode of variations - extruded vs. intruded chin (Fig. 11).
Consider the gray squares of line (5); they represent the correlation of ([p5]x, [p5]y, [p5]z) co-
ordinates of the nose tip with the other landmarks. We can conclude that the nose is mostly
not correlated with any other landmark, because of the same gray color of the corresponding
squares. It is the most robust facial landmark point. White square (21,21) represents the
variance of ([p5]z), which is the z coordinate of the nose tip. We can observe that this has
the maximum variance, which is also indicated in the second mode of variations - flat vs.
peaked nose (Fig. 10).

3.2.2 Fitting Landmarks to the Model

General-purpose feature detection methods are not capable of identifying and labeling the
detected candidate landmarks; some topological properties of faces must be taken into con-
sideration. To address the problem of labeling the detected landmarks, the FLMs are used.
Candidate landmarks, irrespective of the way they are produced, must be consistent with
the corresponding FLM. This is accomplished by fitting a candidate landmark set to the
FLM, and checking if the deformation parameters b fall within certain margins [23, 24].

Algorithm 4 “Landmark Fitting”

input: FLM {xm,Ai, λi} and probe landmark shape y.
output: Acceptance of y (true/false).
1: Translate y so that its centroid is at the origin (0,0,0).
2: Scale y so that its size is 1, if xm is also scaled.
3: repeat
4: Align y to the mean shape xm by an optimal rotation R.
5: Compute the Procrustes distance ∥y − xm∥ between y and the mean shape xm.
6: until Convergence: ∥y − xm∥ < ε.
7: Compute the deformation parameters b of y from: b = AT · (y − xm).
8: Accept y as a member of the shape’s class if b satisfies certain constraints (Eqs. 33 and

34).

Fitting a set of landmark points y to the FLM {xm,Ai, λi} is done by minimizing the
Procrustes distance ∥y−xm∥ in a simple iterative approach (adapted from [23]), as described
in Algorithm 4. Then, by projecting y onto the shape eigenspace, its deformation parameters
b are determined as:

b = AT · (y − xm) . (32)

A landmark shape y is considered as plausible if it is consistent with the marginal FLM
deformations. Considering that certain bi of y satisfy the deformation constraint

|bi| ≤ 3
√
λi , (33)
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then the candidate landmark shape y belongs to the shape class with probability

Pr[y] =

∑
λi

VP
, (34)

where λi are the eigenvalues that satisfy the deformation constraints and VP is the sum of
the eigenvalues that correspond to the selected p principal components, which represents the
incorporated data variance in FLM. If Pr[y] exceeds a certain threshold limit, the landmark
shape is considered plausible, otherwise it is rejected as a member of the class. The threshold
value is set to 0.99 so that only the weakest eigenvalue deformations may not be satisfied,
since they can be considered as noise. Other criteria of declaring a landmark shape as
plausible can also be used [23, 24].
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4 Facial Data

Since we can’t change reality,
let’s change the eyes which see reality.

– N. Kazantzakis

Surfaces in the physical world have the property of varying continuously. Unfortunately,
computers can only deal with discrete data. Thus, in order to perform any computation
on a surface, we have first to approximate it by some discrete representation. The most
basic problem in discrete surface representation is sampling. When we say that a surface is
sampled, we imply a finite discrete set of points, called a point cloud (Fig. 13 a and d).

Obviously there are many ways to produce a point cloud out of a surface, and the
natural question is how to decide whether one sampling is better than another. Intuitively,
we wish the sampling to be as dense as possible, in order to better represent the underlying
surface, and sparse enough so that the discrete representation does not increase storage and
computational complexity costs.

If the neighborhood of each vertex can be mapped onto a disk (or to half-disk in case
the surface has boundary vertices), we say that the mesh is a manifold mesh (Fig. 13 e and
f). Equivalently, any edge in a manifold mesh belongs to at most two triangles. However,
not every connectivity pattern results in a manifold mesh. For example, eight-neighbor
connectivity produces a mesh where some edges are shared by four triangles, whereas six-
neighbor connectivity produces a valid manifold mesh (Fig. 15).

This Chapter presents various facial data representations and the approaches used in
this dissertation to process these 3D and 2D facial data. The algorithms presented in this
chapter include: curvature calculations, issues with resolution and scale, data cleaning and
preprocessing algorithms, and 2D maps of 3D data. It also describes the Annotated Face
Model (AFM) as a generic 3D geometric model of facial datasets.

4.1 Facial Data Representations

4.1.1 Mesh Representation

In computational geometry and in computer graphics a surface can be approximated by a
finite set of triangles. Such an approximation is called a triangular mesh (Fig. 13 b and e).

A mesh is usually defined as a structure of the form (V, F ), consisting of a set of vertices
V , and a set of triangular facets F . The facets can be represented as an NF × 3 matrix of
indices, where the kth row is the set of vertices constituting the kth triangle,

fk = [[fk]1, [fk]2, [fk]3]
T , [fk]i ∈ {1, . . . , NV } . (35)
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(a) (b) (c)

(d) (e) (f)

Figure 13: Facial data: (a) original point cloud; (b) original triangular mesh; (c) original face sur-
face; (d) regularly sampled point cloud; (e) regular triangular mesh; and (f) face surface manifold.

NF is the number of the triangular facets and NV is the number of vertices. The vertices
can be represented as an NV × 3 matrix of coordinates in R3, where the kth row is given by

pk = [[pk]x, [pk]y, [pk]z]
T . (36)

Together the matrix of facets F and the matrix of coordinates V give a complete descrip-
tion of the triangular mesh. This piecewise planar approximation of an underlying smooth
surface, defined as the union of triangular facets, is the most common representation of a
discrete surface used in computer graphics.
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(a) (b)

Figure 14: Facial mesh sampling: (a) irregular mesh and regular sampling; and (b) (u, v) param-

eterized regular mesh and registered texture image.

4.1.2 Parameterized Representations

Surfaces can be represented by a global bijective parameterization of the form

p(u, v) = [x(u, v), y(u, v), z(u, v)]T , (37)

where (u, v) are coordinates on the parameterization domain, usually on the unit square
(u, v) ∈ [0, 1]× [0, 1] (Figs. 14 and 15).

(a) (b) (c)

Figure 15: Parameterization domain: (a) regular mesh with 6-neighbor connectivity; (b) regular

mesh with 8-neighbor connectivity; and (c) irregular mesh.

Sampling of surface properties in their preimage (bijective parametric domain or texture
atlas) is convenient because the neighborhood of a point under consideration is known. We
can sample a surface in a uniform way on the parameterization domain and create a Cartesian
grid of values, which can be stored in matrix form, and displayed as a bitmap image. This
way 2D maps of the 3D information of a surface can be stored and subsequently processed.
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Algorithm 5 “Regular Orthographic Mesh Sampling”

input: Surface mesh (V, F ) and texture image I(u, v), usamples, vsamples.
output: Geometry image IG and texture image IT .
1: Compute surface bounding box (xmin, xmax, ymin, ymax, zmin, zmax).
2: ustep := (xmax − xmin)/usamples.
3: vstep := (ymax − ymin)/vsamples.
4: for i := 1 . . .usamples do
5: x := xmin + (i− 1) ∗ ustep.
6: for j := 1 . . . vsamples do
7: y := ymin + (j − 1) ∗ vstep.
8: Consider line (p0,p1) with p0(x, y, zmin) and p1(x, y, zmax).
9: for f := 1 . . .#facets do
10: Get facet vertices (v0,v1,v2).
11: Compute line-facet intersection point q(x, y, z) (Appendix B).
12: if (intersection) then
13: Compute texture coordinates (u, v) that correspond to q(x, y, z).
14: Get texture value I(u, v) using bilinear interpolation.
15: BREAK
16: end if
17: end for
18: if (intersection) then
19: IG(i, j) := q(x, y, z).
20: IT (i, j) := I(u, v).
21: end if
22: end for
23: end for
24: return IG and IT .

Geometry Image Representation: A geometry image (Fig. 16 a) is the result of mapping
all vertices of a 3D object (x, y and z coordinates) to a uniform 2D Cartesian grid represen-
tation (u, v coordinates) [53]. Thus, a geometry image is a regular contiguous sampling of a
3D model represented as a 2D image, with each u, v pixel corresponding to the original x,
y, z coordinates (Eq. 37) [18, 1]. 2D geometry images have at least three channels assigned
to each pair of u, v coordinates, encoding geometric information (x, y, z coordinates) and
eventually a flag denoting data availability (i.e., holes). A simple orthographic mapping is
presented in Algorithm 5, with each u, v pixel corresponding to the nearest x, y, z coordi-
nate. For various techniques on surface parameterizations and remeshing see the survey of
Alliez et al. [1].

Normal Image Representation: A normal image (Fig. 16 b) is an extension of the ge-
ometry image, mapping the normal components at the sampled points of a 3D object (nx,
ny and nz) to a 2D grid representation (u, v coordinates). 2D normal images have three
channels assigned to each pair of u, v coordinates, encoding the normal information (nx, ny
and nz components), or two for normalized normals (n̂x, n̂y, since n̂z =

√
1− n̂2

x − n̂2
y), and

eventually a flag denoting data availability.
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Depth Image Representation: A particular case of parameterization is the so-calledMonge
form. This parameterization is given by (u, v, z(u, v)). For a Monge surface, the represen-
tation is even simpler if we store in a matrix the values of the function z(u, v). This can be
realized by a single-channel image, that is called depth image or height field (Fig. 16 c).

(a) (b) (c)

Figure 16: Facial data: (a) geometry image; (b) normal image; and (c) depth image.

4.2 Preprocessing

4.2.1 Range data preprocessing

A facial scan belongs to a subclass of 3D objects which is a surface S expressed in parametric
form with native global (u, v) parameterization:

S(u, v) = {p ∈ R3 : p = [x(u, v), y(u, v), z(u, v)]T , (u, v) ∈ R2} (38)

Facial scans can also incorporate texture data acquired as a registered 2D image:

I(u, v), (u, v) ∈ R2 (39)

This parameterization allows to map 3D information onto 2D space and vice-versa, thus
the 3D and 2D information can be cross-referenced [103, 101, 97, 100].

Since differential geometry is used for describing local behavior of surfaces in a small
neighborhood, such as surface curvature and surface normals, it is assumed that the surface
S can be adequately modeled as being at least piecewise smooth, that is, at least be of class
C2 (twice differentiable).

(a) (b)

Figure 17: Example of a facial scan (a) before and (b) after preprocessing.
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The proposed method of landmark detection and face recognition can use both polygonal
and range data obtained from optical or laser scanners. Scanners usually produce spikes
and holes, even for surface regions visible to them, especially in areas like the eyebrows
and the eyes, due to their inability to properly pick up the reflection from these surfaces.
To eliminate such sensor-specific problems and convert data into a unified representation,
certain preprocessing algorithms are applied directly on the range data before the conversion
to polygonal data [64, 97]:

• Median Cut : To remove spikes a median cut filter with a 3× 3 window was applied.

• Hole Filling : To remove holes, a hole filling procedure that uses bilinear interpolation
was applied.

• Smoothing : A smoothing Gaussian filter with a 3 × 3 window was applied to remove
white noise.

• Subsampling : The range data were subsampled at an 1 : 4 ratio to reduce the compu-
tational cost.

An example of range data suffering from noise and holes is given in Fig. 17, before (a)
and after (b) preprocessing.

4.2.2 Texture data registration

Preprocessing methods used in this dissertation also include algorithms for creating a regular
(u, v) parametric surface. This is accomplished by an orthographic regular resampling of the
3D irregular surface mesh (see Algorithm 5). The resulting surface is able to represent
the curved surface of a face as accurately as required for our purposes (mean edge length:
0.5 mm). By concurrently resampling the texture image, a unified representation of 3D
and 2D data is accomplished by a (u, v) parametric map, even for facial scans where the
texture map may not be contiguous (Fig. 18). Thus the 3D and 2D information can be
cross-referenced (Eqs. 37 and 39).

(a) (b) (c)

Figure 18: Facial data: (a) original triangular mesh; (b) original texture image; (c) (u, v) registered
face mesh and texture image after resampling.
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4.2.3 RGB image preprocessing

Since the texture images are in RGB space we need to convert them into B/W intensity
images, appropriate for the application of intensity differential operators. For this purpose,
the L component of the CIE Lab color model is used, since it fixes to some extent the shadings
due to illumination conditions, and gives more perceptually equalized intensity histograms.

Figure 19: Depiction of various RGB to B/W transformations.

In Fig. 19, several methods for converting RGB color images to B/W intensity images
are depicted:

a. The RGB mean value Imean given by:

Imean = (R +G+B)/3 . (40)

b. The RGB rms value Irms given by:

Irms =
√

(R2 +G2 +B2)/3 . (41)

c. The Value component V of the HSV color model given by:

V = max(R,G,B) . (42)

d. The Luminance (Luma) component Y of the XYZ/YIQ color model given by:

Y = 0.299 R + 0.587 G+ 0.114 B . (43)

e. The Luminance component L∗ of CIE Lab color model given by:

L∗ = (116.0 L− 16.0)/100.0 , (44)

where

L =

{
Y

1
3 if Y ≥ 0.00885

7.78703 Y + 0.13793 otherwise
(45)

.
R, G, B are the red, green and blue components of the RGB color image.
In CIE Lab color model equal relative differences in color and brightness are equally

quantified, according to a 1/3 power law which simulates Weber’s Law of perception. Several
high-end products, including Adobe Photoshop, use the CIE Lab model [76].

Panagiotis B. Perakis 67



Landmark Detection for Unconstrained Face Recognition

4.3 Differential Maps

Differential maps are used for describing the local behavior of surfaces in a small neighbor-
hood, such as surface curvature and surface normals. The geometric parameters of a 2D
surface (2-manifold) embedded in R3 are:
S(p) : Surface represented by the vertices p(u, v) of a parameterized triangular mesh
T(p) : Tangent (1st derivative of S(p) - represents velocity)
N(p) : Normal on S(p) (represents tangent plane)
KN(p) : Normal Curvature (represents radial acceleration of S(p))
KT (p) : Tangential or Geodesic Curvature (represents transverse acceleration of S(p))
K(p) : Total Curvature (2nd derivative of S(p) - represents net acceleration)
KL(p) : Laplace-Beltrami Operator (LBO)
dA : Infinitesimal Area of a point neighborhood dV on S(p)

Curvature vectors for the simple case of a planar line are depicted in Fig. 20.

Figure 20: Depiction of curvature vectors on a planar line G.

We have the following definitions:
a. Normal Curvature:

KN(p) = KL(p) = ∇2S(p) . (46)

KN is computed by applying the discrete Laplace-Beltrami KL operator on the surface S(p).
Since every point p of S(p) has 3 components, each component is considered as an indepen-
dent scalar field for the application of the LBO. Thus, KN is a vector field on the surface
S(p):

KN(p) = KL(p) =
1

dA

∑
dV

w dp , (47)

where w represents properly selected weights (see also Eq. 60).
b. Mean Curvature:

KH(p) =
1

2
[Kmin(p) +Kmax(p)] . (48)
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This is a scalar field on the surface S(p), and is derived from the normal curvature KN :

KH(p) =
1

2
∥KN(p)∥ . (49)

c. Gauss Curvature:
KG(p) = Kmin(p) ·Kmax(p) . (50)

This is a scalar field on the surface S(p), and is derived from the “Gauss-Bonnet theorem”
(see also Eq. 63):

KG(p) =
1

dA

(
2π −

∑
dV

θ

)
. (51)

d. Min and Max Curvatures:

Kmin(p) = KH(p)−
√
KD(p) , (52)

Kmax(p) = KH(p) +
√
KD(p) . (53)

These are scalar fields on the surface S(p), and are derived from KH and KD:

KD(p) = K2
H(p)−KG(p) . (54)

Remarks:

a. The unit normal vector n̂ can be computed by averaging (with properly selected weights
wi) the unit normals n̂i on the facets around p [129], according to:

N(p) =
∑
dV

win̂i , (55)

and subsequently normalized such that

n̂(p) =
N(p)

∥N(p)∥
. (56)

It is a vector field on the surface S(p), and always has an outward direction according to
a CCW or CW convention. It also represents the tangent plane on the surface S(p) since
N(p)⊥T(p) (Fig. 21 a).

b. The normal curvature KN is related to the mean curvature KH , according to:

KN(p) = 2 ·KH(p) · K̂N(p) , (57)

where K̂N is the normal curvature unit vector:

K̂N(p) =
KN(p)

∥KN(p)∥
. (58)

c. The normal curvature unit vector K̂N is the same as the unit normal vector n̂, but
contains the inflection points and curvature direction. The normal curvature KN is the
same as K̂N , but also contains the magnitude of curvature KH .
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d. The principal curvatures K1 = Kmax and K2 = Kmin are the maximum and minimum
of all normal curvatures for any direction of T on the tangent plane. k̂1 and k̂2 are the
principal tangential directions which have the max and min curvatures (Fig. 21 a).

e. The mean curvature KH is half the magnitude of normal curvature KN . It is the
arithmetic mean of the principal curvatures Kmin and Kmax. It is not invariant to isometric
deformations.

f. The Gauss curvature KG is the product (geometric mean) of the principal curvatures
Kmin and Kmax. KG is an intrinsic property of S(p) according to the “Theorema Egregium”
[93, 7, 3]. It is thus invariant to isometric deformations (bendings but not stretches) [18].

g. The Shape Index [34] can be computed from the min and max curvatures Kmin and
Kmax, according to:

SI(p) =
1

2
− 1

π
tan−1Kmax(p) +Kmin(p)

Kmax(p)−Kmin(p)
, (59)

and is a scalar field on the surface S(p).

4.3.1 Curvature Computation

For the computation of curvature on manifold meshes several approaches have appeared
in the literature. Desbrun et al. [31] introduced the Discrete Laplace-Beltrami Operator
with cotagent weights and barycentric infinitesimal area. Meyer et al. [87] introduced the
Discrete Laplace-Beltrami Operator with cotagent weights and Voronoi infinitesimal area.
Belkin et al. [5, 6] introduced the Discrete Laplace-Beltrami Operator with Gaussian proba-
bility weights. Xu [139] gave a comparative study of the convergence of different discretiza-
tions of the Laplace-Beltrami Operator and Wardetzky [135] gave a comparative study of
the properties of different discretizations of the Laplace-Beltrami Operator.

(a) (b) (c)

Figure 21: Surface local regions: (a) infinitesimal neighborhood on a surface patch; (b) 1-ring
neighborhood of a mesh vertex; (c) Voronoi region of a mesh vertex.

For any vertex pi on a manifold mesh we can compute the normal curvature vector
KN(pi) according to

KN(pi) =
1

Ai

N1(i)∑
j=1

1

2
(cotαij + cot βij) (pi − pj) , (60)
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where pj are the vertices of the 1-ring around pi, N1(i) the number of 1-ring vertices, and αij,
βij the two opposite angles to the edge pipj as depicted in Fig. 21 b. This discretization is
according to Desbrun et al. [31] and is called discrete Laplace-Beltrami operator with cotagent
weights.

The infinitesimal area Ai around pi is computed according to

Ai =

N1(i)∑
f=1

Aif , (61)

where Aif denotes the barycentric subarea or the Voronoi subarea of a triangle f , and
N1(i) the number of 1-ring triangles (facets) (Fig. 21 b). For the computation of Aif the
barycentric area is used, hence

Ai =
1

3
A1i , (62)

where A1i is the whole 1-ring area around vertex pi. This discretization is according to
Desbrun et al. [31].

The Gauss curvature KG(pi) at a vertex pi is computed according to

KG(pi) =
1

Ai

2π −
N1(i)∑
f=1

εif

 , (63)

where εif denotes the external angles of the Voronoi polygon, and N1(i) the number of 1-ring
triangles (facets) (Fig. 21 c). For the computation of KG(pi) the Voronoi region around pi
is used, hence θif can substitute εif . This discretization is according to Meyer et al. [87],
and is an application of the Gauss-Bonnet theorem [93, 7, 3].

4.3.2 Curvature Maps Representation

(a) (b) (c) (d)

Figure 22: Different types of curvature rendered as textures on the facial mesh: (a) mean curvature
KH ; (b) Gauss curvature KG; (c) normal curvature KN ; and (d) unit normal curvature K̂N .

The surface S(p) can be represented as a geometry image map encoding in the three
channels assigned to each pair of (u, v) coordinates, the (x, y, z) coordinates of the sampled
points p. Any vector field on the surface S(p) can be represented (in analogy to the geometry
image map) as an image map encoding in the three channels assigned to each pair of (u, v)
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coordinates, the (x, y, z) components of the field. Any scalar field on the surface S(p) can
be represented (in analogy to the depth image map) as an image map encoding in the single
channel assigned to each pair of (u, v) coordinates, the value of the field.

In Fig. 22 the different types of curvature are rendered as textures on the facial mesh.
The mean curvature KH and Gauss curvature KG are rendered as single-channel image maps
and the normal curvature KN and unit normal curvature K̂N as three-channel image maps.

Note the differences between images in Figs. 22 d and 16 b. Although they both represent
the normal vector, the normal image map has no discontinuities since the unit normal vector
has always an outward direction. On the contrary the unit normal curvature map has
discontinuities at the inflection points of the curvature vector.

4.4 The Annotated Face Model

In all steps of the proposed “Partial Face Recognition” method (registration, fitting and
wavelet analysis), the Annotated Face Model (AFM) [64] is used. It is an anthropometrically
correct 3D model of the human face [43]. The AFM needs to be constructed only once and
consists of a triangular representation, a facial area annotation, annotated landmarks, and
a (u, v) parameterization (see Fig. 23).

(a) (b) (c) (d)

Figure 23: Annotated Face Model (AFM): (a) full triangular mesh; (b) left & right triangular
mesh; (b) annotated areas; (c) u, v parameterization.

The (u, v) parameterization allows the conversion of the AFM into the equivalent repre-
sentation of geometry image [53]. Note that the (u, v) parameterization of the AFM offers an
injective mapping from a roughly spherical surface in R3 to a plane in R2. This property is
not violated even if its vertices are deformed, thus allowing the creation of a geometry image
from a deformed AFM. Since the AFM is a topologically open model a simple cylindrical
mapping technique was used to create the (u, v) parameterization. For a topologically closed
and genus zero model (suitable for the full human head) Praun and Hoppe’s octahedron-
based parameterization [108] is more appropriate.
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5 Landmarks and Features

We cannot all hope to combine the pleasing qualities
of good looks, brains, and eloquence.

– Homer

2D and 3D facial landmark detection is based on local descriptors of the 2D (inten-
sity/color) or 3D (mesh/range) appearance of the face or of integral or differential transfor-
mations of it. Since a landmark detector has to possess the properties of repeatability and
distinctiveness, local facial feature descriptors must be:
i) robust, to variations of facial data.
ii) discriminative, to distinguish between different anatomical landmarks.
iii) descriptive, to avoid similarity with outliers.
iv) general, to represent each landmark equally well on all “seen” faces.
v) predictive, to represent landmarks equally well on “unseen” faces.

To fulfill the above properties and constrain the detection process, landmark detectors use
trained landmark classifiers or 2D/3D appearance landmark models/templates and 2D/3D
geometry models for global topological consistency. 2D landmark detectors use view-based
2D geometry and appearance models or 3D geometry models. 3D landmark detectors use
solely 3D geometry and 3D appearance models. Fused 2D/3D landmark detection methods
use 3D geometry and 2D+3D appearance models. 2D and 3D landmark detection is based
mostly on variations of the seminal work on Active Appearance Models of Cootes et al. [23,
27, 25, 28]. Fused 2D/3D landmark detection is presented in Boehnen & Russ [12], Jahanbin
et al. [59], Lu & Jain [83], Passalis et al. [97] and Perakis et al. [103, 100].

A landmark detector, has four important levels (Fig. 24). At the acquisition level a
sensor acquires the facial data. At the feature extraction level the data are transformed
into features that represent the landmark classes. At the matching score level the extracted
features are compared with feature templates that represent each landmark class in order
to detect candidate landmarks with an associated matching score. Finally, at the decision
level the matching scores (or ranks) are used to select a candidate landmark as the optimal
solution for the queried landmark class, and assign to it the label of the class. Landmark
detection can thus be considered as a two-fold problem: (i) a search problem for candidates,
and (ii) an identification problem for the labeling of candidates.

This Chapter presents various feature descriptors that are used in this dissertation to
represent facial landmarks. These include the Shape Index, the Spin Image, the Extruded
Points and the Edge Response descriptors. It also introduces various feature fusion schemes
for the combination of these descriptors into a more descriptive resultant feature descriptor.
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Figure 24: Pipeline of feature extraction for landmark detection.

5.1 Landmark Descriptors

To detect landmark points, three 3D local shape descriptors that exploit the 3D geometry-
based information of the facial datasets and one 2D local appearance descriptor that exploits
the 2D intensity-based information were used, depending on the case. The descriptors that
are used are:
1) the Shape Index 3D descriptor (SI),
2) the Spin Image 3D descriptor (SS),
3) the Extruded Points 3D descriptor (EX) and
4) the Edge Response 2D descriptor (ER).

5.1.1 The Shape Index Descriptor

The Shape Index is extensively used for 3D landmark detection [20, 84, 85, 21, 83]. It is a
continuous mapping of principal curvature values (Kmax, Kmin) of a 3D object point p into
the interval [0,1], and is computed as:

SI(p) =
1

2
− 1

π
tan−1Kmax(p) +Kmin(p)

Kmax(p)−Kmin(p)
. (64)

The Dorai and Jain definition is used here [34], an extension of Koenderink and van
Doorn’s original definition [72]. The shape index captures the intuitive notion of “local”
shape of a surface. Every distinct surface shape corresponds to a unique value of shape
index, except the planar shape. Points on a planar surface have an indeterminate shape
index, since Kmax = Kmin = 0. Five well-known shape types and their locations on the
shape index scale are as follows: Cup = 0.0, Rut = 0.25, Saddle = 0.5, Ridge = 0.75, and
Cap = 1.0 (Fig. 25).

Shape index is computed from the principal curvature values of the surface spanned by
the nearest neighbors of each vertex, a region of 5.5 mm radius on average.
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Figure 25: Depiction of Shape Index scale and corresponding “local” shape of a surface.

After computing the shape index values on a 3D facial dataset, a u, v mapping is per-
formed, using the global u, v parameterization of the facial scan, in order to create a shape
index map SImap:

SImap(u, v)← SI(x, y, z) . (65)

(a) (b) (c)

Figure 26: Depiction of shape index maps: (a) frontal face dataset; (b) 45◦ side face dataset; and
(c) 60◦ side face dataset. (Blue denotes Caps, green Saddle, and red Cups.)

In a first approach (as published in [97, 101, 103]), local maxima (SImap(u, v)→ 1.0) are
candidate landmarks for nose tips and chin tips and local minima (SImap(u, v) → 0.0) for
eye corners and mouth corners. This approach can be used in general when there are not
trained target shape index values for each landmark class. Thus, local maxima and minima
are detected on the shape index map (Fig. 26). The shape index’s maxima and minima
are sorted in descending order of significance according to their corresponding shape index
values. The most significant subset of points for each group (Caps for nose and chin tips
and Cups for eye and mouth corners) is retained (a maximum of 512 Caps and 512 Cups).
In Fig. 29(a) and Fig. 27(a), black boxes represent Caps, and white boxes Cups.

In a second approach (as published in [100]), to locate interest points on the shape index
map, we compute shape index target values that represent the landmarks used. Due to the
symmetric nature of the face, shape index target values can represent only five landmark
classes (without the distinction of left/right): the eye outer corner, eye inner corner, nose tip,
mouth corner and chin tip landmarks. Shape index target values are statistically generated
from 300 manually annotated frontal face scans of different subjects, from the FRGC v2
database, subset I (Fig. 51) with varying expressions. The shape index target values for
each landmark class are obtained from the mode of the distribution of the shape index
values of the associated landmark (Fig. 41f). These values are: 1.00 for nose tips, 0.90 for
chin tips, 0.32 for mouth corners, 0.32 for eye outer corners and 0.16 for eye inner corners.
The shape index candidate landmarks that are located for each class are kept in five lists
sorted in descending order of significance according to their absolute difference from the
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corresponding shape index target values. The most significant subset of points from each
list is retained (a maximum of 1,024 points for each landmark class) (Fig. 32).

(a) (b) (c) (d)

Figure 27: Results of landmark detection and selection process using Shape Index + Spin Images
[97, 101, 103]: (a) shape index’s maxima and minima; (b) spin image classification; (c) extracted
best landmark sets; and (d) resulting landmarks.

However, our experiments indicated that the shape index alone is not sufficiently robust
for detecting landmarks on facial datasets in a variety of poses and expressions (the candidate
landmarks are too many, having a large number of outliers that lead to false detections).
Thus, candidate landmarks located from the shape index values serve as a basis, but are
further classified and filtered out (Fig. 32).

5.1.2 The Extruded Points Descriptor

Experimentation indicated that the shape index is not sufficiently robust. For locating the
nose and chin tips, the extruded points descriptor is proposed, a novel descriptor which is
based on two common attributes of these two landmarks.

The first attribute is that they have large distances from the centroid of the face. To
encode this feature the radial map (Fig. 28(a)) is introduced. The radial map is a 2D map
that represents, at each u, v pixel, the distance of the corresponding (x, y, z) point from the
centroid of the object, normalized to [0, 1]:

Rmap(u, v)← ∥r(x, y, z)∥ (66)

where r(x, y, z) is the radial vector.
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The second attribute is that most of the normals at nose and chin regions have an outward
direction (with respect to the centroid). The tangent map (Fig. 28(b)) encodes this feature.
It is a 2D map that represents, at each u, v pixel, the cosine value of the angle between the
normal vector at the corresponding (x, y, z) point and the radial vector from the centroid of
the object:

Tmap(u, v)← cos(r(x, y, z),n(x, y, z)) (67)

Their product constitutes the extrusion map that represents the conjunction of the above
two attributes, which is subsequently normalized to [0, 1] (Fig. 28(c)):

Emap(u, v) = Rmap(u, v)⊙ Tmap(u, v) (68)

Since the extrusion map depends only on the position of the centroid, it can be considered
pose invariant.

(a) (b) (c)

Figure 28: Depiction of extruded points: (a) radial map; (b) tangent map; and (c) extrusion map.
(Blue denotes high values, and red low values.)

In this approach (as published in [101]), local maxima of the extrusion map (Emap(u, v)→
1.0) that are also shape index maxima (SImap(u, v)→ 1.0) are candidate landmarks for nose
tips and chin tips. Located candidate nose and chin tips are sorted in descending order of
significance according to their corresponding extrusion map values. The most significant
subset of extruded points is retained (a maximum of 64 extruded points for nose and chin
tips).
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(a) (b) (c) (d)

Figure 29: Results of landmark detection and selection process using Shape Index + Extrusion
Map [101]: (a) shape index’s maxima and minima; (b) candidate nose and chin tips; (c) extracted
best landmark sets; and (d) resulting landmarks.

By using the extrusion map, the number of candidate landmarks for nose and chin tips
resulting from shape index’s values alone are significantly decreased, and are more robustly
localized. The shape index’s minima are retained as candidate landmarks for eye and mouth
corners (Fig. 29(a)) and extrusion map maxima are retained as candidate landmarks for
the nose and chin tips (Fig. 29(b)). In Fig. 29(b), simple crosses represent extrusion map
maxima and circled crosses represent extrusion map maxima that are also shape index’s
maxima: candidate nose and chin tips.

5.1.3 The Spin Image Descriptor

A Spin Image encodes the coordinates of points on the surface of a 3D object with respect
to a local basis, a so-called oriented point [62]. An oriented point is the pair (p,n), where
n is the normal vector at a point p of a 3D object. A spin image is a local descriptor of the
global or local shape of the object, invariant under rigid transformations.

The spin image generation process can be visualized as a grid of bins spinning around
the oriented point basis, accumulating points at each bin as it sweeps space. Therefore, a
spin image at an oriented point (p,n) is a 2D grid accumulator of 3D points, as the grid is
rotated around n by 360◦.

Locality is expressed by the Support Distance parameter, which is:

(SupportDistance) = (GridRows)× (BinSize)

= (GridColumns)× (BinSize)
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A spin image at (p,n) is a signature of the shape of an object at the neighborhood of p.
For the purpose of representing facial features on 3D facial datasets, it was experimentally
determined that a 16×16 spin image grid with 2mm bin size should be used. This represents
the local shape of the neighborhood of each landmark, spanned by a cylinder of 3.2 cm height
and 3.2 cm radius.

(a) (b) (c) (d) (e)

Figure 30: Depiction of spin image templates: (a) eye outer corner (EOC); (b) eye inner corner

(EIC); (c) nose tip (NT); (d) mouth corner (MC); and (e) chin tip (CT).

In order to identify interest points on 3D facial datasets, spin image templates that
represent the classes of the used landmarks are created. Due to the symmetric nature of
the face, spin image templates can represent only five classes (without the distinction of
left/right): the eye outer corner, eye inner corner, nose tip, mouth corner and chin tip
landmarks.

Spin image templates are statistically generated from 300 manually annotated frontal
face scans of different subjects, from the FRGC v2 database, subset I (Fig. 51) with varying
expressions. They represent the mean spin images associated with the five classes of the
landmarks (Fig. 30).

(a) (b) (c) (d) (e)

Figure 31: Depiction of spin image similarity maps: (a) eye outer corner; (b) eye inner corner; (c)
nose tip; (d) mouth corner; and (e) chin tip. (Blue denotes low similarity values (−1), and red high
similarity values (+1).)
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Landmark points can be identified according to a similarity measure of their spin images
P with the five spin image templates Q that represent each landmark class. This Spin
Similarity measure SS(P,Q) is expressed by the normalized linear correlation coefficient:

SS(P,Q) =
N
∑
piqi −

∑
pi
∑
qi√

[N
∑
p2i − (

∑
pi)2] [N

∑
q2i − (

∑
qi)2]

, (69)

where pi, qi denote each of the N elements of spin images P and Q, respectively [62].
Figure 31 depicts the spin image similarity maps of facial datasets for each spin image

template (i.e., landmark class). It is a u, v mapping of the Spin Similarity measure SS(P,Q)
value between the spin image P of every facial dataset point and a spin image template Q:

SSmap(u, v)← SS(P (x, y, z), Q) . (70)

The spin image similarity maps SSmap (Fig. 31) provide an insight into the discriminat-
ing power of each spin image template. Spin image templates for the eye inner corner and
the nose tip have the highest discriminating power, since high similarity areas are located
at the expected facial regions, even though the nose tip template has some similarity with
eyebrows and chin regions. The spin image template for the chin tip has a medium discrimi-
nating power, since it has similarity with eyebrows and nose regions. Finally, the spin image
templates for the eye outer corner and the mouth corner have the lowest discriminating
power, since there is high similarity between them, and also with other regions of the face,
such as the cheeks and forehead. These error-prone regions can be filtered out by using the
shape index values. This approach of using spin templates was used in the work published
in [100, 97, 103].

(a) (b) (c) (d) (e)

Figure 32: Depiction of detected candidate landmarks on texture image (for viewing purposes

only): (top) located landmarks according to similarity with shape index target values; and (bottom)

filtered landmarks according to similarity with spin image templates: (a) eye outer corner; (b) eye

inner corner; (c) nose tip; (d) mouth corner; and (e) chin tip.

Therefore, instead of searching all points of a facial dataset to determine the correspon-
dence with the spin image templates, we use the shape index’s candidate landmark points.
Thus, the candidate landmark points of the five landmark classes (eye outer corner, eye inner
corner, nose tip, mouth corner and chin tip) that are obtained from the shape index map
are further filtered out according to the similarity S(P,Q) of their spin images with the spin
image templates representing each landmark class. These classified filtered landmarks are
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sorted in descending order of significance according to their similarity measure with their
corresponding spin image template and kept in five lists, one for each landmark class. The
most significant subset from each list is retained (a maximum of 160 eye outer corners, 64
eye inner corners, 24 nose tips, 320 mouth corners and 128 chin tips). By using the spin
images, the total number of candidate landmarks resulting from the shape index values are
significantly decreased, and are more robustly localized (Fig. 32).

In Fig. 27(b), blue boxes represent the eye outer corner, red boxes the eye inner corner,
green boxes the nose tip, purple boxes the mouth corner and yellow boxes the chin tip.
Notice that some of the classified landmark boxes overlap due to similarity with different
templates.

5.1.4 The Edge Response Descriptor

The Edge Response is based on the well known Harris corner and edge detector [56]. A
response function ER(u, v) encodes the intensity gradient of a point (u, v) on an image:

ER(u, v) = |Ix(u, v)|+ |Iy(u, v)| , (71)

where Ix = ∂I
∂x

and Iy =
∂I
∂y

denote the partial derivatives of the intensity image I in x and
y respectively.

(a) (b) (c)

Figure 33: Depiction of edge response maps: (a) frontal face dataset; (b) 45◦ side face dataset; and
(c) 60◦ side face dataset. (Blue denotes low edge response, and red denotes high edge response.)

ER(u, v) is high in edge regions and close to zero in flat regions (Fig. 33). For computing
ER(u, v), the Sobel masks Fx and Fy are convolved with the intensity image for the cal-
culation of Ix and Iy respectively [49], which are subsequently filtered by a Gaussian mask
(7× 7 pixels and σ = 1.0).

Sobel masks can be expressed in matrix form:

Fx =

 −1 0 +1
−2 0 +2
−1 0 +1

 (72)

Fy =

 −1 −2 −10 0 0
+1 +2 +1

 (73)

The Prewitt and Sobel masks are among the most used in practice for computing image
gradients. However, Sobel masks have slightly superior noise-suppression characteristics, an
important issue when dealing with derivatives [49].
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The Edge Response (ER) descriptor is introduced for the evaluation of the feature fusion
methods. To this end, the edge response descriptor is selected deliberately to represent a
not so “good” descriptor, to exhibit the robustness of the fusion schemes. Edge Response is
a “poor” descriptor for nose and chin tips (see Fig. 33).

5.2 Feature Fusion

Although many 2D/3D descriptors of facial features are used in the literature, a crucial
issue has not been answered yet. How can these facial features be fused together in order to
exploit their individual strengths and create a robust and accurate landmark detector?

Different feature descriptors can have complementary strengths and weaknesses, so com-
bining them can increase system accuracy, efficiency and robustness, featuring monotonicity.
Accuracy can be increased by exploiting data content from multiple sources (3D/2D) or the
strengths of different data descriptors. In addition, using multiple descriptors can improve
efficiency by limiting the landmarks’ likelihood area. Finally, fusion can increase system
robustness by limiting deficiencies inherent in using a single descriptor. For example a cor-
ner/edge detector is very sensitive in illumination variations, but the shape index is not.
Thus, using multiple descriptors is a form of uncertainty reduction, since one descriptor may
pick up what the other misses.

Fusion can be applied at the acquisition or feature extraction level (pre-classification fu-
sion) and at the matching score or decision level (post-classification fusion) [61, 140]. Fusion
at the matching score level can be viewed in two distinct ways. In the first, fusion is ap-
proached as a classification problem, while in the second, it is approached as a combination
problem [61, 128]. In the classification approach, a composite feature vector (by weighted
concatenation) is constructed using the values of the fused features, which is further clas-
sified by a composite classifier (e.g., Neural Network, k-NN, Decision Trees, SVM). In the
combination approach, the matching scores of the fused features are combined to generate a
single resultant feature score which is used for the final decision. The common characteristic
of all combination techniques is that the individual feature classifiers are separately trained
and the combination relies on simple fixed rules [128]. These rules are the sum rule, product
rule, max rule, min rule, median rule and majority voting [70]. The various schemes for com-
bining classifiers can be grouped into three main categories according to their architecture:
(i) parallel, (ii) cascading (serial), and (iii) hierarchical (tree-like) [60].

An information fusion scheme should have the following fundamental properties, as de-
scribed in [14]:

Neutrality: The result of a fusion scheme should not be biased by the order in which the
input features are processed.

Consistency: The result of a fusion scheme with one input feature should be the same as
the result of this single feature.

Monotonicity: The result of a fusion scheme of two input features should have better
quality than the individual results of each feature.

Significance: The result of a fusion scheme should preserve the significance of the input
feature measured values.

Conviviality: Expresses the complexity/simplicity of a fusion scheme.
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Transparency: Expresses the ability to explain and replicate the result of a fusion scheme
(black-box effect).

For landmark detection, although the construction of a composite feature classifier might
be a potential solution, the combination method can be more easily applied to features whose
values can be mapped to images, is more transparent (having also the strength of visualiza-
tion), and possesses all the other fundamental properties required by a fusion scheme.

Figure 34: Pipeline of feature fusion procedure for landmark detection.

Feature fusion techniques have been proposed in the past (see Chapter 2), but in an
entirely different context, that of multimodal biometrics or that of abstract feature fusion.
The problem that is investigated in this dissertation is the behavior of fusion schemes under
the strict context of landmark detection on facial datasets, which is an entirely different
problem, since fusion techniques for landmark detection have to be also “locally consistent”,
which means that they have to boost results on a constrained area on facial surfaces; and
this problem has not yet been investigated.

This dissertation provides a novel generalized framework of fusion methods and their
application to landmark detection. This framework fills a gap in existing research, which is
dominated by methods that use single landmark descriptors of 3D or 2D appearance of the
face, without combining them (see Chapter 2).

The fusion scheme proposed acts after the “feature extraction level”, transforms features
to similarities and then combines them to generate a resultant feature similarity, which is
considered as the matching score, and is used at the “matching level” for the detection of the
queried landmarks (Fig. 34). The proposed approach of feature fusion is easily extensible
by adding new feature-components in feature space and changing the resultant similarity
appropriately. This approach works equally well for any feature extracted either from 3D or
2D facial data. The only prerequisite is the availability of a common (u,v) parameterization
so that the 3D and 2D data can be combined at the “acquisition level”.
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The features used for facial landmark detection have very different characteristics, but in
general can be distinguished in scalar features (such as the Shape Index and Cornerness/Edge
Response), and vector features (1D/2D histogram features, such as the SIFT descriptor and
Spin Images). For each scalar feature we can statistically compute a corresponding target
value, while for each vector feature we can compute a corresponding vector target (template),
which represent a landmark in feature space. A distance metric for a scalar feature could
be the absolute difference of its value from the corresponding target value, and for a vector
feature the absolute difference of its similarity with the corresponding template from the
maximum similarity (1.00).

Thus, instead of fusing features by weighted concatenation, the features are first trans-
formed to similarities with a target value or template, and then each feature similarity
can act as a component in a normalized feature similarity space (Fig. 35), which can be
fused together to form a resultant feature similarity, using simple combination rules (such
as sum, product, max, min, AND, OR and threshold masking). In this manner a dramatic
dimensionality reduction is achieved since, instead of using multiple components for a vector
feature, only the similarity with its template is used.

Figure 35: Example of the transformation from raw feature value space to normalized feature

similarity space. Shape Index (v1) and Spin Image (v2) raw values are mapped onto Shape Index

(S1) and Spin Image (S2) normalized similarity vectors. Note that the raw Spin Image values

represent un-normalized similarity to the corresponding template.

Each feature for a landmark class has a target value or template (tf ) that describes the
landmark in its feature space. Furthermore, we can consider a cut-off value (cf ) for each
feature to incorporate the notion of an outlier. Feature values out of the range [tf−cf , tf+cf ]
can be filtered out, so that threshold masking is implemented. The cut-off value can also be
considered as a scaling factor for the normalization of each feature’s range (Fig. 35).

The target and cut-off values can be estimated by examining the probability density
function (pdf) of feature values or set to specific values based on a priori knowledge. A good
choice for the target value could be the mean of the pdf of feature values and for the cut-off
value could be a multiple of standard deviation (std) (e.g., 3 × std as a first approximation),
although the distribution of the values of every feature is not a Gaussian. Another choice
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for the target value could be the mode or the median of the pdf and the cut-off value could
be determined so that a certain proportion of feature values (e.g., 99%) are within the range
[tf − cf , tf + cf ].

For a good normalization scheme, the estimates of target (location), cut-off (scale) pa-
rameters and of the normalization function must be robust and efficient and has to closely
simulate the initial pdfs. In addition, a properly designed fusion method exploits informa-
tion from each descriptor without degrading performance below that of the most accurate
descriptor (monotonicity). This is the major challenge of adopting a fusion scheme.

5.2.1 Feature similarity mapping

Given a feature value vf , a target value tf and a cut-off value cf for each feature descriptor
f , a normalized distance measure to target Df for each of the N feature descriptors of each
landmark point is introduced:

Df =

{ |vf − tf |
cf if |vf − tf | ≤ cf

1 otherwise
(74)

Note that the above definition is a generalization of the z-score normalization and median
normalization [61].

A normalized similarity measure to target Sf can be derived from Df as:
a. Linear mapping:

Sf = 1−Df . (75)

This is the classic linear distance to similarity transformation [128].
b. Quadratic mapping:

Sf = 1−D2
f . (76)

We introduce quadratic mapping, which favors close to target feature values. Note that D2
f

behaves like the potential energy of elasticity.
c. Gaussian mapping:

Sf = exp(−αD2
f ) , (77)

where α is the drop-off parameter. We introduce Gaussian mapping, for smoothing out large
distance measures. Note that the Gaussian tails can be cut at the cut-off values.

(a) (b) (c)

Figure 36: Depiction of fusion of similarities: (a) after linear mapping; (b) after quadratic mapping;

and (c) after Gaussian mapping.
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Remarks:

a. If the target value is the mean of the feature values and the cut-off is its standard
deviation then Eq. 74 becomes

Df =
|vf − µf |

σf
, (78)

which is similar to the z-score normalization of feature values used in [61].

b. If the target value is the median of the feature values and the cut-off is its median
absolute deviation (MAD) then Eq. 74 becomes

Df =
|vf −medianf |

median (|vf −medianf |)
, (79)

which is similar to the median normalization of feature values used in [61].

c. Df (cf ) is a decreasing function of cf and Sf (cf ) is an increasing function of cf . As cf
increases, f -axis shrinks and similarity values approach maximum similarity (1.00 or wf ),
on the contrary as cf decreases f -axis dilates and similarity values deviate from maximum
similarity (1.00 or wf ).

5.2.2 Feature similarity fusion

The resultant similarity measure to the target vector in the normalized similarity space
describes the way by which the N feature descriptors can be fused together or combined into
a resultant feature similarity for each queried landmark class:
a. Sum rule:

SA =
1

N

N∑
f=1

Sf , (80)

which is the arithmetic mean or the Manhattan (L1) metric (Fig. 35). Note that if the
similarity measure is considered as the probability that the sample point is similar to the
target, then this metric is equivalent to the sum rule for feature fusion [70, 128].
b. Root-mean-square rule:

SE =
1√
N

(
N∑
f=1

S2
f

) 1
2

, (81)

which is the root mean square (rms) of the similarities and actually a Euclidean (L2) metric
in the resultant similarity space. We introduce this novel rms rule so that feature similarities
to targets can be considered as vectors and added according to vector addition (Fig. 35).
c. Product rule:

SG =

(
N∏
f=1

Sf

) 1
N

, (82)

which is the geometric mean metric. Note that if the similarity measure is considered as the
probability that the sample point is similar to the target, then this metric is equivalent to
the product rule for feature fusion [70, 128].
d. Max rule:

Smax =
N

max
f=1

(Sf ) , (83)
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which is the L∞ metric or max rule [70] and favors the feature with maximum similarity.
Note that if the similarity measure is considered as a fuzzy variable, then this metric is
equivalent to a fuzzy OR rule for feature fusion [128].
e. Min rule:

Smin =
N

min
f=1

(Sf ) , (84)

which is the min rule [70] and favors the feature with minimum similarity. Note that if the
similarity measure is considered as a fuzzy variable, then this metric is equivalent to a fuzzy
AND rule for feature fusion [128].

Remarks:

a. If linear mapping and arithmetic mean is used, then the overall similarity measure is
consistent with the overall distance measure.
SA = 1

N

∑N
f=1 Sf and Sf = 1−Df , then

SA = 1
N

∑N
f=1 (1−Df )⇒ SA = N

N
− 1

N

∑N
f=1Df ⇒ SA = 1−DA.

b. The SA resultant similarity (L1 metric) is equivalent to the normalized projection of the
SE similarity vector (L2 metric) onto the target similarity vector ST (Fig. 35) (i.e. it is a
normalized inner product metric, or the cosine similarity measure [128].
−→
SE√
N
·

−→
ST√
N

= 1
N

∑N
f=1 Sf · 1 = SA.

L

Q

G
SI SS L1 L2 Lg Lmax Lmin

Figure 37: Depiction of the 2D similarity maps in the neighborhood of the Eye Outer Corner

(EOC) for the various distance to similarity mappings and the various fusion methods: (blue) low

similarity values (0.0); (green) medium similarity values (0.5); and (red) high similarity values

(1.0). Rows depict: (top) L mapping; (middle) Q mapping; and (bottom) G mapping. Columns

depict from left to right: SI similarity; SS similarity; L1 fusion; L2 fusion; Lg fusion; Lmax fusion;

and Lmin fusion.

To illustrate the behavior of the proposed distance to similarity mappings and fusion
schemes we depict the various combinations in Fig. 36. For simplicity the fusion of similarity
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mapping functions is presented in a single dimension. We also depict in Fig. 37 the behavior
of the proposed distance to similarity mappings and fusion schemes in the neighborhood of
the Eye Outer Corner (EOC).

Remarks:

a. Linear mapping raises discontinuities in the superposed similarities. Due to the discon-
tinuous behavior, linear mapping is expected to give unreliable results.

b. The “smoothest” results are given by the Gaussian and the Quadratic mapping. This
behavior allows a “locally smoother” combination of the features that are fused.

c. SG and Smin give results in the “AND Area” and SA, SE and Smax give results in the
“OR Area”. The “AND area” is more restricted and can be used as an “AND masking area”
to restrict the search space of candidate landmarks. The “OR area” is wider, which has the
implication of a larger number of candidate landmarks to be detected, raising the “curse of
dimensionality” at the decision level.

d. SG and Smin give almost the same peak, approximately in the middle of the initial
peaks of the fused features, having a similar behavior to an “AND operator”. This peak is
“smoother” for SG and “sharper” for Smin.

e. Smax gives the same peaks as the initial peaks of the fused features, having a behavior
similar to an “OR operator”.

f. Smax gives as a result the similarity of the most “intensive” feature. Selecting the most
“intensive” feature is unreliable, because it could be the one that makes the largest errors.

g. Smin gives as a result the similarity of the least “intensive” feature (especially when
feature areas overlap), and is not appropriate for landmark fusion, because it doesn’t take
into consideration the other features’ similarities.

h. SG and Smin may completely eliminate a feature’s similarity peak which is not inside
the “AND masking area”, and thus are not appropriate for landmark fusion.

5.2.3 Weighted metrics

With the above metrics each feature contributes equally to the resultant similarity. Extended
similarity metrics with weights per feature can also be considered:
a. Sum rule:

SA =
1

W

N∑
f=1

wfSf , W =
N∑
f=1

wf . (85)

b. Root-mean-square rule:

SE =
1√
W

(
N∑
f=1

wfSf

) 1
2

, W =
N∑
f=1

wf . (86)

c. Product rule:

SG =

(
1

W

N∏
f=1

wfSf

) 1
N

, W =
N

max
f=1

(wf ) . (87)
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d. Max rule:

Smax =
1

W

N
max
f=1

(wfSf ) , W =
N

max
f=1

(wf ) . (88)

e. Min rule:

Smin =
1

W

N

min
f=1

(wfSf ) , W =
N

max
f=1

(wf ) . (89)

Remarks: The weights wf act as scaling factors on the feature similarity components, and
can take values [0.0, 1.0]. They actually correspond to the maximum similarity value a feature
can take, which, as a first approximation, is proportional to the reliability of a feature with
respect to other features.

5.2.4 Training of the descriptors

To train the landmark descriptors we used 300 frontal facial datasets of different subjects,
manually annotated at the specific landmark positions. These datasets come from FRGC v2
database [107, 106] and contain subjects with varying expressions and illumination condi-
tions. The available 3D scans were used to train the shape index and spin image descriptors
and the corresponding 2D texture images to train the edge response descriptor. The exact
datasets that were used from the source databases for training (DB TRAIN) can be found
from the landmark annotation files available through the website [132].

Table 4: Target (t) and cut-off (c) values of the landmark descriptors for each landmark class

EOC EIC NT MC CT

t c t c t c t c t c

SI 0.32 0.53 0.12 0.60 1.00 0.40 0.09 0.68 0.96 0.70
SS 1.00 0.48 1.00 0.80 1.00 0.75 1.00 0.72 1.00 0.56
ER 0.20 0.72 0.16 0.62 0.10 0.40 0.22 0.70 0.02 0.17

The pdf of the shape index values (SI) and edge response values (ER) for each landmark
class were computed and used for the estimation of the shape index and edge response
target and cut-off values. We computed spin image templates for each landmark class. Spin
image templates represent the mean spin image associated with the five classes of landmarks
(Fig. 30). The pdfs of the similarity values (SS) between the pre-computed spin image
templates and the spin images of each landmark class, were computed for the estimation of
the cut-off values. The spin image target values are set to the maximum similarity (1.00).

The estimated target and cut-off values for each descriptor (SI, SS, ER) and for each
landmark class (EOC, EIC, NT, MC, CT) are presented in Table 4, and the correlation
coefficients between the landmark descriptors for each landmark class are presented in Table
5. Note that the introduction of distance to similarity mappings improves the correlation
coefficients in comparison to the raw values.
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Table 5: Correlation coefficients between landmark descriptors for each landmark class

EOC EIC NT MC CT

Raw values

SI / SS 0.0358 −0.1242 0.3202 −0.1823 0.1925
SI / ER 0.1458 0.0024 −0.0895 0.0000 0.0001
SS / ER −0.0377 −0.1358 −0.1794 −0.2481 −0.0075

Linear mapping similarity values (L)

SI / SS 0.1781 0.1806 0.3202 0.2669 0.2290
SI / ER 0.1665 0.0360 0.0638 0.1354 −0.0265
SS / ER 0.1080 0.0813 0.1002 0.1991 −0.0013

Quadratic mapping similarity values (Q)

SI / SS 0.2095 0.1965 0.3098 0.2366 0.5241
SI / ER 0.1968 −0.0101 0.0572 0.0543 −0.0222
SS / ER 0.1184 0.0907 0.0370 0.1849 −0.0093

Gaussian mapping similarity values (G)

SI / SS 0.2084 0.1921 0.3170 0.2508 0.3459
SI / ER 0.2023 0.0003 0.0524 0.0882 −0.0241
SS / ER 0.1205 0.0989 0.0614 0.2052 −0.0018

5.2.5 Similarity mapping and fusion paradigms

To illustrate the characteristics of the proposed distance to similarity mappings and the
fusion schemes we apply them for the detection of specific facial anatomical landmarks.
a. The landmark classes are:
1) the Eye Outer Corner (EOC)
2) the Eye Inner Corner (EIC)
3) the Nose Tip (NT)
4) the Mouth Corner (MC), and
5) the Chin Tip (CT).
b. The descriptors that are used are:
1) the Shape Index (SI)
2) the Spin Image (SS), and
3) the Edge Response (ER).
c. The distance to similarity mappings are:
1) the linear mapping (L)
2) the quadratic mapping (Q), and
3) the Gaussian mapping (G).
d. The fusion schemes are:
1) the sum rule using the arithmetic mean SA (L1)
2) the rms rule using the Euclidean mean SE (L2)
3) the product rule using the geometric mean SG (Lg)
4) the max rule using Smax (Lmax)
5) the min rule using Smin (Lmin).
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(a) (b) (c) (d) (e)

Figure 38: Depiction of feature similarity maps with Q−L2 fusion: (blue) low similarity values

(0.0); (green) medium similarity values (0.5); and (red) high similarity values (1.0). (1st row) SI

similarity; (2nd row) SS similarity; (3rd row) ER similarity; and (4th row) Q−L2 resultant similarity.

(a) eye outer corner; (b) eye inner corner; (c) nose tip; (d) mouth corner; and (e) chin tip.

The resultant similarity of applying the rms rule for fusion after a quadratic mapping of
the feature similarities (Q−L2 scheme) for the five landmark classes (eye outer corner, eye
inner corner, nose tip, mouth corner, and chin tip) is depicted in Fig. 38.

The resultant similarity maps encode the likelihood of facial regions to represent the
various landmark classes. Robustness and efficiency of a fusion scheme is evaluated according
to the position and the size of the likelihood areas of each landmark class. The likelihood
area of a landmark class is very important since its reduction means that fewer candidate
landmarks have to be retained and fed to the “selection level” for labeling.

It is obvious that fusion reduces the likelihood areas of each individual feature descriptor
and focus them on facial regions where they are expected to be found. Using a feature
fusion scheme, error-prone regions that are resulted from a single feature descriptor are
finally eliminated.

For instance (see Fig. 38), the error-prone regions resulted from shape index for eye outer
corner mainly around the ear are finally eliminated. For eye inner corner, error-prone regions
resulted from shape index around the eye outer corners are eliminated. Error prone regions
for the nose tip resulted from shape index, mainly on the forehead, are finally eliminated.
For the mouth corner, error-prone regions resulted from spin image, mainly around the eyes
and the chicks, are finally reduced. Error-prone regions from the shape index around the
nose tip are finally reduced to that of the chin tip.

Therefore, instead of searching landmark points on individual feature maps, the resultant
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similarity map is used. Landmarks are detected as the the points with maximum likelihood
on the resultant similarity map of each landmark class. Under this fashion the landmark
detection problem is reduced to a search problem on a 2D discrete scalar field of values.
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6 Landmark Detection

Law is order, and good law is good order.

– Aristotle

The proposed facial landmark detection method is based on local descriptors of the 2D
(intensity/color) or 3D (mesh/range) appearance of the face. To apply a generalized frame-
work for landmark detection, 2D, 3D or combined 2D/3D feature information is mapped
onto 2D Cartesian grids, exploiting the (u, v) parameterization of the facial data.

Thus, the problem of detecting landmarks on facial datasets is converted to detecting
landmarks on 2D grids or bitmaps. Landmark points are detected on a 2D map using
general methods of locating extremum values. These detected mathematical landmarks do
not necessarily represent the queried anatomical landmarks.

For this purpose, topological properties of faces are taken into consideration to ensure
global topological consistency, and candidate mathematical landmarks, are filtered out and
labeled by requiring consistency with the FLMs. Thus landmark detection is considered as
a two-fold problem: (i) a search problem for candidates, and (ii) a classification problem for
the labeling of candidates.

This Chapter presents the proposed landmark detection methods in detail, using the
combination of the landmark feature models for landmark detection and the geometric land-
mark models (FLMs) for landmark consistency. Landmark detection is a key requirement
for generic face recognition, calculating the coarse transformation for registration, and trans-
forming a test scan into a canonical AFM.

6.1 Locating Landmarks on 2D Maps

To locate the most significant landmark points on a 2D map, general methods of locating
extreme values are used. First, all 2D maps are normalized by linear stretching to [0,1] so that
the problem of locating maximum or minimum is reduced to locating a single target value
(i.e., 1 or 0). Then, if a 2D map is represented by its normalized values I(u, v) and a target
value V is searched within it, we can consider the function |I(u, v)− V | as a transformation
of the 2D map and search for its minimum values.

The localization of target values on a 2D map is implemented in Algorithm 6. This
algorithm computes the value |I(u, v)−V | and tests if it is within certain accepted variation
limits t in order to reject unwanted values (outliers). Then it tests whether |I(u, v)−V | is a
local minimum within a window of neighbors by suppressing non minimum candidate points
(hill climbing scheme). Finally, it tests wether the target value is a majority value (within
some limits |I(u, v) − V | ≤ t) in a window of neighbors (voting scheme). Thus, a list of
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Algorithm 6 “Landmark Localization”

input: 2D map I(u, v) and target value V .
output: List of landmark points.
1: for each point (u, v) do
2: Compute |I(u, v)− V |.
3: if |I(u, v)− V | ≤ t then
4: if |I(u, v)− V | is a minimum in a window of neighbors then
5: if |I(u, v)− V | is a majority value in a window of neighbors then
6: add point in a descending ordered list of points according to: |I(u, v)− V |.
7: end if
8: end if
9: end if
10: end for
11: return List of points.

candidate landmark points is returned, sorted in descending order of significance, according
to the distance from target value |I(u, v)− V |.

6.2 Landmark Labeling & Selection

As mentioned in Section 3.2.2, detected geometric landmarks must be identified and labeled
as anatomical landmarks. For this purpose, topological properties of faces must be taken into
consideration. Thus, candidate geometric landmarks, irrespective of how they are generated,
must be consistent with the FLMs. This is accomplished by applying the fitting procedure
described in Section 3.2.2. The procedure for landmark detection, landmark labeling and
registration for each facial dataset, is described in Algorithm 7.

In Fig. 29(c) and Fig. 27(c), blue boxes represent landmark sets consistent with the
FLM5R, red boxes with the FLM5L, green boxes with the FLM8, and yellow boxes the
best landmark set. Notice that some of the consistent landmarks overlap. Also note that
the FLM8 consistent landmark set is not always the best solution; FLM5L and FLM5R are
usually better solutions for side facial datasets (Fig. 29(d) and Fig. 27(d)).

The consistent landmark sets determine the pose of the face object under consideration
from the alignment transformation with the corresponding FLM. Since the aim is to locate
landmark sets on profile, semi-profile and profile faces, we retain the complete landmark
solution only if estimated yaw-angle is within certain limits (±30◦ around y-axis), otherwise
the left or right landmark sets are preferred according to pose.

Finally, using the selected best solution, the registration transformation is calculated, the
yaw-angle is estimated, and the facial dataset is classified as frontal, left side or right side.

Remarks:
Note that the use of candidate landmark sets with five landmarks has a dual purpose: (i) it
is the potential solution for semi-profile and profile faces, and (ii) it reduces the combinato-
rial search space for creating the complete landmark sets in a divide-and-conquer manner.
Instead of creating 8-tuples of landmarks out of N candidates, which generates N8 combina-
tions to be checked for consistency with FLM8, we create 5-tuples of landmarks, and check
N5 + N5 = 2N5 combinations for consistency with FLM5L and FLM5R. We retain 512
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Algorithm 7 “Landmark Labeling & Selection”

1: Extract candidate landmarks from the geometric/appearance properties of the facial
scans (Algorithm 6).

2: Create feasible combinations of 5 landmarks from the candidate landmark points, by
using landmark constraints.

3: Compute the rigid transformation that best aligns the combinations of five candidate
landmarks with the FLM5R and FLM5L (Algorithm 2).

4: Filter out those combinations that are not consistent with FLM5L or FLM5R, by ap-
plying the fitting procedure (Algorithm 4).

5: Sort consistent right (FLM5R) and left (FLM5L) landmark sets in descending order
according to a distance metric from the corresponding FLM.

6: Fuse accepted combinations of 5 landmarks (left and right) in complete landmark sets
of 8 landmarks.

7: Compute the rigid transformation that best aligns the combinations of eight landmarks
with the FLM8 (Algorithm 2).

8: Discard combinations of landmarks that are not consistent with the FLM8, by applying
the fitting procedure (Algorithm 4).

9: Sort consistent complete landmark sets in descending order according to a distance metric
from the FLM8.

10: Select the best combination of landmarks (consistent with FLM5R, FLM5R or FLM8)
based on the distance metric to the corresponding FLM.

11: Return the corresponding rigid transformation for registration (Algorithm 8).

landmark sets consistent with FLM5L and 512 landmark sets consistent with FLM5R. By
fusing them and checking consistency with FLM8 we obtain an extra 512× 512 combinations
to be checked. Thus, by this approach 2N5 + 5122 ≪ N8 combinations are checked, with
O(N5)≪ O(N8). For N = 128 we obtain approx. 69×109 instead of 72×1015 combinations
to be checked.

6.2.1 Landmark Constraints

As previously mentioned, from the candidate landmark points we create combinations of five
landmarks, one from each class. Since an exhaustive search of all possible combinations of
the candidate landmarks is not feasible, two types of landmark position constraints are used
to reduce the search space (pruning) by removing obvious outliers and thus speed up the
search algorithm.

Absolute Distance constraint captures the fact that the distances between two landmark
points must be within certain margins consistent with the absolute face dimensions.
Distance constraints are created from the marginal shape variations of FLM8. For all
modes of variation (bi = ±3

√
λi), the minimum Dmin and maximum Dmax distance

of every pair of landmarks (ri, rj) are computed. We constrain candidate landmark
distances |ri − rj| within these margins plus a tolerance t, such that:

(1− t) ·Dmin(ri, rj) ≤ |ri − rj| ≤ (1 + t) ·Dmax(ri, rj) , (90)

where ri, rj denote the positions of landmarks, with i ̸= j.
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Relative Position constraint captures the fact that the relative positions of landmark
points must be consistent with the face shape. Considering the nose tip as a center, all
other landmarks must lie in a counter-clockwise direction for FLM5L and in a clockwise
direction for FLM5R. If we define a counter-clockwise direction N, then the vectors
from the nose tip to the other landmarks have also a counter-clockwise direction:

N = (rm − r5)× (rn − r5) (91)

and
[(ri − r5)× (rj − r5)] ·N > 0 (92)

where rm, rn, ri, rj denote the positions of certain landmarks and r5 the position of
the nose tip. For FLM5R: (m,n) = (2, 1) and (i, j) ∈ {(1, 6), (6, 8)}, and for FLM5L:
(m,n) = (4, 3) and (i, j) ∈ {(7, 4), (8, 7)}.

The purpose of the above constraints is to speed up the search algorithm by removing
only the outliers and not potential solutions. To avoid over-constraining we have used only
the radial ordering of landmarks, expressed by Eq. 92 - instead of enforcing angles between
landmarks - and a wide range for parameter t in Eq. 90.

6.2.2 Landmark Selection

To find the optimal solution, the three available consistent lists of landmark sets (left, right
and complete) are sorted in descending order according to a distance measure from the
corresponding model (FLM5L, FLM5R, FLM8). The landmark set (left, right or complete)
that has the minimum distance measure is identified as the optimal solution (Figs. 41 and 27).

Since FLM5R, FLM5L, FLM8 have different dimensions in shape space, Procrustes dis-
tances cannot be used as a distance measure because they are not directly comparable:

DP =

√√√√ k∑
j=1

(xj − yj)2 (93)

where DP is the Procrustes distance, x and y are the two shape vectors and k is the shape
space dimension (k = 24 for FLM8 and k = 15 for FLM5R and FLM5L).

Thus, we must use alternative measures for the distance between two landmark shapes
that can be comparable irrespectively of their dimensions.

An intuitive normalized Procrustes distance DNP , that takes into consideration the shape
space dimensions k, is:

DNP =
DP

k2
(94)

where DP is the Procrustes distance, and k is the shape space dimension. The division by
k2 instead of k is preferred to give a bias to the complete solution.

A non-geometric measure of the quality of a landmark shape is its mean spin image
similarity normalized to [0,1] (0 for high similarity and 1 for low similarity). Here, we take
into consideration the spin image similarities between detected landmarks and spin image
templates:

DSS =
1

2

[
1−

∑n
i=1 SS(Pi, Qi)

n

]
(95)
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where DSS is the mean spin similarity distance, S(Pi, Qi) the similarity measure between
the landmark spin image grid Pi and the corresponding template Qi, and n the number of
landmarks (n = 8 for FLM8 and n = 5 for FLM5R and FLM5L).

Thus, an intuitive normalized Procrustes × mean spin similarity distance DNPSS, that
takes into consideration the geometric distance and the spin image similarities can be defined
as:

DNPSS = DNP ·DSS (96)

where DNP is the normalized Procrustes distance and DSS the mean spin image similarity.
We used the “normalized Procrustes”DNP distance metric to select the best landmark set

solution in “Method SIEM–NP” and “Method SISI–NP”, and the “normalized Procrustes ×
mean spin similarity” DNPSS distance metric in “Method SISI–NPSS” and “Method UR3D-
S”, where spin images are available.

6.3 Landmark Detection Methods

During the research conducted under this dissertation, several versions of the presented
generalized framework for facial landmark detection were applied.

Figure 39: METHOD 1: SIEM–NP: Process pipeline for landmark detection: (a) shape index’s
maxima and minima; (b) extrusion map’s candidate nose and chin tips; (c) extracted best landmark
sets; (d) resulting landmarks; and (e) Facial Landmark Model (FLM) filtering.

These are summarized in the following:

METHOD 1: In this method, shape index’s minima are the candidate landmarks for eye
and mouth corners and shape index’s maxima that are also Extrusion map’s maxima are
the candidate landmarks for the nose and chin tips (Fig. 39).

The FLMs were trained from 150 facial datasets from FRGC v2 database all having
neutral expressions. To find the best solution, the normalized Procrustes distance DNP

(Eq. 94) was used.
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This approach for landmark detection was used in a partial face recognition system based
on symmetrical filling and published in [101].

This method is referred as METHOD SIEM–NP.

Figure 40: METHODS 2 and 3: SISI–NP and UR3D-S: Process pipeline for landmark
detection: (a) shape index’s maxima and minima; (b) spin image classification; (c) extracted best
landmark sets; (d) resulting landmarks; (e) spin image templates filtering; and (f) Facial Landmark
Model (FLM) filtering.

METHOD 2: In this method, shape index’s maxima and minima are further classified
into five classes by the spin image templates and are the candidate landmarks for eye outer
corner, eye inner corner, nose tip, mouth corner and chin tip (Fig. 40).

The FLMs were trained from 150 facial datasets from FRGC v2 database all having
neutral expressions. The spin image templates were not trained but were selected among
representative exemplar facial datasets. To find the best solution, the normalized Procrustes
distance DNP (Eq. 94) was used.

This approach for landmark detection was used to locate landmarks in a manner that
allows consistent retrieval of facial regions from 3D facial datasets and published in [103].

This method is referred as METHOD SISI–NP.

METHOD 3: In this method, shape index’s maxima and minima are further classified
into five classes by the spin image templates and are the candidate landmarks for eye outer
corner, eye inner corner, nose tip, mouth corner and chin tip (Fig. 40).

The FLMs were trained from 150 facial datasets from FRGC v2 database all having
neutral expressions. The spin image templates were trained from the 975 facial datasets of
FRGC v2 that were also used for the detection experiments. To find the best solution, the
normalized Procrustes × mean spin similarity distance DNPSS (Eq. 96) was used.

In this work, compared to [101] and [103], a far more robust automatic 3D facial landmark
detector was introduced.
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This approach for landmark detection was used in a partial face recognition system based
on symmetrical filling and published in [97].

This method is referred as METHOD UR3D-S.

Figure 41: METHOD 4: SISI–NPSS: Process pipeline for landmark detection: (a) shape index
map; (b) shape index’s candidate landmarks; (c) spin image similarity filtering; (d) extracted
landmark sets consistent with FLM; (e) resulting optimal landmark set; (f) shape index target
values; (g) spin image templates; and (h) Facial Landmark Model (FLM).

METHOD 4: In this method, in addition to previously published work, the FLMs, the
shape index target values and the spin image templates were trained from a specific subset
of FRGC v2 database which contains 300 facial scans with varying expressions, that were
not used in the evaluation experiments (Fig. 51).

To locate landmark points on the shape index map, shape index target values for each
landmark class (eye outer corner, eye inner corner, nose tip, mouth corner and chin tip) were
searched for on the shape index map. Subsequently, the candidate landmark points of the
five landmark classes that are obtained from the shape index map are further filtered out
according to the similarity S(P,Q) of their spin images with the spin image templates repre-
senting each landmark class (Fig. 41). To find the best solution, the normalized Procrustes
× mean spin similarity distance DNPSS (Eq. 96) was used.

The inclusion of facial expressions into the FLMs and the use of separate shape index
target values for each individual landmark resulted in an improved landmark detection ac-
curacy (by up to 28%), and an improved landmark detection rate (by up to 16%), compared
to the results that were obtained in previous work [97, 103].

This approach for landmark detection was published in [100], and the method is referred
as METHOD SISI–NPSS.

Comparative results of the applied landmark detection methods are presented in Tables
15 and 16.

METHOD 5: In this method, the fusion schemes for combining landmark features (see
Section 5.2) were incorporated into the landmark detection pipeline (Fig. 42). To locate
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Figure 42: METHOD 5: Fusion scheme Q− L2(SI+ SS+ER): Process pipeline for land-
mark detection: (a) shape index (SI) similarity map for EIC; (b) spin image (SS) similarity map
for EIC; (c) edge response (ER) similarity map for EIC; (d) resultant similarity map for EIC; (e)
candidate landmarks for all landmark classes; (f) extracted landmark sets consistent with FLM;
(g) resulting optimal landmark set; and (h) Facial Landmark Model (FLM).

landmark points the shape index map, the spin image map and the edge response map
were fused into a resultant similarity map, each for every landmark class. The candidate
landmarks for each landmark class were searched on the corresponding resultant similarity
map. Subsequently, the candidate landmark points of the five landmark classes were filtered
out according to their consistency with the FLM. To find the best solution, the distance
normalized Procrustes distance × (1 – resultant similarity) was used.

The adoption of the feature fusion method resulted in an improved landmark detection
accuracy and an improved landmark detection rate, compared to the results that were ob-
tained by METHOD SISI–NPSS. This is more clear for the fusion scheme Q− L2(SI+ SS),
which combines the shape index (SI) and spin image (SS) similarity maps. On the other
hand the fusion scheme Q− L2(SI+ SS+ ER) did not improve the results as expected,
because of the strong dependence of the edge response (ER) on the illumination conditions
(half of the face in shadow) and the lack of correspondence between the acquired 2D and 3D
images that is often present in FRGC v2 Database (see Section 8.1).

Comparative results of the fused landmark detection methods are presented in Table 19.
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6.4 Face Registration & Pose Estimation

In a 3D face recognition system, alignment (registration) between the query and the stored
datasets is necessary in order to make the probe and the gallery dataset comparable. Reg-
istration can be done against a common frame of reference, i.e. a Reference Face Model
(RFM) of known coordinates (Fig. 46).

Registration of facial datasets to a reference face model can be accomplished, by mini-
mizing the Procrustes distance between a set of landmark points on the facial dataset and
the corresponding landmark points on the Reference Face Model. Landmark points x on the
facial datasets have to be detected by applying one of the previously mentioned methods,
and landmark points x0 on the Reference Face Model are manually annotated once at a
preprocessing stage.

Alignment of a set of face landmark points x to the RFM landmark points x0 is done by
minimizing the Procrustes distance in an iterative approach, as described in Algorithm 8.

Algorithm 8 “Face Registration”

input: Reference landmark shape x0

and probe landmark shape x.
output: Registration transformation M.
1: Compute T to translate x so that its centroid is at the origin (0,0,0).
2: Compute T0 to translate x0 so that its centroid is at the origin (0,0,0).
3: repeat
4: Align x to the reference shape x0 by an optimal rotation R.
5: Compute the Procrustes distance ∥x− x0∥ of x to the reference shape x0.
6: until Convergence: ∥x− x0∥ < ε.
7: Apply M = T−1

0 ·R ·T to register face data.

Thus, the final transformation to register a facial dataset with vi vertices to the face
model is given by:

v′
i = T−1

0 ·R ·T · vi (97)

and the pose is estimated from R. Notice that scaling can be omitted when the probe and
reference shapes are of the same size.

(a) (b) (c)

Figure 43: Reference face model (RFM) and probe face superposed after alignment: (a) frontal
face dataset; (b) 45◦ left side face dataset; and (c) 60◦ right side face dataset. Gray colored mesh
denotes the face model. Color on probe face denotes min distances of probe face vertices to model.
(red: near to blue: far)
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Note that the landmark set detected on the probe facial scan (complete, right or left)
determines the set of the landmarks (FLM8, FLM5R or FLM5L) used for registration with
the Reference Face Model. Fig. 43 depicts the registration of a profile facial dataset to a
RFM. Note that a left side five landmark set detected on the facial scan has to be aligned
with the left five landmark subset of the RFM, to have a correct global registration.

As a Reference Face Model the complete Facial Landmark Model (FLM8) (Fig. 7(c)) or
the Annotated Face Model can be used (Fig. 23). The AFM is annotated into different areas
(e.g., mouth, nose, eyes) and has predefined landmark points.

Remarks:

a. Note that a standard registration method such as the point-to-surface Iterative Closest
Point (ICP) could not be used here, since without proper initialization it would be prone to
false registration. Facial scans have many outlier data (such as shoulders), and also missing
data due to self occlusion (profile data), that can mislead ICP registration with a complete
facial model or a frontal facial dataset. Note that in FRGC v2 only frontal datasets are
considered, and hence, the ICP was able to provide adequate registration results (see also
the Remarks in Section 7.2).

b. An alternative approach to perform the registration would be to drive the procedure by
an ICP algorithm, which uses our feature distance metrics instead of a (geometric) point-to-
surface one. It is very common nowadays to run ICP-like methods on salient features instead
of original point cloud data and many established ICP variants have adopted a similar or a
hybrid methodology (such as [121, 118]).

6.4.1 Measurement of alignment quality

In order to evaluate the performance of the landmark detection algorithm and the quality
of the alignment procedure two metrics were used.

Euclidian distance as a metric for face alignment quality: An overall measure which
reflects the quality of the landmark detection process is the mean Euclidian distance between
two landmark shapes in original 3D space:

DME =

∑n
i=1 ∥xi − yi∥

n
(98)

where DME is the mean Euclidian distance, ∥xi − yi∥ the Euclidian distance between the
landmark points xi and yi of the two shapes and n the number of landmarks (n = 8 for
frontal facial datasets and n = 5 for side facial datasets).

Mean Euclidian distance DME can be used to express the mean localization error of the
detected landmarks. In such a case the xi represent the detected landmarks and the yi the
manually annotated landmarks, which are considered as ground truth.

Mean Euclidian distance DME can also be used to express the alignment quality of the
probe face with the RFM. In such a case xi represent the detected landmarks and yi the
annotated landmarks on the RFM.
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Hausdorff distance as a metric for face alignment quality: After the alignment of a
test face scan with a reference face model (i.e., the AFM) the “modified directed Hausdorff
distance” DMH is used as a metric that reflects the quality of the landmark detection and
alignment procedure. This metric can be used in situations where there are no annotated
landmarks which could be considered as ground truth.

Figure 44: Face model (M) and test face (T ) after alignment: (a) Dh is biased due to the lack of
points of a left test face: Dh(M,T ) = ∥a∥; and (b) Dh is biased due to the lack of points of model:
Dh(T,M) = ∥b∥.

Consider two point sets:
M = {m1,m2, . . . ,mp}, that represents a face shape model, and
T = {t1, t2, . . . , tq}, that represents a test face shape, where mi, tj ∈ R3.

The standard Hausdorff distance is defined as:

DH(M,T ) = max(Dh(M,T ), Dh(T,M)) , (99)

where
Dh(M,T ) = max

i
(min

j
(∥mi − tj∥)) , (100)

is the directed Hausdorff distance from M to T [98].
The directed Hausdorff distance expresses the Euclidean distance ∥mi−tj∥ of the farthest

point ofM from any point of T , i.e., the maximum value of the minimum Euclidean distances
of the points of M from any point of T .

The modified directed Hausdorff distance DMH , of a face model M to a test face T , is
defined, according to [46], as:

DMH(M,T ) =
1

p

p∑
i=1

min
j
(∥mi − tj∥ , (101)

where ∥mi − tj∥ is the Euclidian distance between the face model vertices mi and the test
face vertices tj, and p the number of the face model vertices.
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The DMH(M,T ) expresses the mean value of the minimum Euclidian distances ∥mi−tj∥
of the vertices of the face model M , to which a test face scan T is registered. To get
comparative results for DMH we used as a model for frontal databases all the vertices of the
complete AFM, for left-side databases the left side vertices of the AFM, and for right-side
databases the right side vertices of the AFM.

Remarks:

a. The directed Hausdorff distance Dh(T,M) of T from M is sensitive to points that belong
to the T shape (i.e., shoulders, hair) and have no corresponding points in M (Fig. 44 b).
Thus, it can’t be used as a reliable measure of the quality of the alignment procedure. The
same holds true for the undirected Hausdorff distance DH(M,T ), since it includes it.

b. Amore appropriate measure is theDh(M,T ) of M from T, since it measures the distances
of the points that belong to the model, avoiding outlier points that bias the maximum
distance. This is not actually true for side scans, since there are no corresponding points in
the missing half of test face (Fig. 44 a).

c. The DMH(M,T ) is a more proper measure, since it expresses the mean of the least
distances of the model shape to the test shape and not only the maximum of them as
Dh(M,T ) does.

d. The DMH(M,T ) is larger for semi-profile and profile scans due to the lack of points
that correspond to the complete face model (Fig. 44 a). Thus it is not a good measure for
comparing the results from different databases that contain different poses.

e. To avoid these over-determined Hausdorff distance values that result from comparing a
profile test face with a complete face model, we split the model into two halves, one right
MR and one left ML, and compute the distances: DMH(MR, T ) and DMH(ML, T ) instead.

f. The modified directed Hausdorff distance could also be used after the deformation fitting
process of “Partial Face Recognition” to measure its quality.

Fig. 43 depicts the face model (AFM) and test face superposed after alignment. Gray
color denotes the face model. The color on the test face (red for near to blue for far) de-
notes min distances of test face vertices to model, minj(∥ti −mj∥). You can observe that
Dh(T,M) = maxi(minj(∥ti −mj∥)) is located on the shoulder edge.
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7 Partial Face Recognition

... and everything under the sun is in tune,
but the sun is eclipsed by the moon.

– Pink Floyd

Face recognition is the procedure of recognizing an individual from their facial attributes
or features and belongs to the class of biometrics recognition methods. 3D face recognition
is a method of face recognition that exploits the 3D geometric information of the human
face. It employs data from 3D sensors that capture information about the shape of a face.
Recognition is based on matching metadata extracted from the 3D shapes of faces. In an
identification scenario the matching is one-to-many, in the sense that a probe is matched
against all of the gallery data to find the best match above some threshold. In an authen-
tication or verification scenario the matching is one-to-one, in the sense that the probe is
matched against the gallery entry for a claimed identity, and the claimed identity is taken
to be authenticated if the quality of match exceeds some threshold. 3D face recognition
has the potential to achieve better accuracy than its 2D counterpart by utilizing features
that are not sensitive in lighting conditions, head orientation, differing facial expressions and
make-up.

With the increase in the availability of 3D data, several 3D face recognition approaches
have been proposed. These approaches aim to overcome the limitations of 2D face recogni-
tion by offering pose invariance. However, they mostly use frontal 3D scans assuming that
the entire face is visible to the sensor. This assumption is not always valid in real-world
applications, since the unconstrained acquisition may lead to facial scans with extensive oc-
clusions that result in missing data. Therefore, to take advantage of the full pose invariance
potential of 3D face recognition, the problem of missing data must be addressed.

In this dissertation, previous work on face recognition [64, 96] is extended and integrated,
and a method suitable for real-world applications, that combines pose invariance and high
recognition rates is presented. The proposed method for partial face recognition allows
matching among interpose facial scans, and solves the missing data problem by using facial
symmetry on occluded areas (see Fig. 3).

The pose of each facial scan is determined by detecting facial landmarks, allowing an
initial registration with an Annotated Face Model (AFM). The AFM is subsequently fitted
to the facial scan using a subdivision-based deformable model framework that is extended to
allow symmetric fitting. The symmetric fitting alleviates the missing data problem allowing
the creation of geometry and normal images that are pose invariant.

The geometry and normal images are then transformed into a wavelet domain represen-
tation. These metadata representations constitute biometric signatures, which are directly
comparable with each other using a L1 distance metric, allowing efficient matching in both
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identification and verification scenarios. The novelty of the proposed method is that the
signature is independent from the initial pose and the missing data caused by occlusions
(as long as half of the face with respect to the yaw axis is visible in the scan). Specifically,
in order to perform interpose matching we require that the following landmarks are visible
on the same side of the face: inner and outer eye corner, nose tip, mouth corner and chin
tip. This allows seamless comparisons among frontal, left and right side scans, making the
proposed method suitable for real-life biometric applications.

The processing pipeline of each facial scan consists of the following fully automated steps
(see Fig. 45):

1. Preprocessing: Standard preprocessing techniques are used to filter the raw data.

2. 3D Landmark Detection: The landmark detector is used for pose estimation (deter-
mining if it is a frontal, left or right scan).

3. Registration: The raw data are registered to the AFM using a two-stage approach.

4. Symmetric Deformable Model Fitting: The AFM is fitted to the data using facial
symmetry. The fitted model is then converted to a geometry image and to a normal
image.

5. Wavelet Analysis: A wavelet transform is applied on the geometry and normal image
and the wavelet coefficients are stored as a signature metadata representation.

Figure 45: Pipeline of the Partial Face Recognition method.

106 Panagiotis B. Perakis



Landmark Detection for Unconstrained Face Recognition

7.1 3D Landmark Detection

The method for 3D landmark detection and pose estimation uses 3D information to extract
candidate interest points which are identified and labeled as landmarks by matching them
with the Facial Landmark Model (FLM) as already described. To detect landmark points,
two 3D local shape descriptors that exploit the 3D geometry-based information of facial
scans are used: the shape index and the spin images.

Figure 46: Face registration based on detected landmarks using the proposed method: (a) facial
scan with extensive missing data; (b) extracted landmarks; (c) generic Annotated Face Model
(AFM); and (d) registered facial scan with AFM.

The side of the face object under consideration (frontal, right or left) is determined from
the resulting optimal landmark set (FLM8, FL5R or FLM5L) and the pose yaw-angle is
calculated from the alignment transformation with the corresponding FLM. Once anatomical
landmarks are localized and the face object is classified as frontal, left side or right side, the
corresponding rigid transformation is computed in order to register the facial scans to the
generic Annotated Face Model (AFM), as described in Section 6.4 (see Fig. 46).

7.2 AFM Registration

In order to fit the AFM to each facial scan, they both must be defined in the same coordinate
system (Fig. 46). To this end, the facial scans are registered with the AFM using a two-stage
approach. Firstly, the landmarks detected in the previous step provide an initial registration
and secondly, an algorithm based on Simulated Annealing fine tunes the registration.

The landmark set detected on a facial scan (frontal, right or left) determines which of
the FLM8, FLM5R and FLM5L will be used to aid registration with the AFM. However,
in practice when a frontal scan is detected, the FLM8 is not utilized, but it is considered
as a pair of side scans (therefore computing two independent registrations using FLM5R
and FLM5L). In this case the remaining steps of the method are repeated twice, and two
independent metadata representations are finally derived.

To improve the registration, the algorithm presented by Papaioannou et al. [95] is used;
it uses a global optimization technique (Simulated Annealing [69, 122]) applied to depth
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images. The Simulated Annealing process minimizes the following objective function:

DZ =
r∑
i=1

r∑
j=1

|Zm(i, j)− Zd(i, j)| , (102)

where r is the spatial resolution of the buffers and Zm and Zd are the z-buffers of model and
data respectively (normalized to [0, 1]). For side scans, only one half of the model’s z-buffer
is used in the objective function. The other half is excluded as it would have been registered
with areas that may have missing data.

Since it is assumed that the initial registration is roughly correct, the Simulated Annealing
algorithm is only allowed to produce limited translations and rotations. Its purpose is only to
fine-tune the registration; it cannot alleviate errors caused by erroneous landmark detection.

Remarks: Note that, in this implementation of partial face recognition method, the step
that used the standard ICP algorithm [8] for fine-tuning the registration before the appli-
cation of the z-buffer simulated annealing step, in the full-frontal face recognition method
presented in [64], is omitted. The use of the standard ICP algorithm (without a 1-1 corre-
spondence between vertices) in current method deteriorated the face recognition results, due
to misregistration of the probe and gallery datasets, especially when a profile dataset had to
be aligned with a frontal one.

7.3 Symmetric Deformable Model Fitting

The subdivision-based deformable model framework presented in [64] is utilized to fit the
AFM to each facial scan (already registered by the previous step). During fitting, the
AFM deforms in order to capture the shape of the facial scan. The forces that drive this
deformation are called external forces. The forces that resist this deformation are called
internal forces and correspond to the elastic properties of the model’s surface (e.g., strain
energy, material stiffness).

(a) (b) (c)

Figure 47: Symmetric fitting of the Annotated Face Model (AFM): (a) frontal face dataset; (b)
left side face dataset; and (c) right side face dataset.
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This framework is modified properly to incorporate the notion of symmetric fitting in
order to handle missing data. The fitting step can now handle the left and right sides of the
AFM independently (Fig. 47). The idea is that facial symmetry can be used to avoid the
computation of the external forces on areas of possible missing data. The internal forces are
not affected and remain unmodified in order to ensure the continuity of the fitted surface.
As a result, when fitting the AFM to facial scans classified as left side, the external forces
are computed on the left side of the AFM and mirrored to the right side (and vice versa for
right side scans). This technique can also be applied to frontal scans, since they are handled
as a pair of independent left and right side scans, and the above rule is used accordingly.
Therefore, for each frontal scan, two fitted AFMs are computed: one that has the left side
mirrored to the right and another that has the right side mirrored to the left.

The basic equation of the deformable model framework is given by Newton’s second law:

Mq
d2q

dt2
+Dq

dq

dt
+Kqq = f q . (103)

The term q is the control points vector that determines the degrees of freedom of the
AFM (each point having three degrees of freedom). The term Mq is the mass matrix and
is multiplied with the acceleration vector in order to control the kinetic energy. Dq is the
damping matrix and is multiplied with the velocity vector in order to control the energy
dissipation.

Note that for data fitting purposes we set:

Mq
d2q

dt2
= 0 and Dq

dq

dt
= 0 , (104)

since they represent the translational effects of the external forces.
The term f q represents the external forces vector; during fitting, it consists of forces that

pull the control points vector toward the surface of the facial scan. Finally, the term Kq

is the stiffness matrix and it determines the elastic properties of the AFM that resist the
external forces. It can be decomposed into three matrices Kq = Kα+Kβ+Kγ. Kα is related
to the first order strain energy, Kβ to the second order strain energy and Kγ is related to
the spring forces energy:

Eα =
1

2
καq

TKαq ,

Eβ =
1

2
κβq

TKβq , (105)

Eγ =
1

2
κγq

TKγq ,

where κα, κβ, κγ are the individual weights.
The analytical equations are solved using an iterative Finite Element Method (FEM)

approximation. In current implementation, the subdivision-based FEM approximation pro-
posed by Mandal [86] is employed. This approximation solves the above equations in an
iterative way. The AFM is used as the control mesh of a subdivision surface. At each step,
the internal and external forces are computed on the limit surface and by using the inverse
subdivision matrices they are transferred to the control mesh (q).

Details of this implementation can be found in [64], but some key aspects are the follow-
ing:
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• The resolution of the control mesh determines the degrees of freedom but does not
affect the accuracy of the approximation (which is determined by the resolution of the
limit surface).

• The Loop subdivision scheme [82] is used because it produces a limit surface with C2
continuity, and only 1-neighborhood area information is needed for each vertex.

• For the computation of the external forces, multiple nearest neighbor searches between
the AFM and the surface of the facial scan are needed. To decrease the computational
cost a space partitioning technique (Octrees [71, 45]) is employed.

Figure 48: Pipeline of face fitting: (a) raw facial data; (b) deformed AFM to facial data; (c)

Geometry image of deformed AFM; and (d) Normal image of deformed AFM.

When the deformation stops, the annotated model acquires the shape of the raw data.
Since the deformation has not violated the injective nature of AFM (u, v) parameteriza-
tion, the deformed AFM can be converted to a geometry image. The normal image is also
computed, equivalent to the first spatial derivative of the geometry image (Fig. 48).

7.4 Wavelet Analysis

A wavelet transform is applied on the derived geometry and normal images in order to
extract a descriptive and compact biometric signature [64]. As explained above, even if half
of the face is missing from the facial scan, the derived geometry and normal images describe
the full face. When facial symmetry is used (for side scans) there is redundant information,
as half of the geometry and normal image is the mirror of the other half. However, both
sides are kept in order to have a common representation that is independent of the initial
pose.

Each channel of the geometry and normal image is treated as a separate image for the
wavelet analysis (thus resulting in six channels, three for each type of image). The Walsh
wavelet transform [126, 105] for images is a decimated wavelet decomposition using tensor
products of the full Walsh wavelet packet system. The 1D Walsh wavelet packet system is
constructed by repeated application of the Haar filterbank, a two-channel multirate filterbank
based on the Haar conjugate mirror filter. The choice of Haar wavelets was based on their
excellent localization properties.

The application of the Haar filterbank is conceptually simple and computationally effi-
cient. The Haar wavelet transform is performed by applying a low-pass filter and a high-pass
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(a) (b) (c)

(d) (e) (f)

Figure 49: Wavelet analysis of a frontal facial normal image (the intensity of the coefficients was

adjusted for visualization purposes): (a) original image, (b-e) 1st, 2nd, 3rd and 4th level Walsh

transform, (f) mask that selects 15% of the wavelet packets.

filter on a one-dimensional input, then repeating the process on the two resulting outputs.
The low–pass and high–pass Haar filters are g and h, respectively:

g =
1√
2
[1 1] and h =

1√
2
[1 − 1] . (106)

Since we are working with images, there will be four outputs for each level of the Haar
wavelet:

gTg =
1

2

[
1 1
1 1

]
, gTh =

1

2

[
1 −1
1 −1

]
, hTg =

1

2

[
1 1
−1 −1

]
and hTh =

1

2

[
1 −1
−1 1

]
(107)

corresponding to low-low, low-high, high-high and high-low filters respectively, acting on the
rows and columns of the image array. The low-low filter encodes the the local mean of pixel
values, while the rest encode the horizontal, vertical and diagonal edges of the image.

A level 4 decomposition is computed, meaning that the filters are applied four times for
creating the full Walsh transform, which yields (22)4 wavelet packets. Since the geometry
and normal images are of resolution 256×256 and at each decomposition a 1 : 2 subsampling
is applied, each wavelet packet has a resolution of 16× 16.

The level 4 Walsh decomposition produces 256 = (22)4 wavelet packets, arranged in
a 16 × 16 array of images (see Fig. 49 (e)) [105]. Since not all packets encode the same
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amount of information, it is possible to ignore most of the packets without loosing significant
information from the original image. To this end, 40 wavelet packets are kept (roughly 15%)
to create an efficient and compact metadata representation (Fig. 49 (f)), that can be used
as a face signature. The wavelet packets with the minimum variation among the scans of
the same subject as well as the maximum variation among the scans of different subjects are
favored. The selection of the 40 wavelet packets was optimized using a test database with
frontal facial scans.

The coefficients contained within the metadata representation can be directly compared
without having to reconstruct the original image using a weighted L1 metric. The distance
dG between a probe and a gallery geometry image (for each x, y, z component) is measured
as:

dG =
n∑
i=1

wi|[GP ]i − [GG]i| , (108)

where GP and GG are the wavelet coefficients derived from the geometry images of the
probe and gallery scans respectively, n is the number of these coefficients, and wi is a weight
mapping function.

The total distance DG is the sum of the distances computed on all x, y, z components of
a geometry image:

DG = [dG]x + [dG]y + [dG]z . (109)

The localization properties of the Walsh transform allow per area mapping, therefore for
k annotated facial areas (according to AFM), the wi weights will have k distinct values. For
the experiments, these values were selected empirically based on the biometric importance
of each area [64].

The distance DN between a probe and a gallery normal image is similarly computed.
The final distance between a probe and a gallery scan is given by:

D = DG + wNDN , (110)

where wN is a normalization weight.
Since the ratio of the average L1 difference between two geometry images over the average

L1 difference between two normal images is approximately 1 : 8, wN is set equal to 8. Note
that the normal images, being the first spatial derivative of the geometry images, are less
sensitive to positional (but not rotational) errors introduced during registration. As a result,
the interpose matching favors the normal images over the geometry images.
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8 Experimental Results

Tell me and I forget.
Teach me and I remember.

Involve me and I learn.

– B. Franklin

In this Chapter the experimental results that evaluate the proposed methods are pre-
sented. For this purpose the largest publicly available 3D face and ear databases were
combined. In order to evaluate performance for the landmark detection methods and the
landmark feature fusion methods, the facial datasets were manually annotated.

The proposed 3D landmark detector achieves state-of-the-art accuracy (with 4.5−6.3mm
mean landmark localization error), and the proposed partial face recognition method state-
of-the-art performance (with average rank-one recognition rate 83.7%), considerably outper-
forming existing methods, even when tested with the most challenging data, which contain
scans with yaw variations up to 80◦ and strong expressions. Experimental results of the
landmark feature schemes imply that the quadratic distance to similarity mapping in con-
junction with the rms rule for fusion exhibits the best performance, improving the landmark
detector accuracy and robustness (to 3.5− 5.5 mm mean landmark localization error).

8.1 Face Databases

A short description of the face databases widely available to the research community is given
below. The evaluation of the proposed algorithms for landmark detection and partial face
recognition was based on some of these databases.

3D-Databases:
The FRGC (Face Recognition Grand Challenge) [107, 106] database from the University of
Notre Dame (UND) contains 4,950 facial scans and is divided into two completely disjoint
subsets: FRGC v1 and FRGC v2. The hardware used to acquire these range data was a
Minolta Vivid 900/910 laser range scanner, with a resolution of 640× 480.

The FRGC v1 database contains 943 range images of 275 individuals, acquired before
Spring 2003 (FRGC 3D Training Set). Subjects have neutral expressions and almost frontal
pose.

The FRGC v2 database contains a total of 4,007 range images of 466 individuals, ac-
quired between Fall 2003 and Spring 2004 (FRGC 3D Validation Set). Subjects have almost
frontal poses, various facial expressions (e.g., happiness and surprise) and various illumina-
tion conditions (e.g. half of the face shaded). FRGC v2 is considered more challenging than
FRGC v1.
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The Ear Database from the University of Notre Dame (UND) [131], collections F and
G. This database (which was created for ear recognition purposes) contains side scans with a
vertical rotation of 45◦, 60◦ and 90◦. In the 90◦ side scans, both sides of the face are occluded
from the sensor, therefore these were excluded since they contain no useful information. The
UND database contains 119 side scans at ±45◦ (119 subjects, 119 left and 119 right) and 88
side scans at ±60◦ (88 subjects, 88 left and 88 right).

The MSU [84] database from the Michigan State University contains 300 multiview 3D
facial scans from 100 individuals. For each subject, three scans where captured with yaw
angles of less than −45◦, 0◦ (frontal) and more than +45◦.

The BU-3DFE [141] database from the University of New York at Binghamton contains
2,500 3D facial data of 100 individuals. The system used to acquire these data consists of six
digital cameras and two light pattern projectors evenly positioned at 45◦ at each side of the
subject. The system creates a single complete 3D triangular surface mesh of the face (20,000
- 35,000 triangles), by merging the cameras’ viewpoints. Subjects perform seven universal
expressions (i.e., neutral, happiness, surprise, fear, sadness, disgust and anger).

The T3DFRD (Texas 3D Face Recognition DB) [54] database contains 1,149 pairs of
high resolution, pose normalized, preprocessed, and perfectly co-registered color and range
images of 118 adult human subjects acquired using a stereo camera. The images are ac-
companied with information about the subjects’ gender, ethnicity, facial expression, and the
locations of 25 manually located anthropometric facial fiducial points.

The NDOff2007 [42] database which contains 7,317 facial scans, 406 frontal and 6,911 in
various yaw and pitch angles, acquired from 406 subjects. Pitch angles vary in the range of
[−45◦,+45◦] and yaw angles vary in the range of [−90◦,+90◦]. Cross rotations incorporating
both yaw and pitch angles are also available.

The Bosphorus [117] database consists of 3,396 facial scans, which are obtained from 81
subjects in various poses, expressions and occlusion conditions. Many of the male subjects
have facial hair like beard and moustache. There are three types of head poses which
correspond to seven yaw angles, four pitch angles, and two cross rotations which incorporate
both yaw and pitch.

2D-Databases:
The AR [2] contains over 4,000 color images corresponding to 126 people’s faces (70 men and
56 women). Images feature frontal view faces with different facial expressions, illumination
conditions, and occlusions (sun glasses and scarf). No restrictions on wear (clothes, glasses,
etc.), make-up, hair style, etc. were imposed to participants.

The FERET [50] database contains 14,126 color images from 1,199 people. It includes
changes in appearance through time, controlled pose variations and facial expressions.

TheCMU-PIE [123] database contains 41,368 color images from 64 people. Each person
was imaged across 13 different poses, under 43 different illumination conditions, and with 4
different expressions.

The Bio-ID [9] database contains 1,521 gray level images with a resolution of 384 by
286 pixels. Each image shows a frontal view of the face of one out of 23 different test
persons. Image are acquired under real world conditions, with varying background, lighting
and expressions. The set contains the eye positions.

The LFW (Labeled Faces in the Wild) [57] database contains more than 13,000 color
images of faces collected from the web. Each face has been labeled with the name of the
1,680 persons pictured. The images have not a specific resolution since they were cropped
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by the Viola-Jones face detector. No landmark annotations are available.

The LFPW (Labeled Face Parts in the Wild) [74] database contains 1,432 Images from
the internet with 29 points labeled on each image. Extremely challenging, real-world dataset,
which contains large variation in pose, illumination, expression, image quality and severe oc-
clusions.

Remarks:

a. The FRGC DBs include high resolution data, three-dimensional scans, and image se-
quences of each individual. Each of these data types were taken for the special purpose of
face recognition by machine and are potentially more informative than simple and moderate
resolution images, since one of the major goals of the FRGC was to study how higher fidelity
data can help make face recognition more accurate.

b. While there are large numbers of images with uncontrolled lighting in the FRGC data
sets, these images contain a great deal less natural variations. Although variation in clothing,
pose, background, and other variables exists in the FRGC databases, one may sum up these
differences as controlled variations.

c. Regarding the FRGC data set, during the acquisition of data there was a significant
time-lapse between the operation of the laser range finder and the optical camera in the
FRGC data acquisition, which caused the acquired 2D and 3D images to often be out of
correspondence. This time-lapse also caused inconsistencies in facial expressions between
the range and portrait images captured in single subject sessions. In addition, since laser
scanning is not instantaneous, some of the faces in the FRGC are distorted due to head
movements during acquisition.

d. By contrast, stereo imaging captures both the shape and the texture image of the face
simultaneously, hence each range and texture pair are perfectly co-registered in the T3DFRD.
Furthermore, accuracy assessment of fiducial detection requires access to publicly available
ground-truth of manually pinpointed fiducial points (not provided by FRGC).

e. T3DFRD has been acquired using a stereo imaging system at a high resolution of 0.32mm
along the x, y and z dimensions. By comparison, images in the FRGC database were acquired
at a lower average resolution of 0.98 mm along the x and y dimensions and 0.5 mm along
the z dimension.

f. The BU-3DFE database has been also acquired using a stereo imaging system with
capture devices at ±45◦. It contains only cropped and reconstructed frontal facial datasets.

8.2 Landmark Detection

8.2.1 Test Databases

For the performance evaluation of the proposed landmark detector, the largest publicly
available 3D face and ear databases were combined. To evaluate the performance of the
method against yaw variations, frontal, semi-profile and profile facial datasets were used.
To evaluate the tolerance of the method against expression variations, subjects with varying
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degrees of expressions were included. To have a measure of the landmark detection error,
the used facial datasets were manually annotated at the queried landmark points.

Thus the following collection of facial datasets were created:
(i) a database with 975 frontal facial datasets obtained from 149 different subjects, selected
from the FRGC v2 database (Fig. 51), including subjects with varying degrees of expressions
(45.44% “neutral”, 36.41% “mild” and 18.15% “extreme”), acquired under varying illumi-
nation conditions (e.g. half of the face shaded). This database will henceforth be referred
as DB00F (Fig. 50 (a)).
(ii) a composite frontal-to-profile database with the datasets of 39 common subjects found
in the FRGC v2 database and in the UND Ear database. This database consists of 117
(3x39) facial scans having three poses, frontal (39 scans) and 45◦ left (39 scans) and right
(39 scans), and will henceforth be referred as DB00F45RL.
(iii) two semi-profile databases with 118 left and 118 right 45◦ side datasets, which come
from 118 different subjects, obtained from the UND Ear database. These databases will be
referred as DB45L and DB45R respectively (Fig. 50 (b-c)).
(iv) two profile databases with 87 left and 87 right 60◦ side datasets, which come from 87
different subjects, obtained from the UND Ear database. These databases will be referred
as DB60L and DB60R, respectively (Fig. 50 (d-e)).

(a) (b) (c) (d) (e)

Figure 50: Front view of scans from the used UND databases: (a) frontal (from FRGC v2); (b)
45◦ right (from Ear DB); (c) 45◦ left (from Ear DB); (d) 60◦ right (from Ear DB); (e) 60◦ left (from
Ear DB). Note the extensive missing data in (b-e).

Figure 51: FRGC v2 partitioning: (I) 300 facial scans for training FLMs, shape index target values

and spin image templates; and (II) 975 facial scans for testing.

Note that, even though the creators of the UND Ear database marked the side scans as 45◦

and 60◦, the measured maximum angle of rotation is 70◦ and 80◦ respectively (Table 13).
Also, note that the evaluation databases contain facial scans that are not cropped and
reconstructed to contain facial only data.
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In the evaluation databases, only facial datasets with all landmark points visible were
included (eight for frontal scans and five for side scans). The visible landmark points were
manually annotated and are considered as our ground truth. The exact datasets that were
used from the source databases for testing can be found from the landmark annotation files
available through the website [132].

8.2.2 Landmark Detection Evaluation

To evaluate the performance of the proposed landmark detection method, we conducted
the following two experiments: In Experiment 1 we evaluated the performance of Method
SISI–NPSS against yaw variations, and in Experiment 2 we evaluated the tolerance of
Method SISI–NPSS against expression variations.

The performance evaluation of a landmark detector is generally presented by computing
the following values, which represent the localization accuracy of the detected landmarks:

Absolute Distance Error: The Euclidean distance in physical units (e.g., mm) between
the position of the detected landmark and the manually annotated landmark, which is
considered ground truth.

Detection Success Rate: The percentage of successful detections of a landmark over a
test database. Successful detection is considered as the detection of a landmark with
Absolute Distance Error under a certain threshold (e.g., 10 mm).

In our experiments, the localization error is represented by the mean and standard de-
viation of the absolute distance error of the detected landmarks. Also, the overall mean
distance error of the eight landmark points for the frontal datasets and of the five landmark
points for the side datasets was computed.

Figure 52: Mean Error Cumulative Distribution of METHOD SISI–NPSS on DB00F, DB45RL

and DB60RL.
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Figure 53: Mean Error Cumulative Distribution of METHOD SISI–NPSS on DB00F “neutral”,

“mild” and “extreme”.

The success rate of landmark localization with an absolute distance error threshold of
10 mm is reported in the result tables. Note that, as pointed out in [97], our UR3D-S face
recognition method can tolerate landmark localization errors up to 10 mm.

The yaw angle of probe faces is computed and its mean value, standard deviation, and
minimum and maximum values are presented. The yaw angle results from the rotational
transformation of the optimal solution that fits the probe face to the corresponding FLM
and thus the probe face is classified as frontal, left side or right side. Side detection can
be crucial in determining follow-up actions in a biometric system. The side detection rate,
reported in the result tables, is the percentage of correct side estimations of the probe faces
with respect to their ground truth side and whose detected landmarks also have an overall
mean distance error under 30 mm.

We depict the Cumulative (Error) Distribution graph of the mean distance error in Fig. 53
to show the method’s tolerance to expression variations and in Fig. 52 to show the method’s
robustness to yaw rotations. In these graphs the x-axis represents the mean distance error
between the manually annotated landmarks and the automatically detected landmarks in
intervals of 2 mm, and the y-axis represents the percentage of face datasets with a mean
distance error up to a certain x-value, out of all gallery datasets.

Summary results for METHOD SISI–NPSS on all tested databases are presented in
Table 6. The results clearly indicate that the proposed method exhibits high accuracy and
robustness both to yaw and expression variations. The mean error is under 6.3 mm, with
standard deviation under 2.6 mm on all tested facial scans. Also note that the mean error
is under 10 mm for at least 90.4% of the tested facial scans and the facial side was correctly
estimated on over 98.9% of the tested facial scans.

Specifically, the best results were obtained for the frontal facial scans category and the
worst for the 60◦ facial scans. This is due to the fact that, as the yaw angle increases,
landmark detection becomes more difficult, mainly due to distortions on their shape index
and spin image values caused by the missing data around the nose and chin tip regions
(Figs. 50b-e). The results that assess the robustness of METHOD SISI–NPSS against yaw
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Table 6: Summary results for METHOD SISI–NPSS

Mean Error Side

Database mean stdev ≤ 10 Detection

(mm) (mm) (mm) Rate

DB00F 5.00 1.85 97.85% 99.90%
DB00F-neutral 4.52 1.51 99.32% 100.00%
DB00F-mild 4.95 1.46 99.72% 100.00%
DB00F-extreme 6.28 2.60 90.40% 99.44%
DB00F45RL 4.97 1.92 97.44% 100.00%
DB45R 5.03 1.92 96.61% 100.00%
DB45L 4.75 1.91 97.46% 100.00%
DB60R 4.95 1.80 96.55% 98.85%
DB60L 5.30 2.49 93.10% 100.00%

variations are presented in Tables 12 and 13 and Fig. 52.
The most robust facial features are the nose tip and eye inner corners, with a lower

mean error and standard deviation across yaw rotations and expression variations. This is
due to the fact that they have more distinct geometry which is more easily captured by
the detectors, and there are no substantial changes in their shape index and spin image
values due to the deformations resulting from facial expressions. The least robust facial
feature appears to be the mouth corners mainly due to the fact that they do not have
enough distinct geometry and are also prone to changes in their shape index and spin image
values due to the deformations resulting from facial expressions. The results that assess the
tolerance of METHOD SISI–NPSS against expression variations are presented in Table 14
and Fig. 53.

8.2.3 Comparative Results

For comparison of the performance of the presented landmark detection method against other
state-of-the-art methods, landmark localization errors are presented in Tables 15 and 16.
Note that each method uses a different facial database, making direct comparisons difficult.
However, these results indicate that METHOD SISI–NPSS outperforms previous methods
for the following reasons: (i) it is more accurate, since it gives smaller mean localization
distance errors for almost all landmarks, and (ii) it is more robust, since it gives smaller
standard deviations for the localization distance error.

Comparative results of landmark localization errors on almost-frontal facial datasets are
presented in Table 15. Yu’s method [142] exhibits the minimum mean localization error for
the nose tip, but has a large standard deviation. Lu’s method [83] exhibits the minimum
mean localization error for the mouth corners, but is not a pure 3D method, since it is
assisted by 2D intensity data. Finally, Colbry’s method [20] seems to perform well for all
landmarks, comparatively close to the proposed method, but has larger standard deviations.
Note that the FRGC v1 database used in Yu et al. [142], Lu et al. [84], Lu et al. [83], and
Colbry [20] is considered less challenging than the FRGC v2 used in our experiments, since
FRGC v1 contains subjects with neutral expressions, while FRGC v2 contains subjects with
various facial expressions. Furthermore, the database used by Colbry [20] contains a small
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portion (≈ 5%) of proprietary datasets with pose variations, occlusions and expressions. The
BU-3DFE database [141] used in Nair et al. [92] contains frontal only 3D facial datasets,
which were created by the fusion of facial data acquired at ±45◦ yaw, from 100 subjects that
perform seven universal expressions.

Comparative results of landmark localization errors on mixed (frontal and profile) facial
datasets are presented in Table 16. To the best of our knowledge, Lu’s method [84] is the only
method in which localization errors on both frontal and profile facial datasets were presented.
These results indicate that METHOD SISI–NPSS outperforms Lu’s method in both accuracy
and robustness. The proprietary MSU database used in Lu et al. [84] contains 300 3D facial
scans from 100 subjects, three scans for each subject captured at 0 and ±45◦ yaw angles. The
DB00F45RL database used in our experiments, despite having fewer subjects, is considered
more challenging, since yaw angles lie in the range [−65◦, +67◦] (Tables 12 and 13).

The inclusion of facial expressions into the FLMs and the use of separate shape index
target values for each individual landmark resulted in an improved accuracy of our landmark
detector (by up to 28%), and an improved detection rate (by up to 16%), compared to our
early results that appeared in [97].

8.2.4 Evaluation of Fusion Schemes

For the purposes of this evaluation, two dataset collections were used: (i) the DB00F, and
(ii) the DB00F45RL.

The evaluation of the performance of the proposed distance to similarity mappings and
fusion schemes for landmark detection is not a straight-forward task, since there are many
factors that characterize performance. As already stated, fusion techniques are expected to
improve system’s accuracy, efficiency and robustness. An equally important characteristic of
a fusion scheme is that of monotonicity, i.e., the addition of a new feature descriptor should
improve prior results.

Thus, performance is evaluated according to these four characteristics. Accuracy is eval-
uated according to the distance between the selected optimal landmark and the manually
annotated landmark, which is considered as ground-truth. The selected optimal landmark
is the 1st rank candidate landmark for each landmark class (i.e., the candidate landmark
which has the maximum resultant similarity score). Efficiency is evaluated according to the
reduction of the likelihood area of a landmark class (see the high similarity areas in Figs.
38 and 37). The likelihood area of a landmark class is very important since its reduction
means that fewer candidate landmarks have to be retained and fed to the “selection level”.
Robustness is evaluated by the use of testing datasets which contain subjects acquired under
large yaw rotations, varying expressions and different illumination conditions, and also by
the use of five different landmark classes. Monotonicity is evaluated according to the accu-
racy improvement between the use of individual descriptors, the fusion of the two richest
descriptors, the shape index (SI) and the spin image (SS), and the fusion with the addition
of a third poorer descriptor, the edge response (ER).

A qualitative performance evaluation of the proposed fusion schemes according to the
aforementioned characteristics is presented in Table 7. Detailed landmark localization error
analysis is presented in Tables 17 and 18.

120 Panagiotis B. Perakis



Landmark Detection for Unconstrained Face Recognition

Table 7: Qualitative evaluation of proposed fusion schemes

Accuracy Efficiency Robustness Monotonicity

L−L1 Fair High Fair Fair
L−L2 Fair Low Fair Fair
L−Lg High Fair Fair Fair

Q−L1 High High Fair Fair
Q−L2 High High High High
Q−Lg High Fair Fair Fair

G−L1 High High High High
G−L2 High High Fair Fair
G−Lg High Fair Fair Fair

L−Lmax Low Low Low Low
Q−Lmax Low Low Low Low
G−Lmax Low Low Low Low

L−Lmin Unreliable Fair Fair Low
Q−Lmin Unreliable Fair Fair Low
G−Lmin Unreliable Fair Fair Low

Current experimental findings are similar to those of [60], which are summarized in the
following:
i) There is no single combination rule that scores best for all cases.
ii) Combining does not necessarily lead to improved performance.
iii) There are cases where none of the combining rules does better than the best individual
detector.

Despite these general findings a more detailed examination of the results shows that there
are some fusion schemes that perform better in most cases and can be adopted, and others
that perform quite poorly and should be avoided (see also the Remarks of Section 5.2.2).

Current results show that, in general, the Quadratic (Q) and Gaussian (G) mappings
behave better than the Linear (L) mapping. For the Linear mapping the product rule (Lg)
behaves better than other rules. For the Quadratic mapping the rms rule (L2) behaves better
than other rules. For the Gaussian mapping the sum rule (L1) behaves better than other
rules. Quadratic and Gaussian mappings have almost the same performance.

The introduction of the Edge Response (ER) descriptor improves the results for the EOC,
EIC and MC landmarks, but degrades the results for NT and CT. Note that, although ER
is a poor descriptor, the improvement in accuracy is more dramatic in MC and EOC where
the ER descriptor is more correlated with the SI and SS descriptors. Also note that the
decline in accuracy is more dramatic in NT and CT where the ER descriptor is uncorrelated
with the SI and SS descriptors (Table 5).

Accuracy improvement is more dramatic when the information fused is correlated. In
correlated features the performance of one descriptor predicts to some extent the performance
of the other and strengthens the results. On the other hand highly uncorrelated features
have similarity peaks that do not coincide and degrade the results. Efficiency improvement
is achieved by excluding obvious non-matches, reducing the number of candidate landmarks,
for each landmark class. Fusion, also, reduces system sensitivity to sample-specific, poor-
quality or erroneous descriptors.
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We can thus deduce that the best performance in terms of accuracy is exhibited by the Q-
L2 and G-L1 fusion schemes, with the Q-L2 exhibiting a slight better performance than the
G-L1 in landmarks’ likelihood area reduction. Q-L2 and G-L1 also exhibit high robustness
in yaw, expression and illumination variations, and strong monotonicity.

Also landmark localization using the Q-L2 fusion scheme (see METHOD 5 in Section 6.3)
improved the accuracy and robustness of the landmark detector (with 3.5 − 5.5 mm mean
landmark localization error), indicating the superiority of the fusion approach. Comparative
results are presented in Table 19.

8.3 Partial Face Recognition

8.3.1 Test Databases

Combined UND Databases:
To evaluate the performance of the proposed partial face recognition method, a combination
of the largest publicly available 3D face and ear databases was used. For frontal facial
scans, the FRGC v2 database [107, 106] was used. It contains a total of 4,007 near frontal
range images, obtained from 466 subjects having various facial expressions (e.g., happiness,
surprise). For side facial scans, the Ear Database from the University of Notre Dame (UND)
[131] was used. This database (which was created for ear recognition purposes) contains side
scans with yaw rotations of 45◦, 60◦ and 90◦. In the 90◦ side scans, both sides of the face are
occluded from the sensor; therefore they contain no useful information for face recognition
purposes. Thus, only the 45◦ side scans (118 subjects, 118 left and 118 right) and the 60◦

side scans (87 subjects, 87 left and 87 right) were used. Even though the creators of the
database marked these side scans as 45◦ and 60◦, the measured maximum angle of rotation
is 70◦ and 80◦ respectively (Table 13). However, when referring to these scans the database
notation (45◦ and 60◦) will be used. Unfortunately, not all subjects exist in both databases.
The number of common subjects between the frontal scans and the 45◦ side scans is 39 and
between the frontal scans and the 60◦ side scans is 32.

For the conducted experiments the following collections were defined:

• UND45LR: Contains 45◦ side scans from 118 subjects. For each subject, the left scan
is considered gallery and the right is considered probe. Total: 236 scans.

• UND60LR: Contains 60◦ side scans from 87 subjects. For each subject, the left scan
is considered gallery and the right is considered probe. Total: 174 scans.

• UND00LR: Gallery set has one frontal scan for each of the 466 subjects. Probe set has
two 45◦ side scans (left and right) for each of the 39 subjects and two 60◦ side scans
(left and right) for each of the 32 subjects. Total: 608 scans.

In all cases there is only one gallery scan per subject. Also, all subjects present in a probe
set are also present in the gallery set (the opposite is not always true).

UH Databases:
In addition to the UND databases a database with data collected at the University of Houston
was used. The database contains 1,075 left and 1,075 right scans of 281 subjects. The novelty
of this database is that each pair of left and right side scans was acquired simultaneously (see
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Fig. 54). They are acquired using a 3dMD system [64]. This system consists of one left and
one right optical scanner that acquire data simultaneously but are independent of each other.
These side scans are considered comparable to the UND’s 45◦ scans. During the acquisition
of the data, each subject was asked to remove any accessories (e.g., glasses). An initial scan
was acquired while the subject assumed a neutral facial expression. Subsequently, several
scans were acquired while the subject was reading loudly a predefined text (thus assuming
arbitrary facial expressions). All scans of each subject were acquired on the same day.

(a) (b) (c) (d)

Figure 54: Scans from the UH database from a single subject: (a,b) Right and left scans with

neutral expression were acquired simultaneously, (c,d) Right and left scans with open mouth were

acquired simultaneously.

For the conducted experiments the following collections were defined:

• UHDB7L: Contains left side scans from 281 subjects. For each subject, one scan is
considered gallery and the rest are considered probe. The minimum and maximum left
scans per subject are 1 and 6 respectively. Total: 1,075 scans.

• UHDB7R: Contains right side scans from 281 subjects. For each subject, one scan is
considered gallery and the rest are considered probe. The minimum and maximum
right scans per subject are 1 and 6 respectively. Total: 1,075 scans.

• UHDB7LR-M: Contains multiple left and right side scan pairs from 281 subjects. For
each subject, one left and one right scan (acquired simultaneously) are considered
gallery and the rest are considered probes. The minimum and maximum pairs of scans
(left and right) per subject are 1 and 6 respectively. Total: 2,150 scans.

• UHDB7LR-S: Contains a single left and right side scan pair from 281 subjects. For
each subject, the left scan is considered gallery and the right scan is considered probe.
The left and right scans were acquired simultaneously. Total: 562 scans.

In all cases there is only one gallery scan per subject (with the exception of UHDB7LR-M
where there are two). Also, all subjects present in a probe set are also present in the gallery
set (the opposite is not always true).

8.3.2 Landmark Detection Evaluation

In order to evaluate the performance of the landmark detection algorithm on the databases
described in Section 8.3.1 we manually annotated landmarks on several facial scans. Great
care was given to minimize the subjectiveness of the manual process so that it can be
considered ground truth. Landmarks were manually annotated on the 466 frontal scans of
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UND00LR (Fig. 50 (a)), on the 118 left and 118 right side scans of UND45LR (Fig. 50 (b-c))
and on the 87 left and 87 right side scans of UND60LR (Fig. 50 (d-e)).

In all cases, the overall mean distance error and its standard deviation between the
manually annotated landmarks and the automatically detected landmarks was calculated to
represent the landmarks’ localization error. This error is expressed with the mean Euclidian
distance DME, defined in Eq. 98, between the detected landmark points and the annotated
landmark points.

Another metric which reflects the quality of the landmark detection algorithm for regis-
tration purposes is the modified directed Hausdorff distance DMH , between the face model
M and the test face T , which is defined in Eq. 101.

The DMH(M,T ) expresses the mean value of the minimum Euclidian distances |mi− tj|
of the vertices of the face model M , to which a test facial scan T is registered. In order to
compute this metric, only the automatically detected landmarks were used for registration
(without the Simulated Annealing step). To get comparative results for DMH we used as
a model for frontal databases all the vertices of the complete AFM, for left-side databases
the left side vertices of the AFM, and for right-side databases the right side vertices of the
AFM.

Table 8: Summary results for landmark detection and face registration

DMH DME

Database mean stdev mean stdev > 10
(mm) (mm) (mm) (mm) (mm)

UND00LR - front 4.61 1.04 5.77 1.81 3.4%
UND45LR - right 3.90 0.95 5.83 2.49 4.2%
UND45LR - left 4.03 1.22 6.02 2.45 6.8%
UND60LR - right 4.37 3.11 5.87 2.47 6.9%
UND60LR - left 4.32 2.41 6.08 2.53 11.5%
UHDB7R 4.72 2.46 - - -
UHDB7L 4.76 2.86 - - -

The results are summarized in Table 8. The last column reports the percentage of
landmarks with DME more than 10 mm. Note that there were no manually annotated
landmarks for the UHDB7R and UHDB7L databases, so only the DMH metric is reported.

8.3.3 Face Recognition Performance Evaluation

Using the databases described in Section 8.3.1 several identification experiments were per-
formed. The proposed method tackles the problem of matching arbitrary facial scans (left,
right or frontal). This is considerably harder than matching only frontal scans, since a lot of
the facial information is missing and it is not known a priori whether each scan is left, right
or frontal. In all experiments the Cumulative Match Characteristic (CMC) graphs and the
rank-one recognition rates are reported. The automatic landmark detector was used in all
cases unless stated otherwise.

Matching facial scans of the same side:
In this experiment, the performance of the proposed method was evaluated using scans of
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the same side for both gallery and probe sets. This is not a realistic scenario, but allows for
the evaluation of the proposed method without the need to use facial symmetry. The only
database suitable for this purpose is the UH Database as it has multiple left and multiple
right side scans of each subject.

Table 9: Rank-one Recognition Rate between facial scans of the same side

Rank-one Rate

UHDB7L 85.8%

UHDB7R 86.8%

Figure 55: CMC graphs for matching left (gallery) with left (probe) side scans (for UHDB7L) and

right (gallery) with right (probe) side scans (for UHDB7R).

The performance for matching left (gallery) with left (probe) side scans (UHDB7L) and
right (gallery) with right (probe) side scans (UHDB7R) was measured. The CMC graphs
are presented in Fig. 55 and the rank-one rates are given in Table 9.

Matching facial scans of arbitrary side:
In this experiment, the performance of the proposed method using scans of arbitrary sides
for gallery and probe sets was evaluated. This is a realistic scenario, as the side scans (with
extensive occlusions that lead to missing data) are very common in real world applications
with unconstrained acquisition. The proposed method can match any combination of left,
right or frontal facial scans with the use of facial symmetry. Moreover, the proposed method
automatically detects the side of the scan. For this experiment we utilized the UND45LR,
UND60LR, UND00LR, UHDB7LR-M and UHDB7LR-S databases and the rank-one rates
are given in Table 10.

Panagiotis B. Perakis 125



Landmark Detection for Unconstrained Face Recognition

Table 10: Rank-one Recognition Rate between facial scans of arbitrary side

Rank-one Rate

UND45LR 86.4%

UND60LR 81.6%

UND00LR 76.8%

UHDB7LR-M 89.1%

UHDB7LR-S 79.4%

Figure 56: CMC graphs for matching left (gallery) with right (probe) side scans using UND45LR,

UND60LR and the combination of the two.

In the cases of UND45LR and UND60LR, for each subject, the gallery set contains a
single left side scan while the probe set contains a single right side scan. Therefore, facial
symmetry is always used in order to perform identification. As expected, the 60◦ side scans
yield lower results as they are considered more challenging compared to the 45◦ side scans
(see Fig. 56).

In the case of UND00LR, the gallery set contains a frontal scan for each subject, while
the probe set contains left and right side scans. This scenario is very common when the
enrollment of subjects is controlled but the identification is uncontrolled. In Fig. 57 the
CMC graph is given (UND00LR’s probe set is also split in left-only and right-only sub-
sets). Compared to UND45LR and UND60LR, there is a decrease in the performance of
the proposed method in UND00LR. One could argue that since the gallery set consists of
frontal scans (without missing data), there should be an increase in performance. However,
UND00LR has the largest gallery set (it includes all of the 466 subjects found in the FRGC
v2 database) making it the most challenging database in current experiments.
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Figure 57: CMC graphs for matching frontal (gallery) with left, right and both (probe) side scans

using UND00LR.

Figure 58: UHDB7LR-M: matching left and right (gallery) with left and right (probe) side scans.

UHDB7LR-S: matching left (gallery) with right (probe) side scans.

In the case of UHDB7LR-M, for each subject, the gallery set contains a left and right
side scan pair, while the probe set contains multiple left and right side scan pairs. As
expected, since the gallery set has two scans per subject, the performance on this database
is the highest among all databases. The performance difference is substantial compared to
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UND00LR (89.1% versus 76.8% rank-one). This indicates that one pair of left and right side
scans is more descriptive than one frontal scan.

In the case of UHDB7LR-S, even though it is a subset of UHDB7LR-M, is considered
more challenging (see Fig. 58). This is because the gallery set contains a single left side scan
while the probe set contains a single right side scan. Compared to UND45LR and UND60LR
(which have a similar probe/gallery setup), the performance on UHDB7LR-S is lower (79.4%
versus 86.4% and 81.6% rank-one). However UHDB7LR-S is considerably larger, it has 281
subjects versus 118 and 87 subjects for UND45LR and UND60LR respectively.

Automatic versus manual landmarks:
In the last experiment, the performance of the proposed method with an ideal landmark
detector was evaluated. To this end, the manually annotated landmarks for the UND45LR
and UND60LR databases described in Section 8.3.2 were used. The CMC graphs are depicted
in Figs. 59 and 60 and the rank-one rates are given in Table 11.

Table 11: Rank-one Recognition Rate for automatic and manual landmarks

Rank-one Rate Rank-one Rate
Automatic Landmarks Manual Landmarks

UND45LR 86.4% 91.5%

UND60LR 81.6% 90.8%

Figure 59: CMC graphs for matching left (gallery) and right (probe) side scans using automatic

and manual landmarks on UND45LR
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Figure 60: CMC graphs for matching left (gallery) and right (probe) side scans using automatic

and manual landmarks on UND60LR

As expected, there is an increase in rank-one recognition rate for both databases (5.1%
and 9.2% increase for UND45LR and UND60LR respectively).

Interestingly, the percentage of automatic landmarks with mean localization error more
than 10 mm (compared to manually annotated landmarks) is on average 5.5% and 9.2% on
UND45LR and UND60LR respectively (see the last column of Table 8). This indicates that
the proposed method for partial face recognition can tolerate landmark mean localization
errors up to 10 mm. If this error is significantly above this threshold, then the pose estima-
tion is probably invalid and the subsequent fitting fails to extract meaningful geometrical
information.

8.3.4 Discussion

As mentioned in Chapter 2, most of the face recognition methods that have been proposed
do not handle data with significant pose variations along the yaw axis. On the contrary, the
proposed method can handle extensive occlusions (that result in missing data) caused by
such pose variations. The only limitation is that no more than half of the face is missing (so
that facial symmetry can be used). The flexibility to seamlessly handle left, right and frontal
scans is important in an unconstrained acquisition scenario. Therefore, it is considered that
focusing on data with arbitrary pose variations is a necessity for real-world applications.

For evaluation purposes the most challenging databases in terms of pose variations and
missing data were used. It is demonstrated that the proposed method can match frontal and
left or right side scans by using facial symmetry. Unavoidably, the use of facial symmetry
has an impact on recognition rates, as human faces are not completely symmetric. In the
above experiments, the average rank-one recognition rate was 83.7%. It is anticipated that
the average recognition rate can be increased by improving certain steps of the proposed
method (e.g., landmark detection) before the limit imposed by facial asymmetry is reached.
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Compared to the published work in [101], the currently proposed method, as published
in [97], offers significantly better results. When using automatically detected landmarks, the
rank-one recognition rates increased by 19% and 17%, for UND45LR and UND60LR respec-
tively. This indicates that the landmark detector proposed in [97] is far more robust and
accurate compared to the one proposed in [101]. When using manually selected landmarks,
the rank-one recognition rates increased by 9% and 22%, for UND45LR and UND60LR re-
spectively (with respect to [101]). Thus, the improvements on the other steps of the method
also offer increased accuracy.

Another important difference of published work in [97] compared to the work published
in [101] is that each frontal scan is currently handled as a pair of left and right side scans
(producing two signatures that are matched independently). This is why the largest perfor-
mance increase was on a database with frontal scans in the gallery set and side scans in the
probe set (20% increased recognition rate on UND60LR compared to the average recognition
rate of DB60F and DB45F in [101]).

8.4 Computational Cost

8.4.1 Landmark Detection

For the evaluation of the proposed landmark detection method’s computational efficiency,
a PC with the following specifications was used: Intel Core i5 2.5 GHz with 4 GB RAM.
Using this PC, 6.68 sec on average was required to locate the landmarks for each facial scan.
The average time taken for each step of the method is: Data loading 0.04 sec, shape index
computation and landmark localization 0.26 sec, spin image computation and landmark
filtering 0.31 sec, FLM5L-FLM5R matching and landmark labeling 5.05 sec, and FLM8
matching and optimal landmark set selection 1.02 sec. The procedures for determining the
optimal rotation for the alignment of the landmark shapes to the FLMs require at most 8
iterations to converge.

Speedups through parallelization are also possible and thus the computational efficiency
of the presented landmark detector makes it applicable to real-world applications.

8.4.2 Face Recognition

For the evaluation of the proposed partial face recognition method’s computational efficiency,
a PC with the following specifications was used: Intel Core 2 Duo 2.2 GHz with 2 GB
RAM and NVIDIA GeForce 8600GTS graphics card. Using this PC, 18 sec on average are
required to process a facial scan: 9 sec to localize the facial landmarks plus 9 sec to extract
the biometric signature (geometry and normal images). The procedures of determining the
optimal rotation for the alignment of the landmark shapes to the AFM require at most 8
iterations to converge. The Simulated Annealing step requires 2 sec. It may take up to
2,000 iterations to converge, but the computation is very efficient (requires 2 sec) as the
z-buffers are created using the GPU. The fitting step takes 64 iterations to converge and
requires 7 sec. The creation of the signature from the deformed AFM requires just a few
milliseconds. Finally, the signatures can be matched at a rate of 15,000 matches/sec.

There are a number of independent tasks that can be speed up through parallel processing
techniques. Nevertheless, the combination of a signature creation step within reasonable
time (18 sec) and a signature matching procedure with an extremely low computational cost
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(15,000 matches/sec) makes the proposed method for partial face recognition suitable for
real-world scenarios.

Remark: Note that the presented times are only indicative and cannot be attributed solely
to the methods’ algorithmic procedures, since they were recorded in a typical Windows PC,
where a multitasking OS is running.
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9 Conclusion

There will come a time
when you believe everything is finished.

That will be the beginning.

– L. L’ Amour

The automatic detection of facial landmarks is a key area in most facial processing ap-
plications as it often constitutes their first step. Examples of such applications (apart from
facial recognition which has been widely explored in this thesis) include facial shape anal-
ysis, facial expression understanding, facial expression transfer for animation, facial motion
capture etc.

In this thesis a novel automatic facial landmark detection method has been proposed. It
offers pose invariance and robustness to large missing (self-occluded) facial areas with respect
to large yaw variations and high tolerance to large expression variations. The proposed
approach consists of methods for landmark localization that exploit the 3D facial geometry
and the modeling ability of trained landmark models. It has been evaluated using the
most challenging 3D facial databases available, which contain scans with yaw variations of
up to 80◦ and strong expressions. In these databases it achieved state-of-the-art accuracy
(with 4.5− 6.3 mm mean landmark localization error), significantly outperforming existing
methods.

Although it is possible to consider extensions for improving accuracy (e.g., by including
the nostrils’ base or another anatomical landmark into the FLMs, or by applying heuristic
methods of post-processing for fine-tuning the positions of landmarks), such improvements
are likely to be marginal and at the expense of the method’s simplicity and speed.

Also, a novel generalized framework of fusion methods and their application to landmark
detection has been presented. The proposed fusion scheme acts after the “feature extraction
level”, transforms features to similarities and then combines them to generate a resultant
feature similarity, which is considered as the matching score used at the “matching level” for
the detection of the queried landmarks. The proposed feature fusion scheme is easily exten-
sible to new feature-components in feature space, offers significant dimensionality reduction
and works equally well for features extracted from 3D or 2D facial data.

For the proposed fusion scheme different distance to similarity mappings (linear, quadratic
and Gaussian) and different fusion rules (sum rule, rms rule, product rule, max rule and min
rule) have been evaluated according to accuracy, efficiency, robustness and monotonicity.
The results indicate that the quadratic distance to similarity mapping in conjunction with
the rms rule for fusion (Q-L2) exhibits the best performance. Landmark localization using
this fusion scheme achieved state-of-the-art accuracy (with 3.5 − 5.5 mm mean landmark
localization error), indicating the superiority of the fusion approach.

Finally, a novel 3D face recognition method suitable for real-world biometric applica-
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tions was proposed. Unlike most previous methods that require frontal scans, the proposed
method can perform partial matching among interpose facial scans, even when extensive
data are missing. It exploits the 3D landmark detector to provide an initial pose estimation
and to indicate occluded areas with missing data for each facial scan. By using facial sym-
metry to complete missing facial data, it can handle seamlessly frontal and side facial scans.
Competitive results were presented on databases with the most challenging pose variations.
The proposed partial face recognition method exhibits state-of-the-art performance (with
average rank-one recognition rate 83.7%), considerably outperforming existing methods.
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Appendix

A Rotational Alignment of 3D Shapes
Given two 3D shapes a rotational transformation R(x) has to be computed so as to minimize
the Procrustes distance between the transformed shape R(x) and a reference shape x0

E = ∥R(x)− x0∥ , (111)

which is considered as the alignment error.
The rotational transformation R can be expressed as a product of three rotations around

the three principal axes:
R = Rx,θ ·Ry,ϕ ·Rz,ψ (112)

These can be expressed in a matrix form:

Rx,θ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (113)

Ry,ϕ =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 (114)

Rz,ψ =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (115)

To simplify the notation, we define the following sums:

Sx0,x =
∑n

j=1 x0jxj, Sx0,y =
∑n

j=1 x0jyj, Sx0,z =
∑n

j=1 x0jzj,

Sy0,x =
∑n

j=1 y0jxj, Sy0,y =
∑n

j=1 y0jyj, Sy0,z =
∑n

j=1 y0jzj,

Sz0,x =
∑n

j=1 z0jxj, Sz0,y =
∑n

j=1 z0jyj, Sz0,z =
∑n

j=1 z0jzj,

Sx,y =
∑n

j=1 xjyj, Sy,z =
∑n

j=1 yjzj, Sz,x =
∑n

j=1 zjxj,

Sx,x =
∑n

j=1 xjxj, Sy,y =
∑n

j=1 yjyj, Sz,z =
∑n

j=1 zjzj.

where n is the number of landmarks of each shape.
We also consider the similarity transformations:

Mx =

 1 0 0
0 a −b
0 b a

 (116)

which represents a rotation around x-axis by θ = tan−1
(
b
a

)
and a scaling by s2 = a2 + b2,

My =

 a 0 b
0 1 0
−b 0 a

 (117)
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which represents a rotation around y-axis by ϕ = tan−1
(
b
a

)
and a scaling by s2 = a2 + b2,

and

Mz =

 a −b 0
b a 0
0 0 1

 (118)

which represents a rotation around z-axis by ψ = tan−1
(
b
a

)
and a scaling by s2 = a2 + b2.

After applying the Mx transformation we have:

E =
n∑
j=1

[(Mx(xj)− x0j)2 + (Mx(yj)− y0j)2 + (Mx(zj)− z0j)2]⇒

E =
n∑
j=1

[(xj − x0j)2 + (ayj − bzj − y0j)2 + (byj + azj − z0j)2] . (119)

Setting partial derivatives of E w.r.t. each parameter to zero we obtain that:

∂E

∂a
=

n∑
j=1

[(ayj − bzj − y0j)yj + (byj + azj − z0j)zj] = 0⇒

aSy,y − bSy,z + bSy,z + aSz,z = Sy0,y + Sz0,z ⇒

a =
Sy0,y + Sz0,z
Sy,y + Sz,z

. (120)

and

∂E

∂b
=

n∑
j=1

[−(ayj − bzj − y0j)zj + (byj + azj − z0j)yj] = 0⇒

−aSy,z − bSz,z + bSy,y + aSy,z = −Sy0,z + Sz0,y ⇒

b =
Sz0,y − Sy0,z
Sy,y + Sz,z

. (121)

finally resulting in:

θ = tan−1

(
Sz0,y − Sy0,z
Sy0,y + Sz0,z

)
(122)

After applying the My transformation we have:

E =
n∑
j=1

[(My(xj)− x0j)2 + (My(yj)− y0j)2 + (My(zj)− z0j)2]⇒

E =
n∑
j=1

[(axj − bzj − x0j)2 + (yj − y0j)2 + (−bxj + azj − z0j)2] . (123)

Setting partial derivatives of E w.r.t. each parameter to zero we obtain that:
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∂E

∂a
=

n∑
j=1

[(axj − bzj − x0j)yj + (−bxj + azj − z0j)zj] = 0⇒

aSx,x + bSz,x − bSz,x + aSz,z = Sx0,x + Sz0,z ⇒

a =
Sx0,x + Sz0,z
Sx,x + Sz,z

. (124)

and

∂E

∂b
=

n∑
j=1

[(axj − bzj − x0j)zj + (−bxj + azj − z0j)xj] = 0⇒

aSz,x + bSz,z + bSx,x − aSz,x = Sx0,z − Sz0,x ⇒

b =
Sx0,z − Sz0,x
Sx,x + Sz,z

. (125)

finally resulting in:

ϕ = tan−1

(
Sx0,z − Sz0,x
Sz0,z + Sx0,x

)
(126)

After applying the Mz transformation we have:

E =
n∑
j=1

[(Mz(xj)− x0j)2 + (Mz(yj)− y0j)2 + (Mz(zj)− z0j)2]⇒

E =
n∑
j=1

[(axj − byj − x0j)2 + (bxj + ayj − y0j)2 + (zj − z0j)2] . (127)

Setting partial derivatives of E w.r.t. each parameter to zero we obtain that:

∂E

∂a
=

n∑
j=1

[(axj − byj − x0j)xj + (bxj + ayj − y0j)yj] = 0⇒

aSx,x − bSx,y + bSx,y + aSy,y = Sx0,x + Sy0,y ⇒

a =
Sx0,x + Sy0,y
Sx,x + Sy,y

. (128)

and

∂E

∂b
=

n∑
j=1

[−(axj − byj − x0j)yj + (bxj + ayj − y0j)xj] = 0⇒

−aSx,y + bSy,y + bSx,x + aSx,y = −Sx0,y + Sy0,x ⇒

b =
Sy0,x − Sx0,y
Sy,y + Sz,z

. (129)

finally resulting in:
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ψ = tan−1

(
Sy0,x − Sx0,y
Sx0,x + Sy0,y

)
(130)

Setting the values of θ, ϕ, and ψ into Eqs. 113, 114, and 115 we approximate the similarity
transformations by its rotational component, ignoring the scaling factors. Thus, repeatedly
applying the extracted rotational transformations, the alignment error is reduced below a
predefined threshold.
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B Line–Triangle Intersection
When resampling a surface mesh, it is necessary to compute the intersection between a line
segment and a triangle [129].

Figure 61: Intersection of a line segment and a triangle in 3D space.

Consider a triangle (v0,v1,v2) and a line segment (p0,p1). The line segment can be
written in parametric form as

L(t) = p0 + td , (131)

with 0 ≤ t ≤ 1 and
d = p1 − p0 . (132)

Their intersection point q(x, y, z) can be written in parametric form as

q(u, v) = v0 + u(v1 − v0) + v(v2 − v0) , (133)

where u, v ≥ 0 and u+ v ≤ 1 for the point to be inside the triangle.
Since q(x, y, z) satisfies Eq. 131, we have

p0 + td = v0 + u(v1 − v0) + v(v2 − v0) ⇒

p0 − v0 = −td+ u(v1 − v0) + v(v2 − v0) .

Setting e1 = v1 − v0, e2 = v2 − v0, and r = p0 − v0, we have

r =
[
−d e1 e2

]
·

 t
u
v

 ⇒
 t
u
v

 =
[
−d e1 e2

]−1 · r ⇒

 t
u
v

 =
1

| −d e1 e2 |
·

 | r e1 e2 |
| −d r e2 |
| −d e1 r |

 · r , (134)
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where | a b c | = (a× b) · c.
Thus, finally

t =
(r× e1) · e2
(−d× e1) · e2

, (135)

u =
(−d× r) · e2
(−d× e1) · e2

, (136)

v =
(−d× e1) · r
(−d× e1) · e2

, (137)

and
q(x, y, z) = p0 + td . (138)
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C 3D Landmark Detection Results

Table 12: Experiment 1: Performance of METHOD SISI–NPSS against yaw variations

Database DB00F DB00F45RL
Side Detection Rate 974 / 975 99.90% 117 / 117 100.00%
Yaw mean ± stdev +0.93◦ ± 4.03◦ +1.15◦ ± 41.35◦

Yaw [min . . . max] [−17.98◦ . . . + 16.98◦] [−65.23◦ . . . + 66.82◦]
Localization Error (mm) mean stdev ≤ 10 mm mean stdev ≤ 10 mm
REOC 5.58 3.33 88.82% 5.32 3.71 88.46%
REIC 4.15 2.35 96.92% 4.65 2.45 96.15%
LEIC 4.41 2.49 97.33% 4.90 2.96 96.15%
LEOC 5.83 3.42 88.10% 6.06 4.13 80.77%
NT 4.09 2.41 98.56% 4.41 2.68 98.29%
MRC 5.56 3.93 88.62% 5.01 2.97 92.31%
MLC 5.42 3.84 88.82% 4.91 2.88 96.15%
CT 4.92 3.74 94.77% 4.80 3.52 93.16%
Mean Error 5.00 1.85 97.85% 4.97 1.92 97.44%

Table 13: Experiment 1: Performance of METHOD SISI–NPSS against yaw variations

Database DB45R DB45L DB60R DB60L
Side Detection Rate 118 / 118 100.00% 118 / 118 100.00% 86 / 87 98.85% 87 / 87 100.00%
Yaw mean ± stdev +44.20◦ ± 8.20◦ −45.57◦ ± 8.95◦ +57.47◦ ± 7.22◦ −58.51◦ ± 8.06◦

Yaw [min . . . max] [+16.81◦ . . . + 68.04◦] [−69.22◦ . . . − 16.19◦] [+30.24◦ . . . + 80.81◦] [−82.52◦ . . . − 30.79◦]
Localization Error (mm) mean stdev ≤ 10 mm mean stdev ≤ 10 mm mean stdev ≤ 10 mm mean stdev ≤ 10 mm
REOC 5.63 3.76 85.59% - - - 6.01 3.52 80.46% - - -
REIC 4.71 2.69 95.76% - - - 4.89 3.11 93.10% - - -
LEIC - - - 5.05 2.79 94.92% - - - 5.01 3.02 95.40%
LEOC - - - 5.42 3.42 88.98% - - - 5.14 3.19 91.95%
NT 4.87 2.90 95.76% 4.64 2.81 95.76% 3.94 2.35 96.55% 4.13 1.85 100.00%
MRC 4.84 3.50 88.98% - - - 4.68 3.36 91.95% - - -
MLC - - - 4.21 2.93 96.61% - - - 5.37 5.12 85.06%
CT 5.12 4.95 91.53% 4.45 3.57 96.61% 5.23 4.72 89.66% 6.86 6.03 85.06%
Mean Error 5.03 1.92 96.61% 4.75 1.91 97.46% 4.95 1.80 96.55% 5.30 2.49 93.10%

Table 14: Experiment 2: METHOD SISI–NPSS tolerance to expression variations on DB00F

Expression Neutral Mild Extreme All
Side Detection Rate 443 / 443 100.00% 355 / 355 100.00% 176 / 177 99.44% 974 / 975 99.90%
Localization Error (mm) mean stdev ≤ 10 mm mean stdev ≤ 10 mm mean stdev ≤ 10 mm mean stdev ≤ 10 mm
REOC 5.38 3.14 90.97% 5.76 3.42 88.17% 5.71 3.57 84.75% 5.58 3.33 88.82%
REIC 3.95 2.19 97.52% 4.28 2.35 97.46% 4.38 2.68 94.35% 4.15 2.35 96.92%
LEIC 4.37 2.51 98.19% 4.48 2.33 96.90% 4.40 2.74 96.05% 4.41 2.49 97.33%
LEOC 5.66 3.37 89.16% 5.95 3.38 87.61% 6.02 3.59 86.44% 5.83 3.42 88.10%
NT 3.99 2.24 99.10% 3.92 2.06 98.59% 4.67 3.25 97.18% 4.09 2.41 98.56%
MRC 4.25 2.30 99.10% 5.36 3.10 90.14% 9.26 5.88 59.32% 5.56 3.93 88.62%
MLC 4.35 2.40 97.52% 5.21 3.14 91.27% 8.55 5.87 62.15% 5.42 3.84 88.82%
CT 4.21 2.36 98.42% 4.66 2.70 96.34% 7.27 6.45 82.49% 4.92 3.74 94.77%
Mean Error 4.52 1.51 99.32% 4.95 1.46 99.72% 6.28 2.60 90.40% 5.00 1.85 97.85%
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Table 15: Comparison of METHOD SISI–NPSS against state-of-the-art on almost-frontal complete

facial datasets

Mean Localization Error (mm)
Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
Yu et al. [142] (GA model) FRGC v1 (200) 4.74 5.59 - - 2.18 - - -
Nair et al. [92] (w/o PDM) BU-3DFE (2350) 25.01 26.68 31.84 34.39 14.59 - - -

(w PDM) 12.11 11.89 20.46 19.38 8.83 - - -
Lu et al. [84] (3D) FRGC v1 (953) 8.30 8.20 9.50 10.30 8.30 - 6.00 6.20
Lu et al. [83] (3D+2D) FRGC v1 (946) 6.00 5.70 7.10 7.90 5.00 - 3.60 3.60
Colbry [20] (w/o CFDM) FRGC v1 (953) 5.50 6.30 - - 4.10 11.00 6.90 6.70

(w CFDM) + propr. (160) 5.60 6.00 - - 4.00 11.70 5.40 5.40
Perakis et al. [103] (SISI–NP) FRGC v2 (975) 7.02 7.46 8.13 9.21 5.23 6.71 8.30 9.83
Passalis et al. [97] (UR3D-S) FRGC v2 (975) 5.03 5.48 5.79 5.62 4.91 6.31 5.65 6.47
Perakis et al. [100] (SISI–NPSS) FRGC v2 (975) 4.15 4.41 5.58 5.83 4.09 4.92 5.56 5.42

Stdev of Localization Error (mm)
Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
Yu et al. [142] (GA model) FRGC v1 (200) 9.76 16.08 - - 6.83 - - -
Nair et al. [92] (w/o PDM) BU-3DFE (2350) - - - - - - - -

(w PDM) - - - - - - - -
Lu et al. [84] (3D) FRGC v1 (953) 17.20 17.20 17.10 18.10 19.40 - 16.90 17.90
Lu et al. [83] (3D+2D) FRGC v1 (946) 3.30 3.00 5.90 5.10 2.40 - 3.30 2.90
Colbry [20] (w/o CFDM) FRGC v1 (953) 4.90 5.00 - - 5.10 7.60 8.60 9.30

(w CFDM) + propr. (160) 4.80 4.70 - - 5.40 7.30 6.80 6.70
Perakis et al. [103] (SISI–NP) FRGC v2 (975) 3.18 3.07 3.79 4.25 3.28 4.32 4.53 4.47
Passalis et al. [97] (UR3D-S) FRGC v2 (975) 2.47 2.59 3.45 3.47 2.49 4.43 4.34 4.26
Perakis et al. [100] (SISI–NPSS) FRGC v2 (975) 2.35 2.49 3.33 3.42 2.41 3.74 3.93 3.84

Table 16: Comparison of METHOD SISI–NPSS against state-of-the-art on mixed (frontal and

profile) facial datasets
Mean Localization Error (mm)

Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
Lu et al. [84] (3D) MSU (300) 9.00 7.10 13.60 13.30 6.40 - 6.70 5.20
Passalis et al. [97] (UR3D-S) FRGC v2 + Ear (117) 5.97 6.87 6.51 6.71 4.60 6.59 5.52 6.10
Perakis et al. [100] (SISI–NPSS) FRGC v2 + Ear (117) 4.65 4.90 5.32 6.06 4.41 4.80 5.01 4.91

Stdev of Localization Error (mm)
Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
Lu et al. [84] (3D) MSU (300) 13.10 9.20 11.90 10.10 13.40 - 12.90 9.00
Passalis et al. [97] (UR3D-S) FRGC v2 + Ear (117) 3.13 2.92 3.68 3.76 3.01 4.16 3.58 4.17
Perakis et al. [100] (SISI–NPSS) FRGC v2 + Ear (117) 2.45 2.96 3.71 4.13 2.68 3.52 2.97 2.88
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D Feature Fusion Results

Table 17: Landmark localization error (mm) results of Shape Index (SI), Spin Image (SS) and

Edge Response (ER) fusion, in DB00F and DB00F45RL

DB00F − Landmark localization error (mm)
EOC EIC NT MC CT Mean

SI 11.72 7.71 14.66 5.98 10.81 10.18
SS 7.31 4.42 3.84 8.47 7.56 6.32
ER 12.26 13.05 10.54 9.27 11.74 11.37
L−L1 6.40 4.60 4.12 4.82 7.16 5.42
L−L2 6.72 4.74 4.19 4.78 7.24 5.53
L−Lg 6.31 4.52 4.08 4.85 7.23 5.40
Q−L1 6.21 4.15 3.97 4.90 7.31 5.31
Q−L2 6.19 4.14 3.97 4.87 7.28 5.29
Q−Lg 6.20 4.15 3.95 4.92 7.29 5.30
G−L1 6.19 4.14 3.97 4.86 7.28 5.29
G−L2 6.16 4.15 3.98 4.89 7.28 5.29
G−Lg 6.21 4.15 3.97 4.90 7.31 5.31
L−Lmax 11.93 11.57 14.66 8.45 11.63 11.65
Q−Lmax 12.17 11.50 14.69 8.49 12.05 11.78
G−Lmax 12.17 11.50 14.69 8.49 12.05 11.78
L−Lmin 7.21 3.97 3.88 5.23 8.41 5.74
Q−Lmin 7.21 3.97 3.88 5.23 8.41 5.74
G−Lmin 7.21 3.97 3.88 5.23 8.41 5.47

DB00F45RL − Landmark localization error (mm)
EOC EIC NT MC CT Mean

SI 10.99 7.20 12.51 4.68 11.26 9.33
SS 9.16 4.83 3.68 7.03 7.24 6.39
ER 11.31 12.10 11.79 9.16 12.29 11.33
L−L1 6.97 4.94 4.40 4.09 7.56 5.59
L−L2 7.22 5.11 4.88 4.09 7.57 5.77
L−Lg 6.98 4.95 4.20 4.14 7.69 5.59
Q−L1 6.89 4.59 3.82 3.83 7.80 5.39
Q−L2 6.80 4.59 3.82 3.83 7.73 5.35
Q−Lg 6.77 4.59 3.80 3.83 7.79 5.36
G−L1 6.80 4.59 3.82 3.83 7.73 5.35
G−L2 6.85 4.64 3.84 3.83 7.73 5.38
G−Lg 6.89 4.59 3.82 3.83 7.80 5.39
L−Lmax 11.89 10.86 12.51 7.91 11.96 11.03
Q−Lmax 12.01 10.79 12.51 7.91 12.44 11.13
G−Lmax 12.01 10.79 12.51 7.91 12.44 11.13
L−Lmin 8.53 4.64 3.53 4.42 7.88 5.80
Q−Lmin 8.53 4.64 3.53 4.42 7.88 5.80
G−Lmin 8.53 4.64 3.53 4.42 7.88 5.80
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Table 18: Landmark localization error (mm) results of Shape Index (SI) and Spin Image (SS)

fusion, in DB00F and DB00F45RL

DB00F − Landmark localization error (mm)

EOC EIC NT MC CT Mean

SI 11.72 7.71 14.66 5.98 10.81 10.18
SS 7.31 4.42 3.84 8.47 7.56 6.32

L−L1 7.58 4.81 3.85 5.85 7.30 5.88
L−L2 7.70 4.84 3.85 5.81 7.16 5.87
L−Lg 7.54 4.80 3.85 5.80 7.38 5.87

Q−L1 7.54 4.73 3.84 5.84 7.28 5.85
Q−L2 7.52 4.72 3.85 5.84 7.28 5.84
Q−Lg 7.53 4.73 3.85 5.87 7.29 5.85

G−L1 7.52 4.72 3.85 5.84 7.28 5.84
G−L2 7.53 4.72 3.84 5.84 7.28 5.84
G−Lg 7.54 4.73 3.84 5.84 7.28 5.85

L−Lmax 11.72 7.71 14.66 6.06 10.81 10.19
Q−Lmax 11.72 7.72 14.66 6.06 10.81 10.19
G−Lmax 11.72 7.72 14.66 6.06 10.81 11.78

L−Lmin 7.34 4.61 3.84 5.91 7.39 5.82
Q−Lmin 7.34 4.61 3.84 5.91 7.39 5.82
G−Lmin 7.34 4.61 3.84 5.91 7.39 5.82

DB00F45RL − Landmark localization error (mm)

EOC EIC NT MC CT Mean

SI 10.99 7.20 12.51 4.68 11.26 9.33
SS 9.16 4.83 3.68 7.03 7.24 6.39

L−L1 8.82 5.11 3.67 5.04 7.38 6.00
L−L2 8.80 5.06 3.67 5.03 7.53 6.02
L−Lg 8.53 5.05 3.67 4.99 7.35 5.92

Q−L1 8.39 4.98 3.62 4.72 7.53 5.85
Q−L2 8.33 4.97 3.62 4.72 7.53 5.83
Q−Lg 8.39 4.97 3.62 4.72 7.54 5.85

G−L1 8.33 4.97 3.62 4.72 7.53 5.83
G−L2 8.34 4.97 3.67 4.72 7.53 5.85
G−Lg 8.39 4.98 3.62 4.72 7.53 5.85

L−Lmax 11.00 7.23 12.51 4.68 11.26 9.34
Q−Lmax 10.99 7.20 12.51 4.68 11.26 9.33
G−Lmax 10.99 7.20 12.51 4.68 11.26 9.33

L−Lmin 8.53 4.64 3.53 4.42 7.88 5.80
Q−Lmin 9.20 4.88 3.51 5.03 7.27 5.98
G−Lmin 9.20 4.88 3.51 5.03 7.27 5.98
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Table 19: Comparison of performance of Q−L2 Fusion Method against SISI–NPSS

Database DB00F
Method SISI–NPSS Q−L2(SI+SS) Q−L2(SI+SS+ER)
Side Detection Rate 974 / 975 99.90% 974 / 975 99.90% 975 / 975 100.00%
Yaw mean ± stdev +0.93◦ ± 4.03◦ +1.05◦ ± 3.81◦ +1.40◦ ± 3.79◦

Yaw [min . . . max] [−17.98◦ . . . + 16.98◦] [−17.37◦ . . . + 17.68◦] [−17.30◦ . . . + 17.82◦]
Localization Error (mm) mean stdev ≤ 10 mm mean stdev ≤ 10 mm mean stdev ≤ 10 mm
REOC 5.58 3.33 88.82% 4.78 3.06 93.54% 4.48 2.94 95.08%
REIC 4.15 2.35 96.92% 4.00 2.26 97.95% 3.53 2.23 98.26%
LEIC 4.41 2.49 97.33% 4.13 2.46 97.33% 4.26 2.54 96.62%
LEOC 5.83 3.42 88.10% 5.39 3.24 90.05% 5.53 3.16 91.28%
NT 4.09 2.41 98.56% 3.65 2.33 98.77% 3.78 2.39 98.67%
MRC 5.56 3.93 88.62% 4.21 4.01 92.10% 3.91 3.77 92.41%
MLC 5.42 3.84 88.82% 4.48 3.89 91.08% 4.51 3.98 90.97%
CT 4.92 3.74 94.77% 4.13 3.65 95.79% 4.09 3.43 96.21%
Mean Error 5.00 1.85 97.85% 4.34 1.91 98.05% 4.26 1.86 98.46%

Database DB00F45RL
Method SISI–NPSS Q−L2(SI+SS) Q−L2(SI+SS+ER)
Side Detection Rate 117 / 117 100.00% 117 / 117 100.00% 117 / 117 100.00%
Yaw mean ± stdev +1.15◦ ± 41.35◦ +0.93◦ ± 41.25◦ +1.21◦ ± 41.27◦

Yaw [min . . . max] [−65.23◦ . . . + 66.82◦] [−68.19◦ . . . + 68.95◦] [−67.44◦ . . . + 70.22◦]
Localization Error (mm) mean stdev ≤ 10 mm mean stdev ≤ 10 mm mean stdev ≤ 10 mm
REOC 5.32 3.71 88.46% 4.74 3.17 93.59% 4.60 3.40 93.59%
REIC 4.65 2.45 96.15% 4.35 2.01 98.72% 4.10 2.37 98.72%
LEIC 4.90 2.96 96.15% 4.86 3.23 93.59% 5.23 3.53 91.03%
LEOC 6.06 4.13 80.77% 5.39 3.16 87.18% 5.48 3.32 91.03%
NT 4.41 2.68 98.29% 4.14 2.77 97.44% 4.51 2.77 97.44%
MRC 5.01 2.97 92.31% 4.02 1.95 100.00% 3.54 1.91 98.72%
MLC 4.91 2.88 96.15% 3.73 2.64 97.44% 4.21 4.01 94.87%
CT 4.80 3.52 93.16% 4.86 3.44 94.87% 5.29 4.06 90.60%
Mean Error 4.97 1.92 97.44% 4.60 1.77 97.44% 4.79 1.80 97.44%
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Notation
Z Integers
Zm×n m× n integer grid
R Real numbers
Rm m-dimensional vector space
Rm×n m× n vector space
Cm Class of m-times continuously differentiable functions
C∞ Class of smooth functions
| · | Absolute value
∥ · ∥ Norm
∥ · ∥p p-norm

a =
[
a1 · · · am

]T
Vector a ∈ Rm

ai = [a]i = a(i) ith component of a vector

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 Matrix A ∈ Rm×n

aij = [A]ij = A(i, j) (i, j) element of a matrix
Aj = A(:, j) jth column-vector of a matrix
AT , aT Transpose of a matrix or vector
A−1 Inverse of a matrix
det(A) Determinant of a matrix
trace(A) Trace of a matrix
rank(A) Rank of a matrix
diag(A) Diagonal elements of a matrix in vector form
1 Identity matrix
⊙ Element-wise (Hadamard) product
f , f Scalar/vector function
df Differential of f
∇f Gradient of f
∇2f Laplacian of f
Pr[·] Probability
Var[·] Variance
Covar[·, ·] Covariance
D Distance measure
S Similarity measure
g Low-pass Haar filter
h High-pass Haar filter
← , → Mapping
:= Assignment
. . . Up to
# Number (of)
O(·) Algorithm complexity
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Acronyms

1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
AAM Active Appearance Model
AFM Annotated Face Model
AR Ohio State University Face DB
ASM Active Shape Model
AUEB Athens University of Economics and Business, Greece
B/W Black and White image - gray scale color space
BAM Boosted Appearance Model
BMP BitMaP image
BRM Boosted Ranking Model
BU3DFE 3D Facial Expressions DB of University of New York at Binghampton
CCW Counter-Clock-Wise
CIE Commission Internationale de L’ Eclairage
CLM Constrained Local Model
CM Center of Mass or centroid
CMC Cumulative Match Characteristic
CMU-PIE Carnegie Mellon University, Pose, Expression, and Illumination Face DB
CPU Central Processing Unit
CT Chin Tip
CW Clock-Wise
DB Data Base
DDSAC Data-Driven SAmple Consensus
EER Equal Error Rate
EOC Eye Outer Corner
EIC Eye Inner Corner
EM Expectation Maximization
FAR False Acceptance Rate
FEM Finite Element Method
FERET Facial Recognition Technology DB
FLM Facial Landmark Model
FRGC Face Recognition Grand Challenge
FRR False Rejection Rate
FRVT Face Recognition Vendor Test
GPU Graphics Processing Unit
HSV Hue, Saturation, Value color space
ICP Iterative Closest Point
IMRA Isotropic Multi-Resolution Analysis
IT Information Technology
k-NN k-Nearest Neighbor
KLT Karhunen-Loéve Transform
L∗a∗b∗ CIE perceptually equalized color space
LBO Laplace-Beltrami Operator
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LEIC Left Eye Inner Corner
LEOC Left Eye Outer Corner
LFW Labeled Faces in the Wild database
LFPW Labeled Face Parts in the Wild database
MC Mouth Corner
ML Maximum Likelihood
MLC Mouth Left Corner
MRC Mouth Right Corner
MSE Mean Square Error
MSU Michigan State University, USA
NCSR National Centre for Scientific Research of Greece
NDOff University of Notre Dame Off Pose Facial DB
NIST National Institute of Standards and Technology, USA
NT Nose Tip
NTNU Norwegian University of Science and Technology
NTSC National Television Standards Committee
OS Operating System
PC Personal Computer
PCA Principal Component Analysis
pdf probability density function
PDM Point Distribution Model
RAM Random Access Memory
RANSAC RANdom SAmple Consensus
RFM Reference Face Model
RGB Red, Green, Blue color space
rms root-mean-square
REIC Right Eye Inner Corner
REOC Right Eye Outer Corner
ROC Receiver Operating Characteristic
SIFT Scale Invariant Feature Transform
stdev standard deviation
SVM Support Vector Machine
T3DFRD Texas 3D Face Recognition Database
UH University of Houston, Texas, USA
UND University of Notre Dame, USA
UoA National & Kapodistrian University of Athens, Greece
XYZ Tristimulus color space
YCbCr Component digital video color space
YIQ NTSC tristimulus TV color space
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