
Efficient and Adaptive Distributed Skyline

Computation

George Valkanas1 and Apostolos N. Papadopoulos2

1 Dept. of Informatics and Telecommunications, University of Athens, Athens, Greece
gvalk@di.uoa.gr

2 Dept. of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
papadopo@csd.auth.gr

Abstract. Skyline queries have attracted considerable attention over
the last few years, mainly due to their ability to return interesting ob-
jects without the need for user-defined scoring functions. In this work,
we study the problem of distributed skyline computation and propose
an adaptive algorithm towards controlling the degree of parallelism and
the required network traffic. In contrast to state-of-the-art methods, our
algorithm handles efficiently diverse preferences imposed on attributes.
The key idea is to partition the data using a grid scheme and for each
query to build on-the-fly a dependency graph among partitions which
can help in effective pruning. Our algorithm operates in two modes: (i)
full-parallel mode, where processors are activated simultaneously or (ii)
cascading mode, where processors are activated in a cascading manner
using propagation of intermediate results, thus reducing network traffic
and potentially increasing throughput. Performance evaluation results,
based on real-life and synthetic data sets, demonstrate the scalability
with respect to the number of processors and database size.

1 Introduction

Skyline queries, in the context of databases, were initially proposed in [1] and
since then, they have attracted considerable attention from the database com-
munity, primarily due to their applicability in multi-criteria decision making,
without the requirement of user-defined scoring functions.

The skyline of a data set composed of d-dimensional points returns those
points that are not dominated by any other, with respect to some specific pref-
erence (e.g., min, max) on each dimension. We say that point p dominates point
q if p it is at least as good as q in all dimensions and it is strictly better in at least
one. A classic example in the bibliography is that of hotels stored in a database,
for which we know their price (y-axis) and distance to the beach (x-axis), as
shown in Fig. 1(a). We are interested in those for which there is none cheaper
and closer to the beach at the same time, i.e. hotels {a, g, e, n}.

There is also a current tendency towards addressing problems in a distributed
manner, to enable decentralization and faster computation. Peer-to-Peer and
Grid computing are two prominent examples and substantial research has fo-
cused on answering skyline queries in such environments [2–8]. Answering them
efficiently involves query processing and propagation, high parallelism, progres-
siveness and low network traffic. Achieving all these goals is far from trivial.

e

a

g
b

f

i

j
h

n

c

l

kd

m

pr
ic

e

distance

(a) centralized case

a

g
b

f

i

j
h

n

c

l

kd

pr
ic

e

distance

m

e

Server 1
Server 2

(b) distributed case

Fig. 1. Skyline example of hotels.

Following current trends, we focus on answering skyline queries in a decentral-
ized setting. The data is distributed to a set of servers, one of which coordinates
the query execution process. Therefore, our technique can be also applied in hi-
erarchical P2P environments, where a superpeer acts as a coordinator which is
responsible for a set of peers [9]. An example is given in Fig. 1(b), where points
are distributed over two servers. The local skyline set in each server is depicted
by using a different line style, whereas filled points are the global skyline.

Our first contribution is to examine the limitations of existing techniques
that address skyline queries in such environments [3, 8, 10]. Such methods mainly
focus on ways of partitioning the data, instead of developing efficient algorithms.

After justifying our choice of one of the partitioning schemes, we make our
second contribution: We devise a new algorithm, ADISC (Adaptive DIstributed
Skyline Computation), that runs in either full-parallel or cascading mode, with-
out modification, as it uses the same internal structure in both cases. The al-
gorithm incorporates a set of highly tuned optimizations. Using points from the
partitions, we prune areas that will not contribute to the final skyline, following
similar research [11]. We exploit these points further, in a novel way, to: i) im-
prove parallelism while maintaining progressiveness, ii) negate relations between
partitions which, as a side effect, iii) reduces network traffic and iv) minimizes
coordinator workload. Irrelevant points are discarded and eager checking [12]
is employed to improve performance. Parallel mode is more suitable for light-
weighted systems, where response time reduction is desired, while cascading ex-
ecution is directed towards enhancing progressiveness, reducing network traffic
and increasing throughput.

Thirdly, aiming specifically to minimize traffic, we propose the use of marginal
points as representatives, which is more efficient in the general case than similar
techniques [4, 8]. Furthermore, for the special case of 2D data we prove optimality
of the approach in that each queried processor i) performs minimum I/Os, ii)
returns only global skyline points and with a slight modification iii) we minimize
network traffic to the greatest extent.

Fourthly, we devise a data propagation algorithm based on skyline properties
to determine the way processors must inform each other. Such a method is crucial
as it implicitly defines the order of execution, the degree of parallelism and the

bandwidth consumption. It is interesting to note that for this reason we use the
exact same structure as to determine how partitions must be checked with each
other, thus minimizing additional overhead at the coordinator.

A basic property of our algorithm is that it handles different query prefer-
ences out of the box. Techniques such as [10] assume that skyline queries will
always have fixed semantics regarding the criteria on data attributes and apply a
specific partitioning method. However, we argue that this is a serious limitation,
since different users may pose different preferences. We give two simple exam-
ples to illustrate this issue. As a first example, consider a multimedia database
where images are 3-dimensional points, with each coordinate being the aver-
age value of red, green and blue in it. User U1 requires images that are more
red, but less green and blue, whereas user U2 is interested in images that are
less red but more green and blue. Evidently, U1 issues a skyline query Q1 with
preferences <max,min,min>, whereas U2 asks for <min,max,max> in his query
Q2. As a second example, consider a decision making application storing 2-
dimensional data with bookstore profits, where each bookstore is represented as
a (x, y) = (time, profit) point. A query about bookstores with recent low profit
is equally valid to one about bookstores with high profit achieved lately. The first
is, of course, a <min,max> skyline query whereas the second is a <max,max>

skyline query. According to these observations, handling different preferences is
considered important towards supporting a broad range of applications.

The rest of the paper is organized as follows. Section 2 presents an overview
of related work. Section 3 gives the definition of the problem in the distributed
/ parallel setting and explains in detail the partitioning schemes and gives some
background information on the topic. Our proposal is studied in detail in Section
4 and evaluated experimentally in Section 5. Finally, Section 6 concludes the
work and briefly discusses future research in the area.

2 Related Work

Primarily known as the maximal vector problem, proposed by Kung et al [13],
skyline, or Pareto optimal, queries are a well studied problem in the area of
Computational Geometry. Several main-memory techniques have been developed
[14], based on the assumption that the data set is small enough.

It was not until much later that skyline queries were transferred to the con-
text of databases, when Börzsönyi et al introduced the skyline operator [1] and
proposed two algorithms: a Block-Nested-Loop (BNL) and a divide-and-conquer
(D&C) approach. BNL was later improved by presorting the points according to
a monotone scoring function, resulting in Sort-Filter-Skyline (SFS) [15]. Koss-
man et al [16] proposed an algorithm based on nearest-neighbor search. Papadias
et al. proposed Branch-and-Bound Skyline (BBS) [17], which uses a multidimen-
sional index and it is proven to be I/O optimal.

All of these approaches assume a centralized setting. The first work for dis-
tributed skyline queries was by Wu et al [3], where a CAN overlay was used
to create grid partitions, each assigned to a processor. The main disadvantages
of this approach is its low parallelism and that processors exchange the entire
skyline which floods the network. Our technique is also different in that it uses
a coordinator and processors are unaware of their neighbors’ coordinates.

Additional distributed approaches have been developed, with applicability
in the Web [2, 5], Peer-To-Peer [6, 7] and MANETs [4]. Web techniques parti-
tion the data vertically, assigning a single dimension to each server instead of a
portion of the data, as we do. Peer-To-Peer systems lack any notion of a coordi-
nator and keep distributed indexes. MANETs have limited resources and ad-hoc
connectivity, contrary to our wired connection and more resourceful setting.

Parallel approaches include multiprocessor [18] and multi-disk environments
[19]. Our setting differs in that we assume a share-nothing architecture in con-
trast with the shared-memory and shared-disk architecture respectively.

The works mostly related to ours is [8] and [10]. Vlachou et al [10] proposed
a partitioning scheme based on hyper-spherical coordinates. Local skylines are
computed using BBS, while the global result with SFS. Despite its increased
parallelism, the approach has several limitations. First, as it has been noted
previously, it assumes that the preference criteria (min or max) are known in
advance. Secondly, due to SFS, the technique lacks progressiveness and all pro-
cessors must report their skyline before any output is returned. This also burdens
the coordinator with excessive points that must be kept in main or secondary
memory. Finally, all processors must be activated for a skyline query, which may
have a negative impact on throughput.

In [8], parallelism of distributed partitions is examined, where processors
exchange representative points. Despite the similarities, a major difference is
that partitions overlap, unlike our setting. Any parallelism achieved stems only
from the initial bounds, whereas we increase parallelism in an innovative way.
Partitions that cannot be computed in parallel are assigned a coordinator, hence
multiple coordinators exist. Each coordinator creates a linearized execution plan
for its partitions, though the details were not given. Finally, our representative
points performs better in the general case.

3 Background

Given a data set D of d-dimensional points, p = {p1, p2, .., pd}, the skyline con-
tains those points that are not dominated by any other. For simplicity, we assume
min criteria on all dimensions and w.l.o.g. coordinates are normalized in [0, 1]d.
For the remainder of the paper we use the notation shown in Table 1.

Definition 1 Let D be a set of d-dimensional points. The skyline of D, denoted
SKY (D), contains those points that are not dominated by any other. We say
that p dominates p′, p ≺ p′, if pi ≤ p′i ∀i = 1, 2, .., d and ∃j ∈ {1, 2, .., d} such
that pj < p′j. The points in SKY (D) are also referred to as skyline points.

In the distributed/parallel environment, there are N available processors
P = {P1, P2, .., PN} and, potentially, a distinct node, termed the coordinator,
which is responsible for the query execution strategy. The data set D is parti-
tioned offline in k subsets Di, D =

⋃
1≤i≤k Di and

⋂
1≤i≤k Di = ⊘. Each Di is

randomly3 assigned to a processor Pj , which is responsible for computing its sky-
line. The Pis are deployed in a share-nothing architecture and may communicate

3 We note that other assignment techniques (even dynamic ones) could also be applied,
since the proposed techniques are orthogonal to the assignment strategy employed.

Table 1. Frequently used symbols.

Symbol Interpretation

D data set
d data set dimensionality
n data set cardinality (number of points)
p d-dimensional point
pi i-th coordinate of p

Di i-th partition of D

k number of partitions
Pi the i-th processor
N number of processors

SKY (S) skyline of point set S

with each other. We assume one partition per processor, although multiple par-
titions may be assigned to each processor. The coordinator propagates the query
to the Pis, which report back their local skyline, and computes the global sky-
line without indexing the received data, though such an approach could improve
performance [20]. The property SKY (D) = SKY (

⋃
1≤i≤k SKY (Di)) [1, 18] en-

sures that the coordinator correctly reports the global skyline by performing a
skyline algorithm on the local results.

There are several factors affecting the overall performance: (i) local and global
skyline computation, (ii) degree of parallelism, (iii) network traffic, (iv) through-
put. Although communicating the entire skyline minimizes I/O, it also floods the
network, results in more collisions during data transfer and hinders efficiency.
Given that the coordinator also accounts for other tasks, e.g. load balancing, we
are interested in minimizing its workload and resource consumption. It is evident
that many of these issues are contradictory. For example, high parallelism offers
low response times, but in a heavy-loaded system with many concurrent queries,
it will impact system throughput, due to increased network traffic. Therefore,
answering skyline queries efficiently involves issues such as:

– response time: This is the time needed to return the full skyline to the user
since the query was submitted.

– parallelism: This is the number of parallel executing processors and greatly
impacts response time.

– network traffic: Traffic is measured by the number of points that travel across
the network and wish to minimize it, as much as possible.

– progressiveness: results should be returned as they are found and not after
all partitions have been checked. However, we also view progressiveness in
terms of iterativeness. Skyline queries may return a large number of points
on occasions, therefore it would be of interest for the algorithm to produce
results upon request, each time returning new skyline points.

– diversity: Diverse criteria on the data attributes must be supported and no
assumptions should be made on the type of queries that will be invoked.

b) Angle schemea) Grid scheme

Fig. 2. Partitioning schemes.

3.1 Grid-Based Partitioning

Grid partitioning was used in [3] by applying a CAN overlay on the initial data,
with recursive splits on the coordinates in a round robin fashion. Even workload
is ensured by creating partitions with fairly the same amount of points, each one
assigned to a processor. An example of grid partitioning is shown in Fig. 2(a).

The scheme has several advantages, with the most basic being that parti-
tions preserve skyline properties. Therefore, we can safely exclude those that
will certainly not contribute to the result, thus triggering fewer processors. A
convenient execution order can be established from partition coordinates which
also ensures progressiveness, while parallelism can be achieved for partitions that
are certain not to dominate points from each other. Finally, the scheme makes
no assumptions regarding the query criteria. This is a very interesting property,
since we simply need to develop efficient algorithms to support skyline queries.

Despite its advantages, the scheme has some inherent shortcomings. The most
prominent is its low parallelism, which is not tackled by existing techniques.
Secondly, activating all processors simultaneously returns a lot of unnecessary
points from partitions that are certain not to contribute to the final skyline.

3.2 Angle-Based Partitioning

Angle partitioning was proposed in [10] to simultaneously execute skyline queries
on all processors. To do so, it relies on the hyper-spherical coordinates of the
data and creates partitions of correlated-like distribution. An example of angle
partitioning is given in Fig. 2(b).

Despite its advantage of parallelism, the scheme has several limitations.
Firstly, because of its nature, the coordinator cannot exploit skyline proper-
ties on partitions. This leaves SFS as the only option for the global phase, when
the received data is not indexed. This may be viable for independent distribu-
tions, but it is inefficient for high dimensionality or anticorrelated data, since
its complexity is O(m2) on the number of received data and easily becomes a
bottleneck.

Secondly, it assumes that the criteria of the queries are known in advance.
As shown in Fig. 2(b), the beginning of the axis for the polar coordinates is

the same as the beginning of the criteria on the dimensions. Therefore, if min
preferences are assumed, the scheme cannot answer efficiently a query with a
max preference, because the underlying partitions were not designed for such a
case. This results in a static partitioning and contradicts our goal of diversity.

Finally, the scheme is designed to answer skyline queries only. It is unclear
how to efficiently answer other query types such as top-k, range, k-nearest neigh-
bor queries, or even skyline variants [21, 22], since the partitions do not maintain
Cartesian properties and pruning properties in general, which are required by
the aforementioned queries.

4 Proposed Approach

Based on the previous discussion, we choose the grid-based partitioning scheme
and optimize it, so that its disadvantages are smoothed enough to the point that
its advantages are elevated.

4.1 Skyline Dependencies

Definition 2 Let A = [llA, urA] and B = [llB, urB] be two hyper-rectangles. We
say that B depends on A, A ≺ B, if there may be a point from A that dominates
any point from B.

Lemma 1. If A and B are two hyper-rectangles, then A ≺ B iff llA ≤ urB,
where for two d-dimensional points p and p′, we say p ≤ p′ ⇔ pi ≤ p′i ∀i =
1, 2, .., d.

Proof. First we will prove sufficiency. If llA 6≤ urB ⇒ ∃j ∈ {1, 2, .., d} such that
llAj > urB

j ⇒ ∀a ∈ A, ∀b ∈ B, aj > bj. Therefore, there is at least one dimension
for which B is better, hence no points in B can be dominated by any point in
A ⇒ A 6≺ B. For necessity, the proof is that llA has the highest dominating
region among points from A that dominate urB. Any points in B that fall in
that area are dominated by llA, assuming it is an actual point. For the same
reason, points in A above llA, below urB , may also dominate points from B.

In Fig. 3(a), E ≺ A whereas D 6≺ B. Note that relation ≺ does not state that
such a point exists; only that there might be one. For instance, although A ≺ B,
none of the points in A dominate any of the points in B. An immediate result of
Lemma 1 is that for any A and B, A 6≺ B and B 6≺ A, their points are definitely
skyline with respect to each other. This is of great advantage as such partitions
can be computed in parallel. We exploit this observation further so that such
partitions are not checked against each other during the global merging phase.

Dependencies can be organized in a graph, where partitions are nodes and
there is a directed edge from B to A iff A ≺ B. This creates a directed acyclic
graph of dependencies, or a dependency graph, as the one in Fig. 3(b) for the
partitioning of Fig. 3(a). Such a graph can also be used during data propagation,
because if an edge exists from B to A, then A may contain data that B can use for
pruning, thus A should send its data to B. This also illustrates that dependencies
define the workflow of query execution.

���
���
���
���

�������
�
�
�

B

A

G

E

D
C

H

J
I

F

a) Dependencies Example b) Dependency graph

A

B
C

DE

F

G

H

I

J

Fig. 3. Dependencies and dominating region.

4.2 Cutting-off Partitions

As in [17], where an R-tree node is not expanded if it is dominated, we can also
exclude partitions from being queried if they are dominated by known points.
This technique is also used in [11] and it is based on the following lemma.

Lemma 2. Let p be a point and A = [lA, uA] an MBR in the d-dimensional
space. If p ≺ lA (also written as p ≺ A) then none of the points a ∈ A will be in
the final skyline.

Proof. Since ∀a ∈ A, ai ≥ lAi they are all dominated by p and therefore, there is
no need to query this partition.

4.3 Increasing Parallelism

Up to this point any achieved parallelism is derived from the partitioning scheme.
For example, partitions B and D in Fig. 3(a) will be computed in parallel,
because no edges between them exist in the graph. As already mentioned, this
does not result in great parallelism.

Definition 3 Let A = [lA, uA] and B = [lB, uB] be two non intersecting MBRs
and A ≺ B. We define the dominated region of B from A, dr ≡ drB(A), as the
part of B that is dominated by lA.

The dominated region dr is the part of B that is potentially dominated by
a point in A and is, in fact, the only reason why the relation A ≺ B exists
between the two. Points in B outside of dr are skyline with regards to points
in A, because ∃j ∈ {1, 2, .., d} such that bj < lAj , b ∈ B. Therefore, dr is the
sole reason why parallelism is not achieved between them. As an example in Fig.
3(a), the gray region of A, D, H is the dominating area of G on those partitions.

Lemma 3. Let A = [lA, uA] and B = [lB, uB] be two non intersecting MBRs
and A ≺ B. Then A and B can be computed in parallel if ∃ point p, p 6∈ A such
that p ≺ dr.

AE G

B

D

H E D

A

G B

H

with defaut parallelism
a) Contributing grids

with enhanced parallelism
b) Contributing grids

Fig. 4. Example of enhanced parallelism.

Proof. By definition, A ≺ B ⇒ lA ≤ uB ⇒ dr exists. If ∃p, p 6∈ A, p ≺ dr

then all of the points in dr are dominated according to Lemma 2. Therefore,
the points from B that are the reason for A ≺ B are no longer present, which
negates the dependency of A, B and allows them to be computed in parallel.

Several observations derive from Lemma 3. First, for the two MBRs A and B,
it cannot be that lA ≤ lB because then dr ≡ B, in which case B is dominated and
will not contribute according to Lemma 2. Second, p 6∈ A in any case, as that is
the reason for the dependency in the first place. Third, assume p ∈ C ⇒ lC ≤ p.
Since p dominates dr ⇒ p ≤ ldr ≤ uB ⇒ lC ≤ uB ⇒ C ≺ B. No particular
relation exists between A and C. This gives us an indication of where to look for
such points. Fourth, data will not be exchanged, as the initial dependency has
been removed, which reduces traffic. Finally, because p negates the dependency,
parallelism is increased and response time is minimized as B no longer has to
wait data from A. Moreover, points from A and B will not be checked against
each other during the global merging phase, thus reducing coordinator workload.

Figure 4(a) shows the dependency graph of the example in Fig. 3(a), after
removing non contributing partitions. The new graph is much simpler, mostly
because the removed partitions had a lot of dependencies. From left to right, the
dashed lines indicate when a partition is computed with respect to the others.
B and D are by construction independent of each other, hence their parallelism.
Figure 4(b) shows the dependency graph after applying our technique. The graph
is obviously simpler, even compared to the one in Fig. 4(a). The lower left point
of E negates the dependencies of A, D and H on G and also removes the depen-
dency of B on A. This results in parallelism between G and A, which is also more
intuitive by looking at the partitioned space. Finally, there is one less dashed
line because computations will end earlier than before.

4.4 Marginal Points

When processors exchange points, sending the entire skyline may become too
cumbersome, not because of the skyline size alone, but because each processor
may send it to many others. To alleviate this problem, we use representative

a) Marginal VS entropy b) 3d marginal points c) projected view

m2

m1
0 e

2

1

3

x

y

Fig. 5. Marginal versus entropy points.

points. However, instead of selecting the k points with the highest domination
probability [8], also known as entropy points [15], we select targeted points with
respect to the partitions they will be sent to. We term these points marginal.

Definition 4 The marginal points of a partition are the ones closer to the d−1
coordinates of the partition’s lower left corner based on the L1 distance.

Assume the partitioning in Fig. 5(a). The query begins at partition 0 and it
is propagated to 1 and 2 (3 is pruned). Although e has the highest probability,
it dominates very few points from 1 and 2, whereas m1 and m2 dominate many
more (each one separately). Since the receiving partition has at least one greater
coordinate, all of its points have greater values in that coordinate. The only way
for them to be in the skyline is to have a smaller value on another coordinate.
For example, since partition 1 has greater x values, points will be in the skyline
only if their y coordinate is better than the current best. Therefore, m1 and m2

are the points closest to x and y axis respectively.
We denote by mi the marginal point for which the i-th coordinate is ignored.

There are d such points in a d-dimensional space. Explaining the technique for
the 3D case gives some additional insight. Assume the marginal points m1, m2,
m3 of Fig. 5(b), with gray lines, and the entropy point e, with black lines defining
their dominating area. Disregarding the z coordinate to find m3 (bottom left in
the back), is like projecting on the xy plane, as in Fig. 5(c). On the projected
space m3 has a higher domination area than e, hence the technique works as if
we are selecting the d points with the highest dominating region on the d − 1
projected subspace. From another perspective, the corner that m3 is closer to
can be viewed as the beginning of the axis for partitions of greater z. In that
sense, we choose points closer to the origin of the partitions that will use them
and not of the one that sends them. Finally, it is interesting to note that [13]
used projection on 2D in order to estimate 3D skyline size.

4.5 Data Propagation

Our algorithm is also able to operate in cascading mode, where processors prop-
agate intermediate results, after computing the local skyline. If a partition sends

data to all others that depend on it, the network may be flooded and, most
importantly, ignores the fact that representatives are refined thus rendering pre-
vious ones unnecessary. Taking also into account the fact that skylines propagate
mainly along the axis, because inner partitions will be cut-off, we devise a data
dissemination algorithm to minimize traffic.

The coordinator determines how data will propagate using the dependency
graph and skyline properties and informs processors appropriately. If an edge
B → A exists, the coordinator informs A it must send data to B and also
informs B it must wait data from A. Each processor begins computations only
after receiving data from all its predecessors.

Multiple dependencies exist between partitions and reducing them minimizes
traffic. However, reducing them in a greedy way could have the opposite effect,
because less punning will occur and many non skyline points will be returned.
Therefore, a natural question is what dependencies can be ignored. A partition
should be processed after all of its priors have, thus only edges between nodes
that also have an indirect path may be removed, e.g., if A ≺ B, A ≺ C and
C ≺ B, then A ≺ B can be neglected. This is as if trying to find the longest path
between any two partitions, visiting nodes once all of its dependencies have been
visited. Note that this action does not negate dependencies as when increasing
parallelism; it only does not take them into account when finding how points
must be exchanged. However, not all such relations can be ignored. Finally,
the coordinator only knows partition MBRs and not the actual coordinates of
propagated points, so the heuristics should depend on that information alone.

We ignore dependencies A ≺ B with an intermediate node C, if A, B and C

share at least one propagation axis i.e. uA
i < lCi < uC

i < lBi as with E, A and D
in Fig. 3(a). The reason is that by projecting on the remaining d− 1 dimensions
C would send to B the mi point from A or a refined point from itself.

Another heuristic is to check if lA < lC , regardless of B’s coordinates. This
is based on the same assumption as above, but the partitions need not share a
propagation axis. This applies in the case of 3 or more dimensions. If neither
heuristic applies, the dependency remains and A must send to B.

The 2-dimensional case One important issue about marginal points is their
optimal behavior in the case of 2D data. Given a skyline query and the available
information, we prove that each queried processor: (i) performs the minimum
number of I/O operations and (ii) returns only global skyline points. We also
prove that by combining the two points, no fewer information can be exchanged
without invalidating the above behavior. To prove these, a basic lemma is needed.

Lemma 4. Let M be a 2D MBR. Its marginal points m1 and m2, m1 6= m2,
dominate the same regions outside M as its entire skyline.

Proof. Let p ∈ SKY (M), p 6= m1. Then, the dominating area of p outside M

for greater x, begins at (uM
x , py). Then m1 ≺ (uM

x , py), otherwise m1 would not
be marginal. We will prove by contradiction. Since m1 ∈ M ⇒ xm1

≤ uM
x , so if

m1 6≺ (uM
x , py) ⇒ ym1

> py. That sets p closer to the x axis, therefore p is the
marginal point and not m1, hence the contradiction. The proof is analogous for
greater y’s and m2. By composition, p dominates a subset of the area dominated

by m1, m2 and therefore, m1, m2 jointly dominate the same regions as the entire
skyline of M .

Theorem 1. a) Let D be a 2-dimensional data set, partitioned in disjoint MBRs.
If processors communicate only the marginal points of a partition, each activated
processor: (1) will perform the minimum number of I/Os, (2) will report to the
coordinator only global skyline points.

b) Let each partition send a single point to subsequent ones, with coordinates
the minimum of its marginal and any other points received. No fewer points can
be sent so that (a) still holds.

Proof. a) Having the entire skyline available, BBS discards all non-contributing
areas, which is the reason for its I/O optimality. For the same reason, only global
skyline points are retrieved. Since marginal points dominate the same external
area as the entire partition skyline (Lemma 4), the number of I/Os of subsequent
partitions will be identical in the two cases, hence minimal (1) and only global
skyline points will be retrieved and reported to the coordinator (2).

b) Being in the 2D case, points from partitions of at least one greater dimen-
sion have only one coordinate to best to be in the skyline, i.e. points of greater
x (y) will be in the skyline iff their y (x) is less than the minimum of received
points. Thus, the x (y) value of received points is irrelevant and can be safely
substituted by any x ≤ uA

x (y ≤ uA
y). So we can send (xm2

, ym1
) and simultane-

ously define the maximum allowed coordinate for both cases. Combined with the
property SKYA∪B = SKY (SKYA ∪SKYB), we derive that the point to send is
in fact (min(x), min(y)) of local marginal and received points. This incorporates
the skyline of previous partitions, which is the global so far (according to a).
This property and Lemma 4 prove the validity of the technique. Therefore, each
partition sends a single point to each subsequent. Due to our first heuristic, each
partition receives data from at most two partitions, one for each propagation
axis. Since each partition sends a single representative, (b) holds as fewer points
means that no points will be sent. As a result no pruning is performed, with
unnecessary I/Os and non global skyline points returned.

In fact we can prove, in a similar manner, that for the 2D case all non-
contributing partitions are pruned, by constructing the marginal points from
the partition MBR (which we do), even though we do not explicitly know them.
This means that the global minimum of I/Os and traffic is achieved in that
setting. Processors, of course, return only global skyline points. We omit the
proof due to space restrictions.

4.6 Additional Optimizations

Additional optimizations are studied so that the overall efficiency is improved,
both at the coordinator and processor side. A first one is point exclusion. Assume
a point p and a partition A = [lA, uA]. If p 6≤ uA ⇒ ∃i such that. pi > uA

i . Such
a point will not prune any areas of A, hence a processor that receives it can
safely discard it. Likewise, if p 6≥ lA ⇒ ∃j such that pj < lAj , which means that
the coordinator can save time by not checking p against the points from A.

Another optimization is eager checking, proposed for continuous skyline [12].
Points are checked for domination upon arrival, thus storing only skyline points.
The alternative of storing everything until all partitions have reported accumu-
lates data and more time is spent afterwards to discard already stored points.

4.7 The ADISC Algorithm

The previous ideas are integrated into the ADISC algorithm. The outline of
ADISC is given in Fig. 6. In the sequel, we describe briefly its most important
aspects. At first, the coordinator C partitions the data offline and assigns them
to processors Pi, each of which indexes its local copy with an R-tree and reports
back arbitrary representatives. For each grid cell, C stores the MBR and points
received. Given a query, C determines all affected partitions (Line 1), by execut-
ing a BBS-like pass over the MBRs, since no assumptions are made regarding

Algorithm ADISC (qry, P , rp, mode)
qry: the skyline query, P : partitions
rp: the representative points from each grid cell
mode: the mode in which to operate

1. F ←
⋃

p ∈ P , s.t. ∀r ∈ rp
⋃

(other points from F), r 6≺ p;
2. dg ← create dependency graph(F , qry.criteria);
3. ∀f, g ∈ F , f ≺ g

4. try negating it with r ∈ rp
⋃

(other points from F)
5. if (mode = “cascading”) then

6. find propagation order(dg, qry.criteria);
7. ∀f ∈ F

8. inform(processor(f), qry, wait(f), send(f))
9. RPTD← {} ; // no partitions have reported
10. while (not all f ∈ F reported)
11. wait(); //until a partition reports
12. nprt← get next reporting partition();
13. ∀prt ∈ RPTD

14. checkGrids(dg, nprt, prt); //check nprt with previous
15. if (mode = “full-parallel”) then checkGrids(dg, prt, nprt);
16. RPTD← RPTD

⋃
nprt;

17. if (∃prtn ∈ RPTD s.t. dg.depends(prtn) = 0) then

18. report points from prtn;
19.
20. function checkGrids(dg,A,B)
21. if dg.depends(A, B) then

22. dg.removeDepends(A, B);
23. ∀a ∈ A, if (a isAbove B.lowerleft) then

24. isDomd← check if ∃b ∈ B, s.t. b ≺ a;
25. if (isDomd = true) then discard a;

Fig. 6. Outline of ADISC algorithm.

how such information is organized. Partitions dominated by representatives of
Pi are excluded. We also find additional points for pruning, by substituting the
i-th coordinate of the upper right MBR corner with that of the lower left corner.

For the non-dominated partitions, we create the dependency graph, dg, based
on the criteria imposed on the attributes (Line 2). At this phase, representative
points are used to negate dependencies (Lines 3-4). If in cascading mode, the
propagation algorithm is executed (Line 5). Each Pi is then informed of the
query (Lines 7-8), including its priors and subsequent Pjs. In parallel mode that
information is empty. Then, C waits for results from queried Pis.

Each Pi stores the information of prior partitions and subsequent Pjs. When-
ever data is received from Pj , Pi removes Pj from its priors, until the list becomes
empty and begins computations. The received data are used for pruning during
BBS. The local skyline is reported to back to C. If subsequent Pjs must be
informed, representatives are selected and propagated as instructed.

When C receives data, it checks if they are dominated by previously received
points. Using dg, it finds reported partitions that the new one depends on (Line
14) and checks the points between them. If in parallel mode, the symmetric
action must also be performed (line 15), since partitions report in unspecified
order. Once checked, the dependency is removed, as they do not need to be
checked again. A partition without dependencies (Line 17) has been checked
against all partitions that could dominate any of its points, thus it contains only
global skyline points. Consequently, its data are reported to the user.

5 Performance Evaluation Study

The experiments have been conducted on both real and synthetic data, on an
Intel Core Duo @1.86GHz, Ubuntu Linux machine with 1GB RAM. R-tree page
size has been set to 4KBytes and each processor has 20% of its blocks in buffers.
We assume 8ms per page fault and a 100Mbps, collision-free, wired network. Tim-
ings show execution time in seconds, averaged over multiple data sets, including
network time, whereas traffic graphs refer to the number of points communi-
cated among processors. Synthetic data are generated with independent (IND)
and anticorrelated (ANT) distributions. Cardinality varies from 1M to 10M and
dimensionality from 2 up to 7, with default values of n=5M and d=4. The num-
ber of processors varies between 25 and 200, with a default value of 100. For the
real data set, we used forest cover (FC) (http://kdd.ics.uci.edu).

We compare ANGLE (angle partitioning with min criteria and SFS), ADISC-
PRL (parallel ADISC), ADISC-L1 (cascading ADISC, entropy representatives)
and ADISC-MRG (marginal representatives). For fairness between ADISC-L1
and ADISC-MRG, processors may exchange at most the same number of points,
equal to the data set dimensionality. The darker portion of ADISC-L1/MRG
traffic bars show the points exchanged between processors alone.

The effect of cardinality. The impact of cardinality on response time is given
in Fig. 7(a), (b). ANGLE performs slightly better for IND and min criteria (Fig.
7(b)), since it is especially designed for this case, whereas ADISC-PRL requires
more time for some processors to compute their local skyline. High response

 4

 8

 16

 32

 64

 1 2 5 10

T
im

e
(s

ec
)

Cardinality (millions)

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(a) ANT, min preferences

 0.2

 0.6

 1.8

 5.4

 16.2

 1 2 5 10

T
im

e
(s

ec
)

Cardinality (in millions)

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(b) IND, min preferences

 0.1

 0.4

 1.6

 6.4

 25.6

 4 5 6 7

T
im

e
(s

ec
)

Dimensions

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(c) FC, min preferences

 0.5

 1

 2

 4

 8

 16

 32

 4 5 6 7

T
im

e
(s

ec
)

Dimensions

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(d) FC, mixed preferences

 0.5

 3.5

 24.5

 171.5

 2 3 4 7

T
im

e
(s

ec
)

Dimensions

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(e) IND, mixed preferences

 10

 20

 30

 40

 50

 60

 25 50 100 200

T
im

e
(s

ec
)

Processors

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(f) ANT, min preferences

 0.1

 0.2

 0.4

 0.8

 1.6

 3.2

m
m

m
m

m
M

m
M

m
M

m
m

m
M

M
M

m
M

M
M

m
M

M
M

T
im

e
(s

ec
)

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(g) ANT, diverse query criteria

 0.2

 0.4

 0.8

 1.6

 3.2

 6.4

m
m

m
m

m
M

m
M

m
M

m
m

m
M

M
M

m
M

M
M

m
M

M
M

T
im

e
(s

ec
)

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(h) IND, diverse query criteria

Fig. 7. Response time results.

 10000

 100000

1 2 5 10

T
ra

ffi
c

(#
po

in
ts

)

Cardinality (millions)

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(a) ANT mixed preferences

 100

 1000

 10000

 100000

4 5 6 7

T
ra

ffi
c

(#
po

in
ts

)

Dimensions

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(b) FC, min preferences

 1000

 10000

 100000

m
m

m

m
m

M

m
M

m

M
m

m

m
M

M

M
m

M

M
M

m

M
M

M

T
ra

ffi
c

(#
po

in
ts

)

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(c) IND, mixed preferences

 1000

 10000

 100000

4 5 6 7

T
ra

ffi
c

(#
po

in
ts

)

ANGLE
ADISC-PRL

ADISC-L1
ADISC-MRG

(d) FC, mixed preferences

Fig. 8. Network traffic results.

times of ADISC-L1/MRG are due to the almost sequential execution of some
partitions, a result of the data distribution. ADISC-MRG constantly performs
slightly better than ADISC-L1, and exchanges fewer points (Fig. 8), due to better
pruning of marginal points, which reduces I/O and processing time.

However, ANGLE does not behave well in all other cases, to the point that
even ADISC-L1 and ADISC-MRG outperform it in the all-min, ANT case (Fig.
7(a)). SFS is the reason for this, as more than 90% of the time is spent on merging
local skylines. On the other hand, ADISC’s dependency graph and optimizations
save valuable time. ANGLE also performs worse than ADISC for mixed criteria.

The effect of dimensionality. The impact of dimensionality on response time
is shown in Fig. 7(c), (d) and (e). ANGLE performs again slightly better than
ADISC-PRL, for few dimensions, all-min (Fig. 7(g), (h)). However, for more
dimensions (Fig. 7(c), (d)), or even average dimensionality and ANT (Fig. 7(a)),
its performance deteriorates. This is due to the fact that skyline computation
becomes CPU-bound for high dimensionality and the problems imposed by SFS.

Regarding the 2D IND case with diverse criteria, ADISC-PRL is better than
ANGLE up to 2 orders of magnitude (Fi.g 7(e)). Processors in ANGLE execute
an anticorrelated like skyline, and visit almost all RTree nodes. This also results

in exceedingly high traffic (Fig. 8(c)). For more dimensions, the difference is
reduced (Fig. 7(c)), as the effect of a single diverse criterion is normalized by
the large number of other default criteria.

ADISC-PRL also performs better than ANGLE in FC, for almost all cases,
with diverse or all-min criteria. The problems of SFS are easily seen for 6 dimen-
sions and more, for the all-min case, for a data set of low cardinality (∼600K)
(Fig. 7(c)). With a single max criterion, the difference is even greater, for as few
as 4 dimensions (Fig. 7(d)). Regarding traffic, ANGLE sends many more points
in most, if not all of these occasions. For the all-min case, the number of points
is comparable in the two occasions. In fact ADISC-MRG sends less points than
ANGLE, though our primary concern was to send less than ADISC-PRL.

The effect of the number of processors. For IND and FC, response time is
reduced as the number of processors increases. However, an interesting result is
observed from Fig. 7(f): ANGLE response time slightly decreases at first but then
increases to a point greater than when having fewer processors. On the contrary,
all ADISC variants decrease their response time. More processors mean more
partitions which do not dominate points from each other. Therefore, time is
saved both at the processors and the coordinator, which significantly decreases
total response. This could also lead us to the assumption that skyline of ANT
data may in fact be easier to compute than for IND data.

The effect of diverse criteria. The most interesting results are those of
Fig. 7(g),(h), where all 8 combinations of criteria on a 3D data set are exam-
ined. Apart from mmm, ANGLE performs slightly better than ADISC-PRL for
MMM , as partitions retain the correlated-like distribution for the most part.

The sudden drop of ADISC-L1/MRG in Fig. 7(g), mmM case, is due to the
generators. By construction, the last dimension is the most likely to have a high
value, w.r.t. the other two, to achieve anticorrelation. Inverting the criterion
to max is like ignoring the dimension, since almost all points will have a high
value. This results in less anticorrelation, more partitions are pruned, returning
less points to C and the total response is lower. However, ANGLE will execute
on all processors, even though many will not contribute, hence many points are
returned (Fig. 8(a), (c)). Another interesting observation, is that ADISC-PRL
shows a particularly steady behavior, almost invariant to the criteria imposed
on the attributes, with minor fluctuations due to the different skyline sizes.

A similar observation can be made for network traffic. ANGLE varies greatly,
depending not only on the number, but even on the position of a diverse criterion
(Fig 8(c)). It should also be noted that such a high number of points does not
only flood the network, but also degrades coordinator performance, since these
need to be locally stored, until all points are received. On the other hand, ADISC
stores only non-dominated points due to early checking.

6 Conclusions

In this work, we presented ADISC, an algorithm for efficient and adaptive dis-
tributed skyline computation. ADISC may operate in either full-parallel or cas-
cading mode, balancing between the degree of parallelism and network traffic

according to system load. The algorithm runs on top of a grid partitioning
scheme and integrates several optimizations for efficient computation. It effi-
ciently handles different criteria on the attributes, since the dependency graph
is constructed dynamically. We also proved optimality of our approach for the
case of 2D data. We finally demonstrated the efficiency of our scheme with exper-
imental results on real-life and synthetic data sets. Future research may include:
(i) the derivation of a cost model, allowing ADISC to autonomously swap be-
tween modes, (ii) the study of an hybrid mode, where some partitions execute in
parallel and others sequentially, for the same query, according to estimated cost
and (iii) the design of randomized algorithms trading accuracy for speed.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of thye
17th ICDE. (2001) 421–430

2. Balke, W.T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web
information systems. In: EDBT. (2004) 256–273

3. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.: Parallelizing
skyline queries for scalable distribution. In: EDBT. (2006) 112–130

4. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile
lightweight devices in manets. In: Proc. of the 22nd ICDE. (2006)

5. Lo, E., Yip, K.Y., Lin, K.I., Cheung, D.W.: Progressive skylining over web-
accessible databases. Data Knowl. Eng. 57(2) (2006) 122–147

6. Li, H., Tan, Q., Lee, W.C.: Efficient progressive processing of skyline queries in
peer-to-peer systems. In: Proc. of the 1st Int. Conf. on Scalable Inf. Sys. (2006)

7. Wang, S., Ooi, B.C., Tung, A.K.H., Xu, L.: Efficient skyline query processing on
peer-to-peer networks. In: Proc. of the 23rd ICDE. (2007) 1126–1135

8. Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing
of constrained skyline queries by filtering. In: Proc. of the 24th ICDE. (2008)

9. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Skypeer: Efficient subspace skyline com-
putation over distributed data. In: Proc. of the 23rd ICDE. (2007) 416–425

10. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for effi-
cient parallel skyline computation. In: Proc. of the 2008 Int. Conf. ACM SIGMOD.
(2008) 227–238

11. Wang, S., Vu, Q.H., Ooi, B.C., Tung, A.K., Xu, L.: Skyframe: a framework for
skyline query processing in peer-to-peer systems. The VLDB Journal 18(1) (2009)
345–362

12. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
Trans. on Knowl. and Data Eng. 18(3) (2006) 377–391

13. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
Journal of the ACM 22 (1975) 469–476

14. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag (1985)

15. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting (2002)
16. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm

for skyline queries. In: Proc. of the 28th Int. Conf. on VLDB. (2002) 275–286
17. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm

for skyline queries. In: Proc. of the 2003 Int. Conf. ACM SIGMOD. (2003) 467–478
18. Cosgaya-Lozano, A., Rau-Chaplin, A., Zeh, N.: Parallel computation of skyline

queries. In: Proc. of the 21st Int. Symp. on HPCS and Applications. (2007) 12
19. Gao, Y., Chen, G., Chen, L., Chen, C.: Parallelizing progressive computation for

skyline queries in multi-disk environment, DEXA (2006) 697–706
20. Morse, M., Patel, J.M., Grosky, W.I.: Efficient continuous skyline computation.

Inf. Sci. 177(17) (2007) 3411–3437
21. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: Proc. of

the 33rd Int. Conf. on VLDB. (2007) 291–302
22. Yiu, M.L., Mamoulis, N.: Multi-dimensional top-k dominating queries. The VLDB

Journal 18(3) (2009) 695–718

