
Extending Query Languages for In-Network Query
Processing

George Valkanas, Dimitrios Gunopulos
Dept. Informatics & Telecommunications

University of Athens, Greece
{gvalk, dg}@di.uoa.gr

Ixent Galpin, Alasdair J. G. Gray,
Alvaro A. A. Fernandes
School of Computer Science

University of Manchester, United Kingdom
{ixent,a.gray,alvaro}@cs.man.ac.uk

ABSTRACT
Sensor networks have become ubiquitous and their prolif-
eration in day-to-day life provides new research challenges.
Sensors deployed at forest sites, high performance facilities,
or areas striken by environmental, or other, phenomena, are
only a few representative examples. More recently, mobile
sensor networks have made their presence and are rapidly
growing in numbers, such as the successful ZebraNet project
or PDAs and smartphones. Nevertheless, such networks
have mainly been used for data acquisition and data are
being processed externally instead of in-network. Basic re-
search problems that arise in the in-network setting include
how to adjust in a timely and efficient manner to changing
conditions and network topology. In this paper, we present
a methodology, based on declarative query processing to
alleviate the aforementioned problems, by making the de-
ployment and optimization of a data analysis application as
automatic as possible, which also helps execution in mobile
environments. Our proposed solution focuses on extending a
state-of-the-art sensor network platform, SNEE, with built-
in data analysis capabilities.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Design, Languages

Keywords
Sensor Networks, Data Analysis, In-Network Processing

1. INTRODUCTION
Sensor Networks have received considerable attention re-

cently, as they provide manifold benefits. Monitoring the
surroundings with light, particle, motion, temparature, hu-
midity, RFID, camera and other sensor types are merely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE ’11 June 12, 2011 Athens, Greece
Copyright 2011 ACM 978-1-4503-0656-0/11/06 ...$10.00.

some examples of what we have nowadays at our disposal.
Such data can be used to automatically control high perfor-
mance buildings (e.g. hotels, power plants), track environ-
mental changes, monitor the health of patients, etc.

Rapid improvements in hardware technologies and wire-
less communications allow us to deploy large-scale networks
of sensing devices, as their cost also decreases over time.
However, low cost imposes resource limitations on the nodes
and introduces challenges for data collection, aggregation
and especially (data) analysis and mining tasks. These con-
straints, inherent in the domain, need to be tackled effi-
ciently to best exploit the network’s resources and potential.
An example of a sensor network is shown in Fig.1. Node 0
is called the sink, where data are collected, and edges be-
tween nodes signify parent-child relations in the communi-
cation routing tree (edge direction is the opposite to data
exchange direction).

0

1

2

3

4

6

5

7

9

8

10

11
12

13

14
15

Figure 1: A Sensor Network example

A particularly interesting type of such networks is mobile
sensor networks, which have become ubiquitous and their
proliferation in day-to-day life provides new research oppor-
tunities. Smartphones and PDAs, cars, sensor networks de-
ployed at sea, etc. are only a few representative examples.
Mobility is inherent in life, as we move between places, e.g.
drive to work, go for a walk, travel etc, and is not only
related to human activities (e.g. fluid flow, wind etc). An-
other interesting aspect of such networks is that they ex-
ist, without (always) an actual need to deploy them. Take
smartphones for example, owned by different users, most
likely strangers to each other. New generations of such de-
vices are equipped with sensing boards and can self-organize

in ad-hoc networks through WiFi or bluetooth connectiv-
ity. Therefore, mobile sensor networks emerge as a new
paradigm for modelling and using information. Mobility, of
course, is what sets these networks apart from classic ones.
Figures 2(a) and 2(b) show the sensor network of Fig. 1 in

two consecutive snapshots, specifically illustrating the fact
that network structure is not static. We have marked in
red the movement direction of each node (nodes 1 and 2 are
assumed stationary in the first occasion). In Fig. 2(b), blue
lines between two nodes signify the formation of a new com-
munication link, which did not exist in the previous times-
tamp. The sensor network is still rooted at node 0, yet we
should note that even such a node may be mobile.
However, despite being rich sources of information, their

current application direction is limited to data acquisition.
Data are sent to a central, external, location where they
are stored and processed, rather than being analyzed in the
sensor network. Basic research problems that arise in the
in-network setting include how to adjust in a timely and
efficient manner to changing conditions and network topol-
ogy. Re-routing data dissemination is a fundamental step
towards this direction [10, 15], but is not the only one to
take. A highly optimized execution plan of a query, decided
at some point in time, may not be as efficient at another
timestamp, due to topology or connectivity changes. Oper-
ator placement trees, i.e. where each query operator will be
hosted and executed, need to be updated as well. These re-
quirements are posed by node mobility and come in addition
to resource constraints, previously presented.
Trying to address all of these challenges at once is a daunt-

ing task. More importantly, writing software components,
which run in a distributed and changing environment, un-
der unknown or unforseen circumstances, further compli-
cates the issue. Optimizing hand-written source code for
large, or even medium scale network sizes, both in terms of
processing time and power consumption, to increase node
and, consequently, network longevity is error prone and also
impractical.
In this paper we propose a methodology to address these

challenges. The fundamental idea is to use a declarative
approach to specify, optimize and deploy data analysis tech-
niques in a sensor network. Our proposed solution focuses on
extending a state-of-the-art sensor network platform, Streaming
NEtwork Engine (SNEE), with built-in data analysis capa-
bilities. The SNEE query execution engine optimizes queries
posed in SNEEql, a language that is an SQL variant. We
show how to extend SNEEql to pose data analysis queries
using a declarative description, and how to extend SNEE to
deploy such queries in the sensor network. Pursuing this ap-
proach greatly automates the process of query deployment
and execution. We argue that this type of automation is
very beneficial in the mobile setting because it allows the
user to quickly respond to changes in the topology of the
network. When changes occur, the user has to simply reis-
sue a query, and let the query execution engine re-optmize
and re-deploy the query in the network.
To summarize, our main contribution in this paper is that

we present the extensions required to add support for in-
network data analysis and mining tasks within an existing
state-of-the art sensor network platform. A fundamental
property of our approach is that we design the analysis tasks
in such a way that they can be expressed in data analysis
queries that can be optimized by the existing infrastructure

without modification.
Our methodology for in-network query processing, is very

useful for evaluating in-network data analysis tasks when
we use mobile sensor networks. This is because we take
advantage of the fact that the used engine already allows
for automatic code generation, operator placement and de-
ployment of executables from queries posed in a declarative
language.

The rest of the paper is organized as follows: Section 2
sets the background of existing work related to our proposed
methodology. Section 3 contains basic concepts of the com-
ponents we use and build upon. Section 4 introduces our
proposed methodology to address the discussed problems,
followed by Section 5 which makes explicit the necessary
changes to reach our goal. Section 6 concludes the paper
and sets future steps.

2. RELATED WORK
Despite the fact that wireless sensor networks are a rather

recent field, their application potential is such that they have
triggered considerable research. Here, we will mostly focus
on query processing aspects, as this is our primary goal.

There are basically two lines of work when it comes to
sensor networks and query processing: one is to view and
manipulate the network as a stream management system,
where nodes simply report their values to the sink node, and
values are processed in a centralized environment. The sec-
ond one is in-network processing, where queries are (partly
or entirely) evaluated by the nodes of the network.

Regarding the first category, sensor networks are simply
a data acquisitional platform. Under this perspective, data
are locally sensed and propagated to a central node, where
they are processed in the form of streams. STREAM (Stan-
ford Stream Data Manager) [1] is one of the first systems de-
velopped particularly for this setting, viewing streams as re-
lations and processing information using well known database
utilities. Another important contribution of STREAM was
CQL (Continuous Query Language) [2], an SQL extension,
enhanced with a synopsis and a relation-to-stream opera-
tors. A more recent approach is SMM (Stream Mill Miner)
[21], which focuses on stream mining. It uses UDAs (User
Defined Aggregates), which are extensible and expressive
enough to support a wide range of functionalities. It is evi-
dent that these works do not focus on sensor network issues,
such as network optimization and lifespan. Hence, our cur-
rent work does not directly compare with these ones.

One of the earliest works that fall under the second cate-
gory is the Cougar project [23], which introduced database
concepts into the world of sensor networks, as well as some
in-network aggregation. Cougar distinguishes between nodes
according to the type of operation that they perform: some
simply sense the environment, others perform processing on
read values, while query optimization is handled by the re-
maining ones.

Madden et al. developped and presented one of the most
well-known in-network query processing frameworks, TinyDB
[18]. Sensor readings are represented by a relational table
and optimization is limited to operator reordering. TinyDB
also introduced ACQP (Acquisitional Query Processing), a
query language suited for sensor networks, but with rather
limited expressiveness due to the aggregation-based view
that the project takes.

Cost-based [3, 5, 9] and trade-off [22] optimization have

0

1

2

3

4

6

5

7

9

8

10

11
12

13

14
15

(a) Initial topology

0

1
2

3

4

6

5

7

9

8

10

11
12

13

14 15

(b) Changed topology, due to mobility

Figure 2: Consecutive snapshots of a mobile sensor network

also been examined for in-network processing. Zadorozhny
et al. [24] examine how to maximize the number of concur-
rent communications, in order to increase throughput. It
is clear, though, that these works are outside the context
of a fully-fledged system which can be easily used to fullfil
user requirements. Nevertheless, they can prove very useful
when integrated with an actual system, which will use them
as building blocks for more comprehensive optimization.
Operator placement and query routing trees [3, 6, 7, 8]

are other fields of research for in-network optimization. Es-
pecially suited for changing environments and situations,
where there is not a central node with complete view of the
network, are adaptive operator placement techniques. In
such cases, adaptive processing [10], monitoring and feed-
back are essential. Recent developments in the area of oper-
ator placement include the technique proposed in [6], which
picks the next best node to host an operator immediately.
This technique is also known as placement update. The ap-
proach, called dFNS, casts the operator placement problem
to that of finding the 1-median problem in graphs. It gu-
rantees to find the new optimal node to host an operator
in a distributed manner. Moreover, the technique keeps the
number of exchanged messages to a minimum, therefore it
does not hinder network efficiency. To achieve this, the al-
gorithm i) identifies the special case where no flooding of
the network is required, ii) minimizes the flooding radius,
in case flooding is unavoidable and iii) uses variable speed
flooding and eves-dropping. It is also interesting to note
that queries with k -ary operators can be treated efficiently
by solving k-1 binary placement operator problems.
As illustrated by the aforementioned works, a more holis-

tic approach to the sensor network processing problem also
requires the use of a more declarative query language, such
as an SQL variant. An expressive language for in-network
processing is SNEEql [4]. Queries posed in SNEEql are then
optimized by an execution engine, SNEE [12, 14], taking
into account node availability, energy consumption, network
topology and other parameters which affect the network’s
efficiency. Once the query has been optimized, the engine
is also responsible for over-the-air deployment and query
monitoring. The authors present the steps during query
optimization of SNEEql queries and present experimental

evidence of their system’s performance. We will return to
SNEE in the following section, as it plays a fundamental role
in our proposed methodology.

A newly presented system, which adopts a hybrid ap-
proach between in-network processing and stream manage-
ment systems is AnduIN [17]. AnduIN uses a variation of
CQL as its declarative query language. It also supports data
analysis techniques through UDF (User Defined Functions).
However, UDFs are practically black boxes to the optimizer,
and this could lead to poor performance of execution plans
and severely impact the network. “Black-box” functionality
does not fit well the mobile environment either, as optimiz-
ing for such conditions becomes a responsibility of the algo-
rithm’s designer. Our proposed methodology for both data
analysis and standard query processing does not suffer from
this drawback.

Regardless of the approach taken to tackle in-network
processing, all of the previously presented techniques are
primarily suited for static environments, where both node
topology and parameters which affect query efficiency re-
main the same during the execution of the query. Therefore,
mobile sensor networks have emerged as the new paradigm
to tackle this problem. This new type of network has still
a long way to go, as current use is mainly limited to data
acquisition. The value and importance of such networks
has been successfully demonstrated by the ZebraNet project
[16], also exhibiting an actual wild-life mobile sensor network
deployment. Problems arising in the mobile setting, as iden-
tified by ZebraNet, vary from hardware such as weight and
infrastructure, to software, such as storage, efficient routing
and data dissemination etc., only to name a few.

3. OUR APPROACH
We propose to adopt a holistic approach that relies on

extending an existing state-of-the-art infrastructure for the
static network counterpart of the problem, to address the
above issues at large scale. Such an approach abstracts
the entire network and handles many of its particularities,
thereby allowing the user to focus on more application-oriented
issues. More specifically, we add support for in-network pro-
cessing of data analysis and mining techniques, e.g. classi-

fication, outlier detection, clustering, etc, both at the query
language level as well as at the query execution level. Rely-
ing on declarative queries for in-network data analysis, which
can be efficiently optimized and allow for automatic deploy-
ment of executable code, can prove very useful for the mobile
setting.
We extend SNEE [14] with the required functionality, that

fullfils our motivating goals. SNEE currently supports static
topologies as it was initially designed for this type of setting.
Query optimization is simpler in this case, but not trivial,
since it it involves fewer parameters. Yet its architecture is
modular and well-defined [13], adopting and extending es-
tablished notions from the database domain, e.g. parsing,
translating etc. This enables us to enhance it with the de-
sired functionality in a fairly straightforward way.
Queries are expressed in SNEEql, an SQL-syntaxed lan-

guage particularly suited for sensor networks and streaming
environments1.

Figure 3: SNEE Optimization steps

The steps that SNEE takes to optimize a SNEEql query
are portrayed in Fig. 3. In addition to the query itself, the
user may impose some Quality of Service requirements. Ex-
amples of such requirements are delay tolerance in response
time, node energy consumption etc. In the absence of ex-
plicit QoS, default ones are assumed. This provides greater
flexibility as multiple types of sensor networks and applica-
tion domains can be modelled and satisfied using this ar-
chitecture. Once the optimization phases have taken place,

1SNEEql and SNEE also support out-of-network optimiza-
tion and processing, for relational tables as well.

executable code that will run on the participating nodes is
created, compiled and deployed, either through wired inter-
faces or via over-the-air programming. Of course, when it
comes to the mobile setting, over-the-air is the only viable
solution.

4. EXTENDING SNEE FOR
IN-NETWORK DATA ANALYSIS

With regards to our first goal, i.e. supporting in-network
data analysis tasks, our proposed methodology includes the
following:

a) enhance the SNEEql language with data analysis and
mining capabilities so that they are supported at the
declarative level.

b) implement them within the execution engine, taking
advantage of the existing query stack.

In addition to addressing our first objective, we would
also like to make the transition from total lack of data anal-
ysis to full integration as smooth as possible for the users.
We have, hence, adopted an approach where we manipulate
analysis techniques as if they were any other normal extent
(e.g. relation, stream). As an immediate consequence, the
language syntax for queries does not need to change, yet we
can have support for the desired functionality.2 Moreover,
users can request the creation of data analysis and mining
tasks through CREATE statements, much like when creating
a new table in relational databases. For instance, to create
a linear regression classifier over tuples within a 20 minute
window from a TropicalForestData extent, the user may
write the query shown in Fig. 4. The user can then refer
to the classifier in following query statements, using Trop-

DataLRF as the extent’s name.

CREATE CLASSIFIER [linearRegression, humidity]

TropDataLRF FROM (

SELECT temperature, humidity

FROM TropicalForestsData[FROM NOW-20 MIN TO NOW]

);

Figure 4: Creating a Linear Regression Classifier.

Most importantly, in contrast with the approach in [17],
we try to formulate data analysis tasks as algebraic opera-
tors, so that, in practice, they are not black boxes, but they
leverage the engine’s optimizer, using existing cost mod-
els. Such an approach not only increases network efficiency,
but also developers’ productivity, as they do not need to go
through the time-consuming iterative process of “optimize-
first, execute-next” used in AnduIN, especially for queries
that can already be handled efficiently. Furthermore, ex-
pressing and decomposing data analysis to algebraic oper-
ators also allows for more flexibility on the operator place-
ment problem. On the other hand, AnduIN treats each data
analysis implementation technique as a separate operator,
which needs to be handled individually as a whole. This
could sever the network’s efficiency.

2Though SNEEql syntax does not change, SNEE’s parser
functionality needs to be augmented, as will be explained in
the following sections.

Our line of work is based on what we call query refactoring
and is in part motivated by the work in [11]. In essense, we
reformulate an initially posed query into an equivalent one
that uses algebraic operators, which can be appropriately
optimized. The query that is eventually optimized and ex-
ecuted is the refactored one. The results and semantics of
both queries are identical. What changes is the actual query
that needs to be optimized and will be deployed in the sensor
network, as opposed to the approach in [17].
Figure 5 shows an example of a SNEEql query with an

intensional extent, i.e. a source of information for which it
is not necessary that its tuples are acquired or stored. In-
tensional extents may be materialized, e.g. views, or they
may be virtual, as in our example. In this example we as-
sume that we have some (historic) data from tropical forests
at our disposal, with measurements (among others) regard-
ing temperature and humidity readings, and we have built a
linear regression classifier on top of them. Using this classi-
fier, we would like to predict the humidity value of Amazon
Forest (which is a tropical forest), given its current tempera-
ture (this is what “[NOW]” refers to). Here, we assume that
there is a direct correlation between humidity and tempera-
ture levels in tropical forests and it makes sense to use such
a classifier.

SELECT RSTREAM AF.temperature, LRF.humidity

FROM TropForestLRF LRF, AmazonForest[NOW] AF

WHERE AF.temperature = LRF.temperature;

Figure 5: Using a Linear Regression Classifier.

Therefore, our example uses TropForestLRF, which is the
classifier, to predict the humidity level of tuples received
from data input stream AmazonForest. Incorporating inten-
sional extents in such a way also has a natural interpretation
in terms of query semantics: “Give me the humidity value
of a tuple from (virtual) relation TropForestLRF, for which
the temperature is equal to the current sensed temperature
from AmazonForest”.
Using the stored metadata, extent TropForestLRF is rec-

ognized as an intensional one during parsing (phase 1), and
specifically as a linear regression classifier. At that point
the query is refactored to the one shown in Figures 6 and
7. Note that this is in fact a single query, but we have split
it in two parts to increase readability. The query in Fig. 7
replaces the “(ab_COMP)” string in Fig. 6.
Figure 8 shows the Query Operator Tree of the refactored

query form, using the algebra defined in [4]. All of the oper-
ators can be optimized through the existing infrastructure,
since none of them is a black box. As a direct consequence
of this fact, these operators can take advantage of the oper-
ator placement update mechanism described in the previous
section, which makes our approach suitable for the mobile
setting as well.
In addition to being interesting and useful on their own

right, data analysis and mining tasks can prove very helpful
for the mobile setting. Uncovering hidden patterns within
mobile nodes can provide significant benefits: value correla-
tion is useful in energy and storage savings, outlier detection
could be an indication of interesting events etc. To illustrate
with an example, one of ZebraNet’s challenges was to choose
a data propagation scheme so that data will reach the (mo-
bile) sink. Instead of flooding the network, they opted for a

SELECT RSTREAM AF.temperature, a * AF.temperature + b

FROM AmazonForest[NOW] AF, (ab_COMP) LRF;

Figure 6: Refactored Query using a Linear Regres-
sion Classifier.

SELECT RSTREAM
(r.n*r.sxy - r.sx*r.sy) / (r.n*r.sxx - r.sx*r.sx) as a,
(r.sy*r.sxx - r.sx*r.sxy) / (r.n*r.sxx - r.sx*sr.x) as b

FROM (
SELECT RSTREAM

COUNT(t.temperature) as n,
SUM(t.temperature) as sx,
SUM(t.humidity) as sy,
SUM(t.temperature*t.humidity) as sxy,
SUM(t.temperature*t.temperature) as sxx

FROM (
SELECT RSTREAM temperature, humidity
FROM TropForest[FROM NOW-20 MIN TO NOW]

) t
) r;

Figure 7: SubQuery for (ab COMP).

TropForest

SP_ACQUIRE

TIME_WINDOW
[NOW - 20 MIN, NOW]

AGGREGATE
(count, sum, sum, sum, sum),

(t, t, h, t*h, t*t) as
(n, sx, sy, sxy, sxx)

PROJECT
(r.n*r.sxy - r.sx*r.sy) / (r.n*r.sxx - r.sx*r.sx) as a,
(r.n*r.sxy - r.sx*r.sy) / (r.n*r.sxx - r.sx*r.sx) as b

SP_ACQUIRE

AmazonForest

TIME_WINDOW
[NOW]

JOIN
(AF.t, LRF.a * AF.t + LRF.b

AF
LRF

Figure 8: Query operator tree for the Linear Re-
gression classifier

best-effort scheme, where nodes, upon reaching another set
of nodes, would delegate data to the one that had reached
a sink the most. Though this proved better than flooding,
building an actual classifier, with additional features based
on mobility patterns (trajectories), e.g. [19], could provide
even better results. The classifier would run in-network and
would be continuously updated with new values.

Our approach for enabling in-network processing of data
analysis tasks can also handle more complex constructs, such
as D3 [20]. D3 is an oulier detection algorithm, using ker-
nel density estimators at its core and more specifically the
Epanechnikov estimator. The algorithm approximates the
distribution of sensed data through sampling and reports
sensed tuples as outliers based on the probability that they
have been drawn from the same underlying distribution, by
employing Scott’s rule. A significant advantage is that it

can also handle multi-dimensional outliers, which makes it
even more practical and useful.
Detecting outliers is useful for several reasons, e.g. i) in-

dication of events, ii) identification of faulty hardware, etc.
Conversely, outliers could impact decision making, therefore
detecting them beforehand is a first step to data cleaning. A
query using the D3 outlier detection algorithm is shown in
Fig. 9, where we want to find outliers of the AmazonForest
stream. Sensed tuples are coined outliers if their tempera-
ture and humidity values have less than a 15% probability
to have been drawn from the underlying distribution. In
this example we assume that the distribution has been com-
puted over the AmazonForest stream itself, thereby outliers
are tuples which deviate significantly from previously sensed
ones.

SELECT RSTREAM AF.*

FROM AmazonForest[NOW] AF, d3 od

WHERE AF.temperature = od.temperature AND

AF.humidity = od.humidity AND

od.probability < 0.15;

Figure 9: Example query of D3 outlier detection.

Figure 10 shows the basic outline of the D3 algorithm,
both for children and parent nodes. Note that the algorithm
maintains a sample of the sensed tuples (line 9), approxi-
mates the data distribution and also computes the density
around each tuple (line 28).
Refactoring the initial query is fairly elaborate - but still

doable - so we avoid getting into too much technical de-
tail. We should also mention at this point that sampling
is handled and supported as a separate data analysis task.
Therefore, our proposed approach is not monolithic either,
as was the case for [18], but it can use simple analytical tasks
as building blocks for more complex ones.

The static topology that SNEE relies on is a rather strict
restriction, which we need to alleviate with a view towards
mobile sensor networks. Another restriction that needs to
be tackled is the fact that once the query execution tree has
been created, it remains the same until the query is stopped
by the user. Under changing conditions, this is not efficient,
as a query plan that was good at deployment time may be
moderate or even bad afterwards. This is especially true for
long-running queries. The longer a query runs, the greater
the need for query tree adaptation is. Using an execution
engine that supervises and automates the steps of execution
and deployment, given a network description, is much more
preferable to a hand-written alternative, as the application
developer is not required to deal with the network’s intrica-
cies. This holds true especially for large, or even medium size
networks. Supporting in-network data analysis techniques
through the same declarative query language and process-
ing mechanism as conventional queries makes our proposed
approach also suitable for the mobile setting.

5. IMPLEMENTATION
In this section we identify the key changes that we need

to make to the existing infrastructure to achieve the desired
functionality. This will provide a clearer perspective of how
our methodology can be applied.

Algorithm D3 (Distributed Deviation Detection)
Let Ww and W b be the sliding windows of leaf and parent

nodes;
Let Rw and Rb be the samples on Ww and W b;
Let σw and σb be the standard deviations on Ww and W b;
Let f be the fraction of the sample propagated from a child

to its parent;

1. procedure D3()
2. assign one leaf node to each one of the input streams;
3. configure all parent nodes in a hierarchy on top of leaf

nodes;
4. initiate ParentProcess() for each parent node;
5. initiate LeafProcess() for each leaf node;
6. return;

7. procedure LeafProcess()
8. when a new value S(i) arrives
9. update Rw, σw;
10. if (S(i) included in Rw)
11. send S(i) to parent with probability f ;
12. if (IsOutlier(Rw, σw, S(i)))
13. report S(i) as an outlier;
14. send S(i) to parent;
15. return;

16. procedure ParentProcess()
17. when a new message from a child node arrives
18. if (message is new outlier P)
19. if (IsOutlier(Rb, σb, S(i))
20. report P as an outlier;
21. send P to parent;
22. if (message is new value from child l)
23. update Rb and σb

24. if (the new value is included in Rb)
25. send new value to parent with probability f;
26. return;

27. procedure IsOutlier(sample R, stddev σ, point P)
28. use R and σ to estimate N(P, r);
29. if (N(P, r) < t)
30. mark P as an outlier;
31. return;

Figure 10: Outline of D3 algorithm

It is easy to see that the query parser requires modifica-
tion. Note that this change is due to the query refactoring
approach alone. Moreover, a change in the stored metadata
is needed, in order to distinguish between intensional and
extensional extents. Hence, the new parser implements a
superset functionality of the current one. The actual func-
tionality of refactoring can be implemented in two ways:
the first is to create a new query as the one in Fig. 6 and
7, which will be re-submitted. The second is to directly
output an AST, ready to be translated, as explained in the
previous section. The overhead is small in either occasion
and not really significant, as it will be executed only once.
Refactoring queries that do not include intensional extents
has no effect. The query then proceeds with the rest of the
optimization phases. The updated stack is presented graph-
ically in Fig. 11.

SNEEql Query + QoS

AST

LAF

LAF’

Query Execution Plan

Parser

Translator

Logical Rewriter

Source Allocator

Source Planner

Metadata

QUERY REFACTORER

D-LAF

Figure 11: Updated query stack steps to support
data analysis and mining tasks

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this work we proposed a well-defined methodology to
extend a state-of-the-art execution engine for sensor net-
works with data analysis capabilities. Our approach is such
that it can also fit the mobile setting. Through careful in-
spection of the steps that a query undergoes, we identified
the key phases and their respective software components
that we need to enhance. We also presented the methods
we plan on using to achieve this functionality. Immediate
future steps include a concrete implementation of the afore-
mentioned proposal and an extensive experimental evalua-
tion.
Another future direction is that of a mobility “watchdog”.

Taking a more proactive approach, this software module
would be responsible for tracking the sensor network for
changes. Whenever drastic changes are observed in its prop-
erties (e.g. connectivity, node topology, routing trees), it
could make the process of stopping and restarting the query
fully- or semi-automatic. This is the simplest approach to
take using the existing architecture. Though more complex
approaches, such as operator updating might yield better
results, they require substantial additional effort to imple-
ment within SNEE’s optimization stack. The reason is that
SNEE produces executable code which is destined to run
under very tight time and cost constraints, making network
efficiency and longevity some of its primary goals. As oper-
ator updating requires exchanging additional messages, this

might prove harmful for the produced query execution plan
eventually.

7. ACKNOWLEDGMENTS
The authors would like to thank Prof. Norman W. Pa-

ton, University of Manchester, for fruitful discussions that
greatly contributed to the development of this work. This
work has been supported by SemSorGrid4Env (FP7-223913)
and MODAP European Commission projects.

8. REFERENCES
[1] STREAM: Stanford Stream Data Management

Project, http://www-db.stanford.edu/stream.

[2] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: semantic foundations and query
execution. The VLDB Journal, 15:121–142, June 2006.

[3] B. J. Bonfils and P. Bonnet. Adaptive and
decentralized operator placement for in-network query
processing. In Proceedings of the 2nd International
Conference on Information processing in Sensor
Networks (IPSN), pages 47–62, 2003.

[4] C. Y. Brenninkmeijer, I. Galpin, A. A. Fernandes, and
N. W. Paton. A semantics for a query language over
sensors, streams and relations. In Proceedings of the
25th British National Conference on Databases, pages
87–99, 2008.

[5] C. Y. A. Brenninkmijer, I. Galpin, A. A. A.
Fernandes, and N. W. Paton. Validated cost models
for sensor network queries. In Proceedings of the 6th
International Workshop on Data Management for
Sensor Networks (DMSN), pages 1–6, 2009.

[6] G. Chatzimilioudis, A. Cuzzocrea, and D. Gunopulos.
Optimizing query routing trees in wireless sensor
networks. In ICTAI (2), pages 315–322, 2010.

[7] G. Chatzimilioudis, N. Mamoulis, and D. Gunopulos.
A distributed technique for dynamic operator
placement in wireless sensor networks. In Proceedings
of the 11th International Conference on Mobile Data
Management (MDM), pages 167–176, 2010.

[8] G. Chatzimilioudis, D. Zeinalipour-Yazti, and
D. Gunopulos. Minimum-hot-spot query trees for
wireless sensor networks. In Proceedings of the 9th
International Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE), pages 33–40,
2010.

[9] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Model-based approximate
querying in sensor networks. VLDB J., 14(4):417–443,
2005.

[10] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Found. Trends databases, 1:1–140, January
2007.

[11] L. Fegaras and D. Maier. Optimizing object queries
using an effective calculus. ACM Trans. Database
Syst., 25:457–516, December 2000.

[12] I. Galpin, C. Y. Brenninkmeijer, A. J. Gray,
F. Jabeen, A. A. Fernandes, and N. W. Paton. Snee: a
query processor for wireless sensor networks. Distrib.
Parallel Databases, 29:31–85, February 2011.

[13] I. Galpin, C. Y. A. Brenninkmeijer, F. Jabeen, A. A.
Fernandes, and N. W. Paton. An architecture for

query optimization in sensor networks. In ICDE, pages
1439–1441, 2008.

[14] I. Galpin, C. Y. A. Brenninkmeijer, F. Jabeen, A. A.
Fernandes, and N. W. Paton. Comprehensive
optimization of declarative sensor network queries. In
SSDBM, pages 339–360, 2009.

[15] C. Intanagonwiwat, R. Govindan, D. Estrin,
J. Heidemann, and F. Silva. Directed diffusion for
wireless sensor networking. IEEE/ACM Transactions
on Networking, 11:2–16, 2003.

[16] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh,
and D. Rubenstein. Energy-efficient computing for
wildlife tracking: design tradeoffs and early
experiences with zebranet. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 96–107, 2002.

[17] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann,
and K.-U. Sattler. Stream engines meet wireless sensor
networks: cost-based planning and processing of
complex queries in anduin. Distrib. Parallel Databases,
29:151–183, February 2011.

[18] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30:122–173, March 2005.

[19] C. Panagiotakis, N. Pelekis, and I. Kopanakis.
Trajectory voting and classification based on
spatiotemporal similarity in moving object databases.
In Proceedings of the 8th International Symposium on
Intelligent Data Analysis (IDA): Advances in
Intelligent Data Analysis VIII, pages 131–142, 2009.

[20] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online outlier
detection in sensor data using non-parametric models.
In VLDB, pages 187–198, 2006.

[21] H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari,
V. Russo, and C. Zaniolo. Smm: a data stream
management system for knowledge discovery. In
Proceedings of the 27th International Conference on
Data Engineering (ICDE), page (to appear), 11-16
April 2011.

[22] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and
R. Rajaraman. Wavescheduling: energy-efficient data
dissemination for sensor networks. In Proceedings of
the 1st International Workshop on Data Management
for Sensor Networks (DMSN), pages 48–57, 2004.

[23] Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Record, 31:2002, 2002.

[24] V. I. Zadorozhny, P. K. Chrysanthis, and
P. Krishnamurthy. A framework for extending the
synergy between mac layer and query optimization in
sensor networks. In Proceedings of the 1st Int
Workshop on Data Management for Sensor Networks,
pages 68–77, 2004.

