
Experimentation in CPU Control with Real-Time Java

Gerasimos Xydas
BT Advanced Communications

Technology Centre
gxydas@di.uoa.gr

Jérôme Tassel
BT Advanced Communications

Technology Centre
jtassel@jungle.bt.co.uk

Abstract
This paper describes experiences in using an O.O. lan-
guage (Java) in designing, prototyping and evaluating a
CPU manager. QoS Animator facilitates the execution of
object oriented Java applications with time requirements
and provides protection mechanisms to preserve system’ s
integrity against untrusted code. It is adapted to the sys-
tem performance and provides a rate-monotonic based
scheduling algorithm, WCET calculation at run-time and
protection from high-CPU-consuming and "bad" code.
The introduction of the Low Frequency Filter enhances
the timeliness offered to applications in general-purposes
Operating Systems (OS). The evaluation was done with a
Windows NT specific prototype and proved successful.

1. Introduction

Internet is naturally unsuitable to deliver data with time
constraints. Guarantees in doing so are provided through
QoS control in the network and the end-system for sharing
resources among concurrent applications and streams.
Some emerging IETF protocols deal with network QoS
provision [1][2][3]. However, QoS must be provided in
every element that is involved in the delivery of the data
(CPU, buffers, i/o, etc) [4]. Applications that run on host
machines are written without resource sharing in mind and
the amount of resources they require is increasing as the
available bandwidth increases. Moreover, mobile code
might affect the system’ s integrity (especially in an Ac-
tive Networks context), so mobile code should be accom-
modated in safe languages [5][6]. A resource manager in a
host machine should serve concurrent applications ac-
cording to their needs while protecting the system from
untrusted code.

The most crucial host resource is the CPU. Some work
that deal with CPU sharing are based on specific Real-
Time Operating Systems (RTOS) [7][8], and they intro-
duce the notion of CPU reservations by forcing tasks to
meet their deadlines. RTOS provide the time-related fa-
cilities to do so. Other work introduces some barriers that
prevent tasks from using more than a specific amount of
CPU [6]. In this work we deal with a portable solution that

share the CPU among Java applications with time critical
sections and helps them to meet their deadlines, while
protecting the system from "bad-code".

Real-time applications are usually developed using na-
tive languages and targeted for well-defined execution
environments. Furthermore, a RTOS is required to provide
timeliness and to efficiently handle interrupts. The port-
ability of real-time code is subject to the ability to adapt to
the run-time execution environment. Java is a portable
O.O. language that was introduced to facilitate networked
applications but it does not provide facilities to accommo-
date real-time code, in terms of semantics and predictable
behaviour [9]. Real-Time Java introduces time and mem-
ory semantics to support real-time development and pro-
vides run-time analysis of the byte-code that adapts a real-
time Java application to the execution environment
[10][11]. However, native support can provide enhance-
ments to traditional Java and extend its capabilities. In our
work we take some minimal native support from the un-
derlying OS, by boosting the priority of the JVM process
to "real-time".

We chose to build our prototype on top of Windows
NT rather than a research RTOS, as it is a widely used
general purpose OS. Although it is not deterministic and
thus unsuitable to serve applications with time constraints
[12], it allows almost the exclusive use of the CPU by
processes that run at the REALTIME_PRIORITY-
_CLASS. According to [12] this priority level must be
used with extreme care as it may considerably affect the
system’ s integrity.

In this work not only do we take advantage of this fea-
ture, but we also enhance the timeliness of NT in this pri-
ority level. The rest of this document describes the archi-
tecture of the QoS Animator and the results we achieved
through comparison with conventional techniques.

2. The QoS Animator

QoS Animator is a CPU manager that supports Java
applications with soft real-time requirements. It provides a
simple API that enables them to include time critical sec-
tions in their code. The API is as simple as the invocation
of the register(Profile) method of the QoS Animator class,

where the Profile describes cross platform attributes like
the period of a task. Figure 1 presents the architecture of
the QoS Animator.

� � ��� � � �	�
 � �

� � � � � � � �

� � � � � � � � � � � �

� � ! "
#$ % & ' (

$ % & ')

* + , - ./ 0 1 2

3 4 5 6 7 8 4 3 9 : 3 ; < 6 = 4 >
? @ A B C D E F G H I J K L M N O

P QQ
RS T
UV

W X YZ [\] ^ [_
` a bZ [\] ^ [_
c] d eZ [\] ^ [_

f g ^] h ij g d eb [\] ^ [_

k _ [l] m i d
k [m] n o

p q r s t u v w qx v s u q p y
z { w v y y v | }~ | } u p | s � � � � � � � � � � � � � �� � � �

Figure 1

The prototype is currently running on top of Windows
NT, but it does not require NT. The only support it gets is
the boost of its process’ priority to REALTIME-
_PRIORITY_CLASS. The portability of the QoS Ani-
mator is subject to the availability of a feature that allows
almost the exclusive use of the CPU by its process, like is
being done with the REALTIME_PRIORITY_CLASS in
NT.

2.1. Admission Control

The traditional rate-monotonic algorithm (RMA) [13]
schedules tasks without taking their origin into account. It
focuses on periodic tasks and does not accommodate in-
terrupts and other asynchronous events that interrupt the
normal execution of tasks. In order to deal with the lack of
a RTOS and to tolerate interrupts, while keeping the sim-
plicity of the RMA, we extend its utilisation bound test
formula to:

)12(/1

1

−××<×∑
=

n
n

i i

i n
T

EC α

The extended execution time that a task now has is:

 ECC ii ×=’

where Ci is calculated during runtime (see Runtime
WCET calculation). E (namely EXTENSUM) is a metric
that gives more time to tasks than actually needed and it is
defined dynamically according to the workload by the
CPU monitor [14]. This way a task deals with short inter-
rupts, without missing any portion of the requested CPU
time. It does not modify the rate monotonic sort as it is
only used during the execution of a task to give it more

time. Factor limits the amount of the CPU allocated to
real-time tasks, in order to preserve the normal execution
of the OS. This formula actually shows that the CPU utili-
sation for real-time tasks will never be 100% (but 50-
70%). We do not target on efficient CPU usage but on
efficient usage of a portion of the CPU. By leaving time to
the OS we ensure that time sharing applications and other
OS activities will not starve and system integrity will be
preserved. In [15] the RMA utilisation bound test formula
has been extended by adding a factor U to indicate the
timing unpredictability caused by the OS. This has the
disadvantage that the factor U is extracted empirically and
not dynamically, so it is not portable.

2.2. Scheduler with real-time filtering

The scheduler divides time in two categories: tasks’
time and OS’s time. The first one refers to real-time tasks,
while the second refers to time-sharing applications and
other OS activities.

The scheduling algorithm is very simple. It first seeks
for the next task to be focused, based on the rate mono-
tonic sort. The scheduler then sleeps for the duration that
the tasks need to execute. If no task is scheduled (i.e. CPU
is granted to the OS), the scheduler invokes the apply()
method of all the filters that extends the RealTimeFilter
class and adapts that pause time to the expected progress
that the scheduler should have, by shortening the time of
that pause. After that, the scheduler removes the focus
from the current executed task (if any) and processes a
feedback from it in order to ensure that its progress is con-
sistent with its attributes. This feedback is also fed to the
real-time filters.

Figure 2

A general purpose OS does not provide the timeliness
of a RTOS. However, we concluded that by monitoring
the behaviour of the response times, we can enhance the
timeliness offered to applications. Also, if a delay is expe-
rienced in one task, it propagates to other tasks in the
same process. By capturing the delay caused in a task, we
can prevent others from experiencing the same. Real-time
filters are applied between the pauses of the scheduler to

make up for the missed real-time intervals and to prevent
jitter and delay propagation. Normally, the amount of time
that the scheduler sleeps is defined by:
• the time that is left until a higher priority task is ready

to run,
• the WCET of the currently executed task,
• the time that is left until a lower priority task is ready

to run.
However, delay is possible to happen, which can be de-
tected by examining the feedback from the task. Feedback
is generated when the scheduler removes the focus from
it, no matter if the task has met its deadline or not. The
Low Frequency Filter compares the achieved end time of
task' execution with the expected one, as well as OS’ s
time intervals. If delay is experienced either in executed
tasks (i.e. frames arrive at a lower frequency than they
should) or in pauses between tasks (i.e. OS’ s time), the
filter adapts the scheduler' s sleeping time to the delay,
giving smaller amounts of time to the next OS activity or
real-time task. In the first case it just gets back the time
that the OS grabbed from real-time tasks. In the latter, - as
we have already taken care so that the execution time al-
located to a task is bigger than the actually time needed
(EXTENSUM) -, we have the flexibility to shorten this
time, as such delays are short compared to the extra allo-
cated times [12].

2.3. RM simulation

RMA can not be applied directly to Windows NT as
NT offers only 7 level of thread priorities within a proc-
ess, or 32 level of thread priorities in all process levels
[12]. Note that a task in QoS Animator is assigned to a
thread, but the design allows assigning it to a group of
threads. As we target a single JVM process, the 7 priority
levels are not enough. The scheduler of the QoS Animator
simulates the behaviour of the RMA using only 2 priority
levels. We first sort the tasks according to the rate mono-
tonic sort, then we apply the modified utilisation bound
test and finally, we simulate the behaviour of the RMA by
keeping track of the progress of tasks. These 2 priority
levels are used as follows:
• The Scheduler runs at Java' s MAX_PRIORITY.
• The scheduled tasks run at Java' s MIN_PRIORITY
• Runnable tasks are suspended and resumed by the

Scheduler
Since JDK1.2 Sun has marked the suspend() method as
deprecated, because it is deadlock prone. We safely use it
in the QoS Animator by building very carefully the sched-
uler in order not to refer to any synchronized block. This
way, we ensure that the scheduler would be always able to
resume any suspended thread, without causing any dead-
lock.

2.4. Runtime WCET calculation

As the developer of a Java application does not know
the target execution environment in advance, the execu-
tion time of a task must be calculated to correspond to the
runtime executive. In PERC [16] this is being done by
analysing the byte-code and charging code structures with
amounts of time that corresponds to the runtime configu-
ration. In this work we directly use the run-time executive
to measure the execution time of a task, by adapting it to
the workload of the system. This solution is specialised
for periodic tasks with small periods, such as video and
audio play back. In order to calculate the Worst Case Exe-
cution Time (WCET) at run-time, we first classify tasks in
authentication classes according to their importance, reli-
ability and security, based on a signature they carry. The
highest authenticated tasks are thought to be very impor-
tant (e.g. garbage collector, charging meter etc.), error-
free and secure. An authentication class defines the maxi-
mum execution time, maximum period and maximum
CPU usage that a task is allowed to have and serves the
need for a starting point for the WCET calculation. The
first effect of this classification is to prevent tasks from
overusing the CPU. When a task is first introduced in the
system, its WCET is initially calculated according to its
period, the maximum execution time and the maximum
CPU utilisation allowed by its authentication class. The
admission control uses this initially WCET for this task.
The task is then scheduled among the other concurrent
tasks and its progress is monitored by the QoS Animator.
After a policy-defined number of testing iterations, QoS
Animator decides on:
• the task' s WCET based on the average execution

time achieved during the testing iterations and the
maximum execution time allowed by its authentica-
tion class

• the conformance of the executed task to its attributes
(i.e. its period and its initially given WCET), which
depends on the capabilities of the execution environ-
ment or any "bad-code" in the task. If such a confor-
mance is not achieved, the task is dropped.

The calculated WCET (equal or lower than the initially
assigned) is also fed back to the admission control. Newly
arrived tasks might cause existing ones to be dropped, if
they belong to higher authentication classes, but this de-
pends on the applied policies.

3. Experimentation and results

In order to evaluate the performance of our prototype
we compare it with two other current options. The first
uses traditional Java threads and the JVM runs at NOR-
MAL_PRIORITY_CLASS as usual (we call it Standard
Java). The second is the same with Standard Java but with
the JVM running at REALTIME_PRIORITY_CLASS
(we call it RT Standard Java). Furthermore, in order to
evaluate the CPU reservations we achieve, we use the
CPU grabber application [14] to simulate concurrent run-

ning time-sharing applications. It runs at NORMAL or
HIGH PRIORITY_CLASS as most NT applications.

For our experiments we use a Pentium II 266MHz with
Windows NT 4.0 SP3. We also grab the 85% of the CPU
with the grabber tool.

3.1. Experiment 1: video playback

In this experiment we measure the inter-arrival times of
video frames during a video playback. Each frame is
256x256 pixels and on average 48K. The playback is at 33
fps, i.e. we ideally expect inter-arrival times of 30 milli-
seconds. Figure 3 represents the unreliable behaviour
when using Java as it is for serving applications with time
constraints (Standard Java). However, the same result
might be produced when using a native process at the 3
lower priority levels of NT. Such a comparison is out of
the scope of this work.

Standard Java: video playback (30 msec) + 85% CPU load

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

frame

in
te

r-
ar

ri
va

l t
im

e
(m

se
c)

Figure 3

RT Standard Java: video playback (30 msec) + 85% CPU load

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

frame

in
te

r-
ar

ri
va

l t
im

e
(m

se
c)

Figure 4

Figure 4 shows the enhancement that can be achieved
by boosting the JVM process to REAL-
TIME_PRIORITY_CLASS in NT (RT Standard Java). In
this case we achieve timeliness equal to the standard time
resolution of Windows NT (i.e. 10-15 msec [12]). About
32% of the frames have 10 or more milliseconds delay.

In QoS Animator case (Figure 5), we manage to en-
hance this timeliness by introducing the Low Frequency

Filter. Only 0.5% of the frames have 10 milliseconds de-
lay or more.

QoS Animator: video playback (30 msec) + 85% CPU load

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

frame

in
te

r-
ar

ri
va

l t
im

e
(m

se
c)

Figure 5

3.2. Experiment 2: multitasking

During the second experiment we measure how the
achieved efficiency, showed in experiment 1, can be
shared among concurrent tasks. Also, we want to investi-
gate system’ s integrity when using the REAL-
TIME_PRIORITY_CLASS.

At the first part of this experiment we register 5 tasks
with the QoS Animator. Four of them have to do complex
logarithmic calculations, with periods of 70, 100, 130 and
200 msec respectively. The fifth task has to calculate 1000
complex logarithms every 100 milliseconds. We assume
that the developer has no knowledge of the execution en-
vironment (as we target portable real-time code), so she/he
defines the tasks according to her/his needs. Furthermore,
all tasks demand to repeat their execution for 1000 times.
We briefly present here the behaviour of the 100-period
task 2 (Figure 6, Figure 7).

The distributions show some statistical differences
between those (Figures 8 and 9). The RT Standard Java
has a mean value of 111 milliseconds, with 15,2% of the
samples out of the range of ±11 milliseconds (Figure 8).
The mean value in the QoS Animator case is 102 milli-
seconds and only 1,8% of the samples have inter-arrival
times out of the range of ±11 millisecond (Figure 9). This
range depends on the execution time of the 70-period task
1, which is calculated at run-time to be 7 to 10 millisec-
onds in our system. This illustrates the achieved enhance-
ment in multitasking tasks with time constraints. The
shape of the QoS Animator graph corresponds to the RM
simulation: up to the first 700 msec (where the 70-period
task 1 is running as well), task 2 is always pre-empted by
the 70-period task 1. After task 1 finishes, the 100-period
task 2 became first in the rate monotonic sorted list and
had smoother inter-arrival times.

RT Standard Java: log() (100 msec) + 85% CPU load

80

100

120

140

160

180

200

220

0 100 200 300 400 500 600 700 800 900 1000

calculation

in
te

r-
ar

ri
va

l t
im

e
(m

se
c)

Figure 6

QoS Animator: log() (100 msec) + 85% CPU load

80

100

120

140

160

180

200

220

0 100 200 300 400 500 600 700 800 900 1000

calculation

in
te

r-
ar

ri
va

l t
im

e
(m

se
c)

Figure 7

RT Standard Java: distribution

0

100

200

300

400

500

600

700

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

inter-arrival time (msec)

n
u

m
b

er
 o

f
ca

lc
u

la
ti

o
n

s

Figure 8

Moreover, another issue that is more important than the
produced graphs, is that in the RT Standard Java case the
system does not respond regularly. For example, the
mouse is moving with about 2-sec pauses between each
move. The QoS Animator controls the schedule of the
tasks, taking care to leave time to the OS as well. Thus,
the system responds normally and moreover, task 5 is de-
tected as a high-CPU-consuming task because it is moni-
tored. The two alternatives that can be followed in QoS
Animator to preserve system’ s integrity are either to
schedule such tasks as best-effort tasks, without caring
about their attributes, or to simply drop them. In both
cases, the above graphs will be the same. Finally, we re-

placed the code of task 5 with an infinite loop. In RT
Standard Java case the system hanged, while in the QoS
Animator case the task is detected and dropped.

QoS Animator: distribution

0

100

200

300

400

500

600

700

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

inter-arrival time (msec)

n
u

m
b

er
 o

f
ca

lc
u

la
ti

o
n

s

Figure 9

4. Related Work

Lin et al. [17] built a soft real-time server on top of
Windows NT, using the REALTIME_PRIORITY-
_CLASS of NT. In contrast with our work, this one
schedules processes instead of threads (in order to have
more range in the priority level), uses the real-time prior-
ity of NT "as it is" and requires the execution time of a
task to be known prior to execution. Also, no "bad-code"
protection is provided and it does not target portable real-
time code.

PERC [16][18] is a real-time Java implementation that
deals with real-time tasks and their deadlines. As the
forthcoming Real-Time Java, it provides a real-time pro-
gramming language that assumes a skilful developer as it
does not deal with cases of "bad-code". Our prototype
offers a very simple API and does not require any skills as
it handle cases of high-CPU-consumption. In PERC, byte-
code analysis is used to calculate the execution time of
tasks.

5. Conclusions

We designed a Java CPU manager that provides soft
real-time services to Java applications with time con-
straints. The evaluation of a Windows NT specific proto-
type proved successful as we managed to enhance the
timeliness of NT in the REALTIME_PRIORITY-
_CLASS, to enable the portability of real-time code, and
to protect the system from untrusted code thus preserve
system’ s integrity.

6. Acknowledgements

This work was done as part of the dissertation submit-
ted to the University of KENT at Canterbury (UKC) for
the degree of M.Sc. in Distributed Systems [19]. It was

also sponsored by BT, as part of the Mware project [20]
held in the Distributed Systems group in BT, which ex-
plores middleware technologies to enable large scale mul-
ticast applications on the Internet.

7. References

[1] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP:
A Transport Protocol for Real-Time Applications, IETF Network
Working Group, Request for Comments 1889, January 1996
http://www.ietf.org/rfc/rfc1889.txt

[2] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin,
Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
Specification, IETF Network Working Group, Request for
Comments 2205, September 1997
http://www.ietf.org/rfc/rfc2205.txt

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and
W. Weiss, An Architecture for Differentiated Services, IETF
Network Working Group, Request for Comments 2475, Decem-
ber 1998
http://www.ietf.org/rfc/rfc2475.txt

[4] J.Kurose, Open Issues and Challenges in providing Quality
of Aervice Guarantees in High Speed Networks, ACM Computer
Communications Review, vol. 23, no. 1, January 1993, pages 6-
15

[5] Paul Menage, RCANE: A Resource Controlled Framework
for Active Network Services, In Proceedings of First International
Working Conference on Active Networks (IWAN’99), Berlin,
Germany, June 30 - July 2, 1999, pages 25-36

[6] Philippe Bernadat, Dan Lambright, Franco Travostino,
Towards a Resource-safe Java for Service Guarantees in Unco-
operative Environments, in Proceedings of the IEEE Workshop
on Programming Languages for Real-Time Industrial Applica-
tions, Madrid, Spain, December 1998

[7] Michael B. Jones, Daniela Rosu, Marcel-Catalin Rosu,
CPU Reservations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities, in Proceedings of the 16th
ACM Symposium on Operating Systems Principles. Saint-Malo,
France, October 1997, pages 198-211

[8] Clifford W. Mercer, Stefan Savage, Hideyuki Tokuda,
Processor Capacity Reserves: An Abstraction for Managing
Processor Usage, in Proceedings of the IEEE Fourth Workshop
on Workstation Operating Systems (WWOS-IV), 14-15 Oct.
1993, IEEE Comp. Soc. Press, pages 129-134

[9] Kelvin Nilsen, Issues in the Design and Implementation of
Real-Time Java, Iowa State University, July 19, 1996

[10] Kelvin Nilsen, Core Real-Time Extensions for the Java
Platform, J-Consortium, August 19, 1999
http://www.j-consortium.org/rtjwg/draft.8-19.pdf

[11] William Foote, Real-time Extensions to the Java Platform -
A Progress Report, Fourth International Workshop on Object-
oriented Real-time Dependable Systems (WORDS’99), Santa
Barbara, California, USA, January 27-29, 1999

[12] Real-Time Systems and Microsoft Windows NT, Microsoft
Developer Network Library, Microsoft Corporation, June 29,

1995
http://msdn.microsoft.com/library/backgrnd/html/msdn_realtime.
htm

[13] C.L.Liu and J.W.Layland, Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment, Journal of the
ACM, vol. 20, no. 1, 1973, pages 46-61

[14] Alan Smith and Richard Jacobs, Quality of Service Man-
agement within a Middleware for Large Scale Multicast Appli-
cations, IEEE Workshop on QoS Support for Real-Time Internet
Applications, Vancouver, British Columbia, Canada, June 2-4,
1999, pages 85-92

[15] Lei Zhou, Kang G. Shin and Elke A. Rundensteiner, Rate-
monotonic scheduling in the presence of timing unpredictability,
in Proceedings of the Fourth IEEE Real-Time Technology and
Applications Symposium, 3-5 June 1998, IEEE Comput. Soc,
pages 22-27

[16] Kelvin Nilsen and Steve Lee, PERC Real-Time API (Draft
1.3), NewMonics, 1998
http://www.newmonics.com/pdf/perc_api.pdf

[17] Chih-han Lin, Hao-hua Chu, Klara Nahrstedt, A Soft Real-
time Scheduling Server on the Windows NT, 2nd USENIX Win-
dows NT Symposium, Seattle, WA, August 1998, pages 157-166

[18] K.Nilsen, S.Mitra, S.Sankaranarayanan, and V.Thanuvan,
Asynchronous Java exception handling in a real-time context, in
Proceedings of the IEEE Workshop on Programming Languages
for Real-Time Industrial Applications, Madrid, Spain, December
1998

[19] Gerasimos Xydas, Real-Time Java for End-System QoS
Control, a dissertation submitted for the degree of M.Sc. in Dis-
tributed Systems to the University of KENT at Canterbury, 17
September 1999

[20] Mware project, BT,
http://www.labs.bt.com/projects/mware

