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Abstract. The prosodic specification of an utterance to be spoken by a Text-
to-Speech synthesis system can be devised in break indices, pitch accents and
boundary tones. In particular, the identification of break indices formulates the
intonational phrase breaks that affect all the forthcoming prosody-related proce-
dures. In the present paper we use tree-structured predictors, and specifically the
commonly used in similar tasks CART and the introduced C4.5 one, to cope with
the task of break placement in the presence of shallow textual features. We have
utilized two 500-utterance prosodic corpora offered by two Greek universities in
order to compare the machine learning approaches and to argue on the robust-
ness they offer for Greek break modeling. The evaluation of the resulted models
revealed that both approaches were positively compared with similar works pub-
lished for other languages, while the C4.5 method accuracy scaled from 1% to
2,7% better than CART.

1 Introduction

In speech communication, intonational phrases (IP) are separated by breaks in the form
of pauses in speech. Accurate prediction of IP breaks in Text-to-Speech (TtS) synthesis
heavily affects utterances structure and thus alters their understandability. As IP breaks
divide utterances into meaningful ‘chunks’ of information [1], variation in phrasing can
change the meaning listeners assign to utterances of a given sentence. For example,
the interpretation of a sentence like “I will come because I was told so.” (in Greek “Ta
‘erTo epiD‘i mu to ‘ipan”) will vary, depending upon whether it is uttered as one phrase
or two. Situations where phrase breaks are missing when necessary or added in wrong
places make the synthetic speech sound unnatural and boring.

In the past, the prediction of intonational boundaries for text-to-speech systems that
handle unrestricted text was conducted using simple phrasing algorithms [2] based on
orthographic indicators, keywords or part-of-speech spotting, and simple timing infor-
mation. Research on the location of IP breaks was predicated on the relationship of
prosodic and syntactic structures. Rule-based approaches [3] applied to this particular
task were most successful in applications where syntactic and semantic information was
available during the generation process. A weakness of this particular approach is that
even if accurate syntactic and semantic information could be obtained automatically
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and in real time for TtS, such hand-crafted rule systems are extremely difficult to build
and maintain.

In addition, the relationship between prosody and syntax is not fully understood,
though it is generally accepted that there is such a relationship. No current proposal
integrating such information into the phrase assigned process has been shown to work
well, even from hand-corrected labeled input. Some general proposals have been made
which assume the availability of even more sophisticated syntactic and semantic infor-
mation to be employed in IP breaks prediction [4].

In the field of IP break prediction, attention has been given by researchers in deriva-
tion of phrasing rules for text-to-speech systems from large labeled corpora [5]; most re-
cently, attempts have been made to use self-organizing procedures to compute phrasing
rules automatically from such corpora. The primary learning techniques currently being
used include Hidden Markov models [6], neural networks [7], classification and regres-
sion trees (CART) [8], transformational rule-based learning (TRBL) [9] and Bayesian
techniques [10].

The most commonly used feature set in such training frameworks for IP break pre-
diction include part-of-speech (POS), pitch accent, syntactic structure, duration, length
of the current sentence, number of words and syllables from the last break, etc. From
the above POS has been proved to be an effective and easy to derive feature.

In this work, we inspect on the performance of tree-structured predictors for IP
breaks placement. Along with the commonly used CART approach, we introduce a C4.5
classifier to evaluate over a rapid extracted shallow textual feature set. The experiments
were carried out by utilizing two speech corpora in the Greek language provided by
the University of Patras (Artificial Intelligence Group) and the University of Athens
(Speech Group).

2 Data Resources

For the analysis of the proposed approaches experiments were conducted with the ex-
ploitation of two prosodic annotated datasets. The first one featured prosodical phe-
nomena encountered in a generic textual environment while the other was derived from
a museum domain text corpus. Professional speakers uttered both corpora in Athenian
dialect. Both corpora were annotated to the full ToBI specification and checked for their
consistency.

2.1 Corpora Description

The generic corpus consists of 5.500 words, distributed in 500 paragraphs, each one of
which may be a single word utterance, a short sentence, a long sentence, or a sequence
of sentences. For the corpora creation we used newspaper articles, paragraphs of liter-
ature and sentences constructed and annotated by a professional linguist. The corpus
was recorded under the instructions of the linguist, in order to capture the most frequent
intonational phenomena of the Greek language.

The museum domain corpus includes exhibits’ descriptions from a museum guided
tour. It consisted of 5484 words, distributed in 516 utterances. Half of the corpus con-
tains grammatically restricted texts, while the remaining half is unrestricted text [8].
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As the original corpus included enriched linguistic information provided by a Natural
Language Generator, the corpus was recorded appropriately in order to capture a big
variety of emphatic events, for example by the introduction of new or old mentioned
information to the visitor.

2.2 Shallow Features

In order to predict the juncture class of an IP, textual features were incorporated. Apart
from POS, researchers have stressed the important role of syntactic and morphological
information for several languages. Taking into account that in real-time IP break predic-
tion tasks, fully syntactic parsing would be time-consuming and would produce many
syntactic trees, as well as that in several languages, including MG, syntactic tools are
not freely available, a syntactic feature labeling each word with the syntactical chunk
which belongs in a sentence was introduced [10]. The phrase boundary detector [12], or
chunker, is based on very limited linguistic resources, i.e. a small keyword lexicon con-
taining some 450 keywords (articles, pronouns, auxiliary verbs, adverbs, prepositions
etc.) and a suffix lexicon of 300 of the most common word suffixes in MG. In the first
stage the boundaries of non-embedded, intra-sentential noun (NP), prepositional (PP),
verb (VP) and adverbial phrases (ADP) are detected via multi-pass parsing. Smaller
phrases are formed in the first passes, while later passes form more complex structures.
In the second stage the head-word of every noun phrase is identified and the phrase
inherits its grammatical properties.

2.3 Task and Feature Definition

For the purpose of IP breaks prediction within TtS, it is common to flatten the prosodic
hierarchy, hence a word juncture is considered to be a break or a non break.
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Fig. 1. IP breaks distribution in corpora

In an effort to deviate from that, we considered word junctures of the whole IP
break marks proposed by ToBI transcription. Therefore our phrase break label files
contain break indices ranging from 0 to 3 (b0, b1, b2 and b3), describing the strength of
the juncture between each two lexical items; where b0 is representing that cliticization
has merged two lexical items into a prosodic word while b3 is indicating a maximal, or
fully-marked, intonational phrase boundary.

Our task was the derivation and application of a common set of shallow textual fea-
tures extracted rapidly from text for both corpora and the application to the decision tree
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classifiers for IP breaks placement. Previous works have shown the optimized perfor-
mance of both models using their full feature set [10], [8] in predicting prosodic phrase
breaks, pitch accents and endtones.

Eventually, in order to facilitate the evaluation of the IP break prediction models,
we adapted both databases according to the following feature vector:

– pos: the part of speech of the word. Values: verb (V), noun (N), adjective (ADJ),
adverb (ADV) and a function word (FW) class holding non-content word pos types.
For our experiments, the POS of the words in a window of -2,+1 words was em-
ployed.

– chunk: a syntactic feature that has been successfully applied to intonational phrase
break detection [10]. These information is considered as shallow syntactic informa-
tion, it is unambiguous and can be extracted rapidly [13]. In this work we introduce
some combinational features extracted from syntactic chunking and information
provided by punctuation. These features are described below:
• parent chunk: a binary indicator showing whether a word belongs to a different

syntactic chunk than its previous one. A window of -1,+1, around the word, was
utilized.

• chunk break: the distance in words from the beginning of the next syntactic
chunk or of a major punctuation break.

• neigh chunk: a binary indicator that shows whether a word belongs to the same
syntactic chunk with its next one. A window of -1,+1, around the word, was
utilized.

– word in: feeds the classifier with the information of words position from previous
major punctuation break.

– word out: presents the number of words until a major punctuation break.
– syll num: the number of syllables in the present word. The values of this feature

ranges from 1 to 5 where the last class (5) includes any polysyllabic words with
5 or more syllables. The latter group contains all the low frequency classes of word
syllables.

– syll str strct: indicates the index of the syllable that holds the lexical stress in the
word. The values for the Greek language are final, penultimate, antepenultimate and
none. The above features were applied to the word level.

3 Phrase Break Prediction Schema

The present study provides an insight into the prosodic parameter classification exper-
iments conducted into ToBI annotated corpora for IP break prediction. The windowed
data described above was firstly applied to a decision tree inducer (CART) [13]. Fur-
thermore, C4.5 [14] algorithm was employed. Decision trees have been among the first
successful machine learning algorithms applied to IP break and pitch accent prediction
for TtS. The three basic elements that a decision tree is composed of are:

– a decision node specifying a test feature.
– an edge or a branch corresponding to the one of the possible attribute values which

means one of the test attribute outcomes.
– a leaf which is also named an answer node contains the class to which the object

belongs.
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In decision trees two major phases should be ensured; the phase of tree building on
a given training set, and the classification. In order to classify a new instance, we start
by the root of the decision tree, then we test the attribute specified by this node. The
result of this test allows the tree branch relative to move down to the attribute value
of the given instance. This process will be repeated until a leaf is encountered. The
instance is then classified in the same class as the one characterizing the reached leaf.
Several algorithms have been developed in order to ensure the construction of decision
trees and its use for the classification task.

3.1 Classification and Regression Trees (CART)

The Regression trees, induced by the CART method, are a statistical approach for pre-
dicting data from a set of feature vectors. In particular, a CART uses a binary decision
tree to model a conditional distribution. CART contains yes/no questions regarding the
features and provides either the probability distribution or a mean and standard devia-
tion.

CART analysis consists of four basic steps. Initially a tree is built by means of recur-
sive splitting of nodes. All resulting nodes are assigned with a predicted class, based on
the distribution of classes in the learning dataset which would occur in that node and the
decision cost matrix. In each node a predicted class assigned whether or not that node
is subsequently split into child nodes. The next step consists of stopping the tree build-
ing process. At this point a “maximal” tree has been produced, which probably greatly
overfits the information contained within the learning dataset. The resulted “maximal”
tree is “pruned”, which results in the creation of a sequence of simpler trees, through
the cutting of increasingly important nodes. Optimal tree selection of the resulted sim-
pler trees is the fourth step, during which the tree fitting the information in the learning
dataset, but does not overfit the information, is selected among the sequence of pruned
trees.

3.2 C4.5 Algorithm

C4.5 is an improvement of the ID3 [14] algorithm being able to handle numerical data.
The first task for C4.5 is to decide which of the non-target variable is the best to split
the instances. Then, every possible split is tried. The value of potential splits in C4.5
is calculated from a criterion called information ratio. Information ratio suggests an
estimate of how probable split on a variable will lead the decision to a leaf containing
the fewer errors or has low disorder. The concept of low disorder means that the node
contains instances with one major target variable.

Calculation of information ratio is realized for all the variables and the ‘winner’
variable is the one with the largest information ratio and is chosen as the split variable.
The tree will grow in a similar method. For each child node of the root node, the decision
tree algorithm examines all the remaining attributes to find candidate for splitting. If the
field takes on only one value, it is eliminated from consideration since there is no way
it can be used to make a split. The best split for each of the remaining attributes is
determined. When all cases in a node are of the same type, then the node is a leaf node.
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C4.5 uses a method called pruning to avoid overfitting. There are two types of prun-
ing applied in the C4.5 procedure: pre-pruning and post-pruning. Post-pruning refers
to the building of a complete tree and pruning it afterwards, making the tree less com-
plex and also probably more general by replacing a subtree with a leaf or with the most
common branch. When this is done, the leaf will correspond to several classes but the
label will be the most common class in the leaf. Post-pruning is affected by a parame-
ter called confidence interval. The application of lower confidence results more drastic
pruning. For our models we applied a confidence value of 25 %. Pre-pruning concerns
the decision about when to stop developing subtrees during the tree building process.
For example specifying the minimum number of observations in a leaf we can deter-
mine the size of the tree. A minimum number of 2 was utilized in our model. We have
to also point out that in our case we applied post-pruning only while pre-pruning ap-
plication showed any difference to the models resulted tree. After a tree is constructed,
the C4.5 rule induction program can be used to produce a set of equivalent rules. The
rules are formed by writing a rule for each path in the tree and then eliminating any
unnecessary antecedents and rules.

4 Evaluation

The performance of the proposed approaches with the induction of the suggested fea-
tures was measured by the utilization of f-measure metric per each IP break class, as
they have been explained in Section 2. Results were obtained using the 10-fold cross
validation method [15]. Defining f-measure (FM), is the harmonic mean of precision
and recall, calculated as:

1/

(
α

1
P

+ (1 − α)
1
R

)
(1)

α is a factor determining the weighting of precision and recall. The value of α = 0.5
has been used for the current evaluation for equal weighting of precision and recall.

4.1 Results

In an attempt to evaluate the IP break models we calculated the total accuracy, kappa
statistic, mean average error (MAE) and root mean square error (RMSE).

Table 1. Total accuracy of the IP break models

Methods Generic Museum
CART 83.79% 87.71%
C4.5 86.02% 88.62%

All resulted models revealed a kappa statistic higher than 0.75 which is generally
regarded as a good statistic correlation. Accuracy of the models is tabulated in Table 1.
We can see that in all cases C4.5 performed better than CART especially in the case of
generic dataset.
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It is clear that MAE values for all models are close to the corresponding RMSE
values giving us the insight that there were not test cases in which the prediction error
was significantly greater than the average prediction error.

A detailed observation of the prediction of each class presented by each model, the
following can be derived. In Figure 2 the f-measure for each IP break class is depicted
for the generic dataset. For these models, classification for the IP break cases with the
highest occurrence in the dataset along with class b3, performed better.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b0 b1 b2 b3

CART-FM

C4.5-FM

Generic Dstrb

Fig. 2. F-measure for generic domain models

As regards b3 the high f-measure is a result of the fact that this class has low corre-
lation with the other. C4.5 performed better than CART especially in the prediction of
the b2 category. Non-breaks were predicted with an f-measure higher than 0.9 for both
models.
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Fig. 3. F-measure for museum domain models

The next step of our exertion was the evaluation of the models derived from the
museum domain dataset. F-measure of those models is illustrated in Figure 3. For this
domain, both approaches performed sufficiently well with C4.5 performing slightly bet-
ter almost in every category. For the prediction of non-breaks, both approaches achieved
a score of f-measure more than 91% while the lowest was the prediction of b2 class with
CART with an f-measure of 0.7.

5 Conclusions

We constructed IP break prediction models with the utilization of decision trees and the
induction of shallow textual features. Specifically, we trained CART and C4.5 decision
trees with a generic and a museum domain corpus. Both algorithms performed equally
well in the prediction of all classes. As expected, museum domain models gave higher
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prediction scores for all IP break classes as breaks are described by simpler “rules”
due to the limitation of the domain. C4.5 performed slightly better than CART in all
models. Furthermore, museum domain models showed high prediction accuracy for
both approaches with C4.5 having the highest score.

The shallow textual feature set used in these experiments showed an improvement
in the prediction of IP break prediction classes of b1, b2 and b3, especially in the case
of the generic dataset, compared to the feature set used in earlier works by the two
Universities [10], [8]. Further improvements in the tree-structured predictors can be
achieved by the introduction of more delicate linguistic features as has been inspected
on [16] for the CART approach.
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