8. 4. The ElGamal Digital Signature

Define \(GF(p) = F_p \)

System public key: \(p \) is a prime such that the discrete log problem in \(F_p \) is infeasible, \(\alpha \in F_p^* \), a primitive element in \(F_p \).

User Bob: Selects \(x, 0 < x < p \) with \((x, p-1) = 1 \) as his private key. Compute \(y = \alpha^x \) as his public key.
Signing process: To sign a message m (in the following, we always suppose m is a hashed value of the message m.)

(a) Randomly picks k, $0 < k < p$ with $(k, p-1) = 1$.

(b) Computes $r = \alpha^k$

(c) Solve for s in the equation:

$$m = xr + ks \mod p - 1$$

(called the signing equation)

i.e, $s = k^{-1} (m - xr) \mod p - 1$

Then, (r, s) is a digital signature of m.

$(m, (r, s))$ as a signed message

Verifying process: Check whether

$$\alpha^m = y^r r^s$$

(i.e, $\alpha^{s^{-1}m} y^{-rs^{-1}} = r$)
ElGamal and DSS Signing Process

Message \(m \) \rightarrow \text{Hash} \rightarrow \text{Sign} \rightarrow (r, s) \rightarrow \text{signature}

- \(x \): private key
- \(k \): secret number per message

\[\alpha^x r = \alpha^k \]
ElGamal and DSS Verifying Process

\[m \rightarrow \text{Hash} \rightarrow \text{Verifying} \]

\[y = \alpha^x: \text{public key} \]
Security of the ElGamal Signature Scheme:

Consider

\[m = xr + ks \mod p - 1 \quad (1) \]

If the attacker can compute \(y = \alpha^x \) to obtain \(x \), then he can forge any signature since in (1) he can pick \(k \) to compute \(r \), and therefore, obtain \(s \).

Thus the security of the ElGamal digital signature algorithm is based on the difficulty of solving discrete log problem in \(F_p \).

Remark: The random number \(k \) should be different per message.
Example 1. System parameters: \(p = 23 \), \((p-1)=2\times11\) then \(\alpha = 5 \)

primitive in \(\mathbb{Z}_{23} \)

User Bob: Private key: \(x = 3 \)

Public-key: \(y = 5^3 \mod 23 = 10 \)

Signing Process:

Message \(m = 7 \) (We assume that this is the hashed value for simplicity, i.e., \(h(m) = 7 \).)

(a) Pick a random number \(k = 9 \)

(b) Compute \(r = \alpha^9 = 5^9 = 11 \mod 23 \)

(c) Solving for \(s \) in the equation: \(m = xr + ks \mod p-1 \)

\[
s = k^{-1}(m - xr) = -5(7 - 3\times11) = -2 \mod 22
\]

Signature: \((r, s) = (11, 20)\)
Verifying process: Check whether

\[\alpha^m = y^r r^s \]

Compute:

\[\alpha^m = 5^7 = 17 \quad \text{and} \quad y^r r^s = 10^{11} 11^{20} = 22 \times 6 = 17 \]

Thus, \((11, 20)\) is a valid signature of \(m = 7\).