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Abstract 
 

Geometric methods are very intuitive and provide a 
theoretically solid viewpoint to many optimization 
problems. SVM is a typical optimization task that has 
attracted a lot of attention over the recent years in 
many Pattern Recognition and Machine Learning 
tasks. In this work, we exploit recent results in 
Reduced Convex Hulls (RCH) and apply them to a 
Nearest Point Algorithm (NPA) leading to an elegant 
and efficient solution to the general (linear and non-
linear, separable and non-separable) SVM 
classification task.  
 
 
1. Introduction 
 

Geometry provides an intuitive and theoretically 
pleasing framework for the solution of many problems 
in the fields of Pattern Recognition and Machine 
Learning. The Support Vector Machine (SVM) 
paradigm in pattern recognition is known to posses 
certain advantages over a number of alternatives (e.g., 
[1], [2]). 

Although the geometric interpretation of SVM is 
already known and exposed in, e.g.,   [3], the main 
stream of solving methods comes from the algebraic 
field (mainly decomposition). One of the most popular 
algebraic algorithms, combining speed and ease of 
implementation with very good scalability properties, 
is the Sequential Minimal Optimization (SMO) [4]. 
The geometric interpretation of SVM in the feature 
space is a consequence of the dual representation (i.e., 
the convexity of each class and finding the respective 
support hyperplanes that exhibit the maximal margin) 
for the separable case [5], [6] and of the notion of the 
Reduced Convex Hull (RCH) [7] for the non-separable 
case. Actually, with the exception of [8], the geometric 
algorithms presented until now ([9], [10]) are suitable 
only for solving directly the separable case and 
indirectly the non-separable case through the technique 

proposed in [11]. However, this technique incorporates 
not linear but quadratic penalty factors and it has been 
reported to lead to poor results in practical cases [9]. 
On the other hand, the application of geometric 
algorithms to the RCH framework is readily seen to 
amount to a combinatorial complexity. 

The contribution of this work consists of the 
development and proof of a number of Propositions 
that allow the use of the popular Gilbert’s geometric 
algorithm – initially proposed for solving the Nearest 
Point Problem (NPP) ([12]) between convex hulls –, to 
the paradigm of SVM, for both the separable and non-
separable classification tasks. The derived geometric 
algorithm, involving RCH, reduces the complexity 
from combinatorial to quadratic. 
 
2. SVM and Reduced Convex Hulls 
 

A SVM finds the best separating (maximal margin) 
hyperplane between two classes of training samples in 
the feature space, which is in line with optimizing 
bounds concerning the generalization error [1]. The 
playground for SVM is the feature space H , which is  
a Reproducing Kernel Hilbert Space (RKHS), where 
the mapped patterns live ( :Φ →X H ). It is not 
necessary to know the mapping Φ  itself analytically, 
but only its kernel, i.e., the value of the inner products 
of the mappings of all the samples 
( ( ) ( ) ( )( )1 2 1 2, |k x x x x= Φ Φ  for all 1 2,x x ∈X ) [13]. 
Through the “kernel trick”, it is possible to transform a 
nonlinear classification problem to a linear one, but in 
a higher (maybe infinite) dimensional space H .1  

This classification task, expressed in its dual form, 
is equivalent with finding the closest points between 

                                                        
1 In the rest of this work, for keeping the notation clearer and 

simpler, the quantities x  will be used instead of ( )xΦ , since in 

the final results, the patterns enter only through inner products and 
not individually, therefore making the use of kernels readily 
applicable. 



the convex hulls generated by the (mapped) patterns of 
each class in the feature space [5], i.e., it is a Nearest 
Point Problem (NPP). Finally, in case that the 
classification task for the given model corresponds to 
non-separable datasets, i.e., the convex hulls of the 
(mapped) patterns in the feature space are overlapping, 
the problem is still solvable, provided that the 
corresponding hulls are reduced, so that to become 
non-overlapping [7], [14]. This is illustrated in Fig. 1. 
Therefore, the need to introduce the framework of the 
reduced convex hulls has been apparent. Besides, in 
our case, this framework has to be extended by a set of 
RCH-related mathematical properties that will allow 
the complexity of the derived algorithm to be reduced 
to quadratic levels. 
 

 
Fig. 1. The initial convex hulls (light gray), generated 
by the two training datasets (of disks and diamonds 
respectively) are overlapping; still overlapping are the 
RCHs with 0.4µ =  (darker gray); however, the RCHs 

with 0.1µ =  (darkest gray) are disjoint and, therefore, 

separable. The nearest points of the RCHs, found 
through the application of the NPA presented here, are 
shown as circles and the corresponding separating 
hyperplane as bold line. 

 
Definition 1: The set of all convex combinations of 
points in some set X , with the additional constraint 
that each coefficient ia  is upper-bounded by a non-
negative number 1µ <  is called the reduced convex 

hull of X  and is denoted as ( )R ,X µ : ( )R ,X µ ≡  

{ }1 1
: ,   ,   1,   0k k

i i i i ii i
w w a x x X a a µ

= =
= ∈ = ≤ ≤∑ ∑  

 In this way, the initially overlapping convex hulls, 
with a suitable selection of the bound µ , can be 
reduced so that to become separable. Once separable, 
the theory and tools developed for the separable case 
can be readily applied. The algebraic proof is found in 
[7] and [5] and the geometric one in [3]. 

The bound µ , for a given set of original points, 
plays the role of a reduction factor, since it controls the 
size of the generated RCH; the effect of the value of 
bound µ  to the size of the RCH is shown in Fig. 1. 

Although, at first glance, this is a nice result that 
lends itself to a geometric solution, i.e., finding the 
nearest points between the RCHs, it is not a 
straightforward task: The nearest points between two 
convex hulls depend directly on their extreme points 
[15], which, for the separable case are some of the 
original points. However, in the non-separable case, 
each extreme point of the RCHs is a reduced convex 
combination of the original points. Hence, a direct 
employment of a geometric NPA (which obviously 
depends on the original points) is impractical, since an 
intermediate step of combinatorial complexity has been 
introduced. Recently ([8]), two theorems were proved 
that overcome this computational difficulty, leading to 
quadratic complexity (i.e., as the standard SVM 
formulation). Specifically, it was shown that: a)  the 
(candidates to be) extreme points of an RCH are linear 
combinations of a specific number m of the original 
points ( 1m µ=    , where x    denotes the ceiling of 
x ), with weights specific coefficients that are 
analytically computed and b) it is not the extreme RCH 
points that are needed, but rather their projections onto 
a specific direction. Then, by exploiting the previous 
results (stated in a)), an efficient procedure was 
developed to compute the extreme RCH point with the 
minimum projection by sorting the projections of all 
the original points in ascending order and combining 
appropriately the m  smaller of them. 

In the sequel, a number of novel Propositions are 
stated (without proofs due to lack of space), that are 
necessary in order to extend the results of [8] to 
Gilbert’s algorithm. This algorithm transforms the NPP 
to a Minimum Norm Problem (MNP) and works on 
Minkowski difference sets. Thus, it is necessary to 
prove that the Minkowski difference of two RCHs is a 
RCH itself, having a direct (and explicit) relation with 
the original sets. Besides, since Gilbert’s algorithm 
[12] finds at each iteration step the point of a line 
segment with minimum norm and uses it in the next 
iteration step, it is necessary to prove that such a point 
belongs to the RCH. 

Proposition 1: The set ( )R ,X µ−  is still a RCH; 

actually it is ( )R ,X µ− . 
Proposition 2: Scaling is a RCH-preserving 

property, i.e., ( ) ( )R , R ,c X cXµ µ= , { }0c ∈ −\ . 
Proposition 3: The Minkowski sum of two RCH is 

also a RCH; actually it is the RCH produced by the 
Minkowski sum of the original sets, with coefficients’ 



bound the product of the original coefficients’ bounds, 
i.e., ( ) ( ) ( )1 1 2 2 1 2 1 2R , R , R ,X X X Xµ µ µ µ+ = + . 

 
Corollary 1: The Minkowski difference of two 

RCH 
( ) ( ){ }1 1 2 2: , R , , R ,Z z z x y x X y Xµ µ= = − ∈ ∈  is 

the RCH ( )1 2 1 2R ,X X µ µ− . 

Corollary 2: ( ) ( )1 1 1 2 2 2R , R ,a X a Xµ µ+  =  

( )1 1 2 2 1 2R ,a X a X µ µ+ , { }1 2, 0a a ∈ −\ . 
Corollary 3: Any point of the line segment joining 

two arbitrary points of the set 
( ) ( ){ }1 1 2 2: , , , ,Z z z x y x R X y R Xµ µ= = − ∈ ∈ , 

belongs to the set, since this is a primitive property of 
RCH and Z  is such. 

 
3. Geometric Algorithm for SVM 
separable and non-separable tasks 

 
Using the above RCH framework, the general (non-

separable) SVM classification task can be formulated 
as follows [6], [3]: Given a set of patterns { }ix   and 

their corresponding labels { }iy , { }1,1iy ∈ − , where 

{ }1 : 1iI i y= = , { }2 : 1iI i y= = − , { }1 1,iX x i I= ∈ , 

{ }2 2,iX x i I= ∈ , find the couple2 of points ( )* *
1 2,x x , 

such that 
( ) ( )* *

1 2 2 1, arg minx x x x= − , (1) 

where ( )1 1 1R ,x X µ∈ , ( )2 2 2R ,x X µ∈  and assuming 

that the parameters ( )1 2,µ µ  have been selected to 

guarantee that ( ) ( )1 1 1 1R , R ,X Xµ µ = ∅∩ . This is 
clearly a NPP and is equivalent to the following MNP 
([9]): find *z , such that 

( )* arg min
z Z

z z
∈

= , (2) 

where 
( ) ( ){ }1 2 1 1 1 2 2 2: , R , , R ,Z z z x x x X x Xµ µ= = − ∈ ∈ .  

A brief description of the original Gilbert’s 
algorithm, (provided that Z  is a convex set, of which 
we need to find the minimum norm member *z ), is 
given below:  

 
Step 1: Choose w Z∈ . 

                                                        
2 There may be more than one such couple of points, in case of 

degeneracy, but the distance between the points of each couple will 
be the same for all couples. 

Step 2: Find the point z Z∈  with the minimum 
projection onto the direction of w . If w z≅  

then *z w= ; stop. 
Step 3: Find the point neww  of the line segment 

[ ],w z , with minimum norm (closest to the origin). 

Set neww w←  and go to Step 2. 
 

 
Fig. 2: Elements involved in Gilbert’s algorithm. 

 
The idea behind the algorithm is very simple and 

intuitive and the elements involved in the above steps 
of the algorithm, are illustrated in Fig. 2. 

It turns out that when applying Gilbert’s algorithm 
to RCH, only its basic philosophy remains intact. The 
fact that the extreme points are now reduced convex 
combinations of the original points dictates the 
derivation of a distinctly different algorithmic scheme. 
More specifically: 

1. The set Z , which in this case is the 
Minkowski difference of the two RCH, 
generated by the original pattern classes, must 
be a convex set. Actually, Z  is a RCH, as it is 
ensured by Corollary 1 and therefore a convex 
set. 

2. The initial w  of Step 1 has been chosen to be 
the centroid of the RCH and hence, w Z∈ . 

3. The minimum norm point neww , found at each 
step, must be a feasible solution, i.e., be the 
vector joining two points, each in the RCH of 
the corresponding class. This is ensured by 
Corollary 3. 

4. All vectors involved in the calculations should 
not be used directly (as in the original 
Gilbert’s algorithm), but only through inner 
products, since Z  is a RKHS. Furthermore, at 
each step, the best solution found so far ( neww ) 
has to be expressed in terms of the original 
points and their corresponding coefficients 
(Lagrange multipliers) ia . Therefore, 

1 2w w w= −  
1 2

i i i ii I i I
a x a x

∈ ∈
= −∑ ∑ . 

w

neww  

z  

1 q−

q  

Z  



5. The point  ( )arg min ,r z Zz z w w∈≡  (with 

minimum projection of Z  RCH on the 
direction of w ) is computed as follows: 
Recall that rz  is the difference of two vectors 

1rz  and 2rz , each of which is a reduced 
convex combination of the original points of 
the corresponding class. Then, by exploiting 
the two theorems derived in [8], we get 

( ) ( )1: 1 kk
kr k i k I endi I end

z x xµ λ
∈ −

= +∑ �� , where 

{ }1, 2k ∈ , end is the last element of the 

specific ordered set and 1 1k k kλ µ µ≡ −    . kI�  

is the set of the first 1 kµ    indices of the 
(original) points with sorted projections (in 
increasing order) onto 1 2w w−  (if 1k = ) or 

2 1w w−  (if 2k = ) respectively. 
6. The update of the coefficients ia  is computed 

according to the following Lemma: 
Lemma: The coefficients new

ia of neww  (with 

ki I∈ ) are ( )1new
i ia q a= −  

( ) ( )1: 1k k
k ij k ijj I end j I end

q qµ δ λ δ
∈ − ∈

+ +∑ ∑� �  where 

( )2min 1, , r rq w w z z w= − − . 

 
The proofs and the calculations for the steps 5 and 6 

above are rather lengthy and the technicalities and 
details of the implementation of the algorithm are not 
presented here due to lack of space. 

 
3. Experiments 

 
In order to extensively investigate the performance 

(both in speed and accuracy) of the new algorithm 
presented here, a number of publicly available test 
datasets, with known success rates under specific SVM 
training models (referred in the literature) have been 
used. Three different SVM classification algorithms 
were implemented (in Matlab), tested and compared: 
the SMO algorithm, as it was presented by Platt in [4] 
(denoted as SMO), a modified SMO algorithm 
presented by Keerthi et. al. in [16] (denoted as SMO-
K1) and the algorithm presented here (denoted as 
RCH-G). 

Each algorithm was trained and tested for each 
dataset, under the same model (kernel with the 
corresponding parameters) in order to achieve the same 
accuracy referred in the literature ([17], [18]). The 
accuracies of all classifiers, achieved for each specific 

dataset, were calculated under the same validation 
scheme, i.e., the same validation method and the same 
data realizations (100 publicly available realizations). 
The results of the runs are summarized in Table 1. 
 
Table 1: Results achieved for each algorithm (number 
of kernel evaluations and run times in seconds). 

Dataset Method Success 
(%) 

Kernel 
Eval. 

Time 
(s) 

SMO 76.7±1.8 2.01×107 63.8 
SMO-K1 76.7±1.8 1.45×106 8.4 Diabetis 
RCH-G 76.3±1.8 6.99×105 6.5 
SMO 76.0±2.2 1.37×107 2840 

SMO-K1 76.1±2.2 9.00×106 161 German 
RCH-G 76.3±0.4 2.71×106 15 
SMO 88.8±0.6 9.43×107 2005 

SMO-K1 89.2±0.5 2.20×106 65 Waveform
RCH-G 88.5±0.7 1.46×106 23.2 
SMO 94.6±2.4 1.27×106 31.50 

SMO-K1 94.7±2.5 8.32×104 0.98 Thyroid 
RCH-G 95.4±2.1 5.78×104 0.52 
SMO 83.9±3.3 2.05×106 51.22 

SMO-K1 83.2±4.2 2.62×105 1.54 Heart 
RCH-G 84.8±3.3 4.70×104 0.81 

 
The results of the new geometric algorithm 

presented here, compared to the most popular and fast 
algebraic ones, are very encouraging: The difference in 
the number of kernel evaluations is noticeable. 
Moreover the difference in the execution times is even 
more noteworthy. The enhanced performance of the 
new algorithm is due to the fact that although the 
algebraic algorithms (especially SMO-K1) make a 
clever utilization of the cache, where kernel values are 
stored, they cannot avoid repetitive searches in order to 
find the best two points to use for each optimization 
step. Furthermore, the geometric algorithm presented 
here is a straightforward optimization scheme, with a 
clear optimization target at each iteration step, always 
aiming to the global minimum and it is independent of 
obscure and sometimes inefficient heuristics. 
 
4. Conclusion 
 

A novel geometric algorithm for the solution of the 
general SVM task has been presented. The algorithm 
was tested against a number of widely used datasets 
and resulted in enhanced performance, compared  to 
SMO and one of its popular variants, with respect to 
kernel evaluations and time requirements. 
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