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(SVM) Classification
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Abstract—The geometric framework for the support vector ma-
chine (SVM) classification problem provides an intuitive ground
for the understanding and the application of geometric optimiza-
tion algorithms, leading to practical solutions of real world classifi-
cation problems. In this work, the notion of “reduced convex hull”
is employed and supported by a set of new theoretical results. These
results allow existing geometric algorithms to be directly and prac-
tically applied to solve not only separable, but also nonseparable
classification problems both accurately and efficiently. As a prac-
tical application of the new theoretical results, a known geometric
algorithm has been employed and transformed accordingly to solve
nonseparable problems successfully.

Index Terms—Classification, kernel methods, pattern recogni-
tion, reduced convex hulls, support vector machines (SVMs).

I. INTRODUCTION

SUPPORT vector machine (SVM) formulation of pattern
recognition (binary) problems brings along a bunch of

advantages over other approaches, e.g., [1] and [2], some of
which are: 1) Assurance that once a solution has been reached,
it is the unique (global) solution, 2) good generalization prop-
erties of the solution, 3) sound theoretical foundation based
on learning theory [structural risk minimization (SRM)] and
optimization theory, 4) common ground/formulation for the
class separable and the class nonseparable problems (through
the introduction of appropriate penalty factors of arbitrary
degree in the optimization cost function) as well as for linear
and nonlinear problems (through the so called “kernel trick”)
and, 5) clear geometric intuition on the classification task. Due
to the above nice properties, SVM have been successfully used
in a number of applications, e.g., [3]–[9].

The contribution of this work consists of the following.
1) It provides the theoretical background for the solution of the
nonseparable (both linear and nonlinear) classification prob-
lems with linear (first degree) penalty factors, by means of the
reduction of the size of the convex hulls of the training patterns.
This task, although it is, in principle, of combinatorial com-
plexity in nature, it is transformed to one of linear complexity
by a series of theoretical results deduced and presented in this
work. 2) It exploits the intrinsic geometric intuition to the full
extent, i.e., not only theoretically but also practically (leading to
an algorithmic solution), in the context of classification through
the SVM approach. 3) It provides an easy way to relate each
class with a different penalty factor, i.e., to relate each class
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with a different risk (weight). 4) It applies a fast, simple, and
easily conceivable algorithm to solve the SVM task. 5) It opens
the road for applying other geometric algorithms, finding the
closest pair of points between convex sets in Hilbert spaces, for
the nonseparable SVM problem.

Although some authors have presented the theoretical
background of the geometric properties of SVMs, exposed
thoroughly in [10], the main stream of solving methods comes
from the algebraic field (mainly decomposition). One of the best
representative algebraic algorithms with respect to speed and
ease of implementation, also presenting very good scalability
properties, is the sequential minimal optimization (SMO) [11].
The geometric properties of learning [12] and specifically of
SVMs in the feature space, have been pointed out early enough
through the dual representation (i.e., the convexity of each class
and finding the respective support hyperplanes that exhibit the
maximal margin) for the separable case [13] and also for the
nonseparable case through the notion of the reduced convex
hull (RCH) [14]. However, the geometric algorithms presented
until now [15], [16] are suitable only for solving directly the
separable case. These geometric algorithms, in order to be
useful, have been extended to solve indirectly the nonseparable
case through the technique proposed in [17], which transforms
the nonseparable problem to a separable one. However, this
transformation (artificially extending the dimension of the
input space by the number of training patterns) is equivalent
to a quadratic penalty factor. Moreover, besides the increase
of complexity due to the artificial expansion of the dimension
of the input space, it has been reported that the generalization
properties of the resulting SVMs can be poor [15].

The content of the rest of the paper has been structured as
follows: In Section II, some preliminary material on SVM clas-
sification has been presented. In Section III, the notion of the
reduced convex hull is defined and a direct and intuitive con-
nection to the nonseparable SVM classification problem is pre-
sented. In the sequel, the main contribution of this work is dis-
played, i.e., a complete mathematical framework is devised to
support the RCH and, therefore, make it directly applicable to
practically solve the nonseparable SVM classification problem.
Without this framework, the application of a geometric algo-
rithm in order to solve the nonseparable case through RCH is
practically impossible, since it is a problem of combinatorial
complexity. In Section IV, a geometric algorithm is rewritten in
the context of this framework, therefore, showing the practical
benefits of the theoretical results derived herewith to support
the RCH notion. Finally, in Section V, the results of the appli-
cation of this algorithm to solve certain classification tasks are
presented.
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Fig. 1. Separating hyperplane exhibiting zero margin (a) compared to the
maximal margin separating hyperplane, and (b) for the same classes of training
samples presented in feature space.

II. PRELIMINARY

The complex and challenging task of (binary) classification
or (binary) pattern recognition in supervised learning can be
described as follows [18]: Given a set of training objects
(patterns)—each belonging to one of two classes—and their
corresponding class identifiers, assign the correct class to a
newly (not a member of ) presented object; ( does not
need any kind of structure except of being a nonempty set).
For the task of learning, a measure of similarity between the
objects of is necessary, so that patterns of the same class are
mapped “closer” to each other, as opposed to patterns belonging
to different classes. A reasonable measure of similarity has
the form , where
is (usually) a real (symmetric) function, called a kernel. An
obvious candidate is the inner product ,1 in case that

is an inner-product space (e.g., ), since it leads directly
to a measure of lengths through the norm derived from the
inner product and also to a measure of angles
and hence to a measure of distances. When the set is not an
inner product space, it may be possible to map its elements
to an inner product space, , through a (nonlinear) function

such that . Under
certain loose conditions (imposed by Mercer’s theorem [19]),
it is possible to relate the kernel function with the inner product
of the feature space , i.e., for
all . Then, is known as a reproducing kernel
Hilbert space (RKHS). RKHS is a very useful tool, because
any Cauchy sequence converges to a limit in the space, which
means that it is possible to approximate a solution (e.g., a point
with maximum similarity) as accurately as needed.

A. SVM Classification

Simply stated, an SVM finds the best separating (maximal
margin) hyperplane between the two classes of training samples
in the feature space, as it is shown in Fig. 1.

A linear discriminant function has the form of the linear func-
tional , which corresponds to a hyperplane
[20], dividing the feature space. If, for a given pattern mapped
in the feature space to , the value of is a positive number,

1The notation (x j y) will be used interchangeably with hx; yi for spaces
which coincide with their dual.

Fig. 2. Geometric interpretation of the maximal margin classification problem.
Setting H � (hw; xi=kwk) + (c=kwk) the hyperplanes H : H = 0;H :
H = �(m=kwk) and H : H = m=kwk are shown.

then the pattern belongs to the class labeled by the numeric
value ; otherwise, it belongs to the class with value . De-
noting as the numeric value of the class label of pattern
and the maximum (functional) margin, the problem of clas-
sification is equivalent to finding the functional (satisfying

) that maximizes .
In geometric terms, expressing the involved quantities

in “lengths” of (i.e., ), the problem is restated as
follows: Find the hyperplane ,
maximizing the (geometric) margin and satisfying

for all the training
patterns.

The geometric margin represents the minimum dis-
tance of the training patterns of both classes from the separating
hyperplane defined by . The resulting hyperplane is called
the maximal margin hyperplane. If the quantity is posi-
tive, then the problem is a linearly separable one. This situation
is shown in Fig. 2.

It is clear that (because of the
linearity of inner product) and since , a scaling
of the parameters and does not change the geometry.
Therefore, assuming (canonical hyperplane), the classi-
fication problem takes the equivalent form: Find the hyperplane

(1)

maximizing the total (interclass) margin , or equivalently
minimizing the quantity

(2)

and satisfying

(3)

This is a quadratic optimization problem (if the Euclidean
norm is adopted) with linear inequality constraints and the stan-
dard algebraic approach is to solve the equivalent problem of
minimizing the Lagrangian

(4)
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subject to the constraints . The corresponding dual opti-
mization problem is to maximize

(5)

subject to the constraints

(6)

and

(7)

Denote, for convenience, by and the sets of indices ,
such that and , respectively, and by the set
of all indices, i.e., .

The Karush–Kuhn–Tucker (KKT) optimality conditions pro-
vide the necessary and sufficient conditions that the unique so-
lution has been found to the last optimization problem, i.e., (be-
sides the initial constraints)

(8)

(9)

and the KKT complementarity condition

(10)

which means that, for the inactive constraints there is and
for the active ones (when is satisfied)
there is . The points with lie on the canonical hy-
perplane and are called support vectors. The interpretation of the
KKT conditions [especially (8) and (9) with the extra reasonable
nonrestrictive assumption that ] is
very intuitive [1] and leads to the conclusion that the solution
of the linearly separable classification problem is equivalent to
finding the points of the two convex hulls [21] (each generated
by the training patterns of each class) which are closest to each
other and the maximum margin hyperplane a) bisects, and b) is
normal to the line segment joining these two closest points, as
seen in Fig. 3. The formal proof of this is presented in [13].

To address the (most common in real world applications) case
of linearly nonseparable classification problem, for which any
effort to find a separating hyperplane is hopeless, the only way
for someone to reach a solution is to relax the data constraints.
This is accomplished through the addition of margin slack vari-
ables , which allow a controlled violation of the constraints
[22]. Therefore, the constraints in (3) become

(11)

where . It is clear that if , then the point is
misclassified by the hyperplane . The quantity
has a clear geometric meaning: It is the distance of the point
(in lengths of ) from the supporting hyperplane of its corre-
sponding class; since is positive, lies in the opposite di-
rection of the supporting hyperplane of its class, i.e., the corre-
sponding supporting hyperplane separates from its own class.
A natural way to incorporate the cost for the errors in classifi-
cation is to augment the cost function (2) by the term

Fig. 3. Geometric interpretation of the maximal margin classification problem.
Closest points are denoted by circles.

(although terms of the form have also been proposed),
where is a free parameter (known also as regularization pa-
rameter or penalty factor) indicating the penalty imposed to the
“outliers,” i.e., higher value of corresponds to higher penalty
for the “outliers” [23]. Therefore, the cost function (2) for the
nonseparable case becomes

(12)

Consequently, the Langrangian of the primal problem is

(13)

subject to the constraints and (introduced to
ensure positivity of ). The corresponding dual optimization
problem has again the form of (5), i.e., to maximize

(14)

but now subject to the constraints

(15)

and

(16)

It is interesting that neither the slack variables nor their
associated Lagrange multipliers are present in the Wolfe dual
formulation of the problem (a result of choosing as the
exponent of the penalty terms) and that the only difference from
the separable case is the impose of the upper bound to the
Lagrange multipliers .

However, the clear geometric intuition of the separable case
has been lost; it is regained through the work presented in [14],
[13] and [10], where the notion of the reduced convex hull, in-
troduced and supported with new theoretical results in the next
section, plays an important role.
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Fig. 4. Evolution of a convex hull with respect to �. (The corresponding �of each RCH are the values indicated by the arrows.) The initial convex hull (� = 1),
generated by ten points (n = 10), is successively reduced, setting � to 8=10; 5=10;3=10;2=10;1:5=10;1:2=10 and finally 1=10, which corresponds to the
centroid. Each smaller (reduced) convex hull is shaded with a darker color.

III. REDUCED CONVEX HULLS (RCH)

The set of all convex combinations of points of some set ,
with the additional constraint that each coefficient is upper-
bounded by a nonnegative number , is called the reduced
convex hull of and denoted by

Therefore, for the nonseparable classification task, the ini-
tially overlapping convex hulls, with a suitable selection of the
bound , can be reduced so that to become separable. Once sep-
arable, the theory and tools developed for the separable case can
be readily applied. The algebraic proof is found in [14] and [13];
a totally geometric formulation of SVM leading to this conclu-
sion is found in [10].

The effect of the value of bound to the size of the RCH is
shown in Fig. 4.

In the sequel, we will prove some theorems and propositions
that shed further intuition and usefulness to the RCH notion and
at the same time form the basis for the development of the novel
algorithm which is proposed in this paper.

Proposition 1: If all the coefficients of all the convex com-
binations forming the RCH of a set with elements,
are less than (i.e., ), then will be empty.

Proof:
. Since is needed to

be true, it is clear that .

Proposition 2: If for every , there is in a RCH
of a set with different points as elements, then
degenerates to a set of one single point, the centroid

point (or barycenter) of .
Proof: From the definition of the RCH, it is

where is a single point

Remark: It is clear that in an RCH , a choice of
is equivalent with as the upper bound for all

, because it must be and, therefore, .
As a consequence of this and the above proposition, it is de-
duced that the RCH of a set will be either empty (if

), or grows from the centroid to the convex
hull of .

For the application of the above to real life algorithms, it is ab-
solutely necessary to have a clue about the extreme points of the
RCH. In the case of the convex hull, generated by a set of points,
only a subset of these points constitute the set of extreme points,
which, in turn, is the minimal representation of the convex hull.
Therefore, only a subset of the original points is needed to be
examined and not every point of the convex hull [24]. In con-
trast, as it will soon be seen, for the case of RCH, its extreme
points are the result of combinations of the extreme points of
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the original convex hull, which, however, do not belong to the
RCH, as it was deduced above.

In the sequel, it will be shown that not any combination of
the extreme points of the original convex hull leads to extreme
points of the RCH, but only a small subset of them. This is the
seed for the development of the novel efficient algorithm to be
presented later in this paper.

Lemma 1: For any point , if there ex-
ists a reduced convex combination , with

and at least one
coefficient , not belonging in the set

, where is the integer
part of the ratio , then there exists at least another coeffi-
cient , not belonging in the set , i.e.,
there cannot be a reduced convex combination with just one
coefficient not belonging in .

Proof: The lengthy proof of this Lemma, is found in
Appendix.

Theorem 1: The extreme points of an RCH

have coefficients belonging to the set
.

Proof: In the case that the theorem is obviously true
since is the convex hull of , i.e.,
and, therefore, all the extreme points belong to the set . Hence,
if is an extreme point, its th coefficient is

For the theorem will be proved by contradiction:
Assuming that a point is an extreme point, with
some coefficients not belonging in , a couple of other points

are needed to be found and then to be proved
that belongs to the line segment . As two points are
needed, two coefficients have to be found not belonging in .
However, this is the conclusion of Lemma 1, which ensures that,
if there exists a coefficient of a reduced convex combination not
belonging in , there exists a second one not belonging in
as well.

Therefore, let an extreme point , where
, that have at least two coefficients and ,

such that and .
Let also such that and

, i.e., it is . Consequently,
the points are constructed as follows:

and

For the middle point of the line segment , it is

, which is a contradiction to the assumption that is an
extreme point. This proves the theorem.

Proposition 3: Each of the extreme points of an RCH

is a reduced convex combination of (distinct) points
of the original set , where is the smallest integer for
which it is . Furthermore, if , then
all ; otherwise, for and

.
Proof: Theorem 1 states that the only coefficients through

which a point from the original set contributes to an extreme
point of the RCH are either or .

If , then ; hence, the only
coefficient valid is and, since and , it is

.
If with , then

and, therefore, . Let be an extreme point
of be the number of points contributing to with
coefficient and the number of points with coefficient

i.e. (17)

Since

there is

(18)

If , then (18) becomes
; hence, which is the

desired result.
Therefore, the remaining case is when . Assuming

that there exist at least two initial points and with coeffi-
cient , the validity of the proposition will be proved
by contradiction. Since it is true for
this case, there exists a real positive number s.t.

. Let
and ; using them, let

and
. Obviously, since

, the points and belong in the RCH .
Taking into consideration that

, the middle point of the line
segment is

. Therefore, cannot be the ex-
treme point of the RCH , which contradicts with the
assumption that . This concludes the proof.

Remark: For the coefficients and , it holds
. This is a byproduct of the proof of the above

Proposition 3.



676 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

Remark: The separation hyperplane depends on the pair of
closest points of the convex hulls of the patterns of each class,
and each such point is a convex combination of some extreme
points of the RCHs. As, according to the above Theorem, each
extreme point of the RCHs depends on original points
(training patterns), it follows directly that the number of support
vectors (points with nonzero Lagrange multipliers) is at least

, i.e, the lower bound of the number of initial points con-
tributing to the discrimination function is (Fig. 5).

Remark: Although the above Theorem 1, along with Propo-
sition 3, restrict considerably the candidates to be extreme points
of the RCH, since they should be reduced convex combinations
of original points and also with specific coefficients (be-
longing to the set ), the problem is still of combinatorial na-
ture, because each extreme point is a combination of out
of initial points for each class. This is shown in Fig. 5. The-
orem 1 provides the necessary but not sufficient condition for a
point to be extreme in an RCH. The set of points satisfying the
condition is larger than the set of extreme points; these are the
“candidate to be extreme points,” shown in Fig. 5. Therefore,
the solution of the problem of finding the closest pair of points
of the two reduced convex hulls essentially entails the following
three stages:

1) identifying all the extreme points of each of the RCHs,
which are actually subsets of the candidates to be extreme
points pointed out by Theorem 1;

2) finding the subsets of the extreme points that contribute to
the closest points, one for each set;

3) determining the specific convex combination of each
subset of the extreme points for each set, which gives
each of the two closest points.

However, in the algorithm proposed herewith, it is not the ex-
treme points themselves that are needed, but their inner products
(projections onto a specific direction). This case can be signifi-
cantly simplified through the next theorem.

Lemma 2: Let
, and , with . The minimum weighted sum

on (for elements of if , or elements of if
) is the expression , if , or

, if , or , if ,
where , if .

Proof: The proof of this Lemma is found in the Appendix.
Theorem 2: The minimum projection of the extreme points

of an RCH

in the direction (setting and ) is

• , if and ;
• , if ;

where and is an ordering, such that
if .
Proof: The extreme points of are of the form

, where

Fig. 5. Three RCHs, (a)R(P5; 4=5),2 (b)R(P5;2=5), and (c)R(P5;1:3=5),
are shown, generated by five points (stars), to present the points that are
candidates to be extreme, marked by small squares. Each candidate to be
extreme point in the RCH is labeled so as to present the original points from
which it has been constructed, i.e., point (01) results from points (0) and (1);
the last label is the one with the smallest coefficient.

and . Therefore, taking into ac-
count that if , it is always , as it follows from the

2Pn stands for a (convex) Polygon of n vertices.
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Fig. 6. Minimum projection p of the RCH R(P3; 3=5), generated by three points and having � = 3=5, onto the direction w � w belongs to the point (01),
which is calculated, according to Theorem 2, as the ordered weighted sum of the projection of only d5=3e = 2 points [(0) and (1)] of the three initial points. The
magnitude of the projection, in lengths of kw �w k is (3=5)(x jw �w ) + (2=5)(x jw �w ).

Corollary of Proposition 3, the projection of an extreme point
has the form

and, according to the above Lemma 2, proves the theorem.
Remark: In other words, the previous Theorem states that

the calculation of the minimum projection of the RCH onto a
specific direction does not need the direct formation of all the
possible extreme points of RCH, but only the calculation of the
projections of the original points and then the summation of
the first least of them, each multiplied with the corre-
sponding coefficient imposed by Theorem 2. This is illustrated
in Fig. 6.

Summarizing, the computation of the minimum projection of
an RCH onto a given direction, entails the following steps:

1) compute the projections of all the points of the original
set;

2) sort the projections in ascending order;
3) select the first (smaller) projections;
4) compute the weighted average of these projections, with

weights suggested in Theorem 2.

Proposition 4: A linearly nonseparable SVM problem can
be transformed to a linearly separable one through the use of
RCHs (by a suitable selection of the reduction factor for each
class) if and only if the centroids of the classes do not coincide.

Proof: It is a direct consequence of Proposition 2, found
in [14].

IV. GEOMETRIC ALGORITHM FOR SVM SEPARABLE AND

NONSEPARABLE TASKS

As it has already been pointed out, an iterative, geometric al-
gorithm for solving the linearly separable SVM problem has
been presented recently in [16]. This algorithm, initially pro-
posed by Kozinec for finding a separating hyperplane and im-
proved by Schlesinger for finding an -optimal separating hy-
perplane, can be described by the following three steps (found
and explained in [16], reproduced here for completeness).

1) Initialization: Set the vector to any vector and
to any vector .

2) Stopping Condition: Find the vector closest to the hy-
perplane as where

for

for
(19)

If the -optimality condition
holds, then the vector and

defines the -solution; other-
wise, go to step 3).

3) Adaptation: If set and
compute , where

;
otherwise, set and com-
pute , where

.
Continue with step 2).

The above algorithm, which is shown in work schematically
in Fig. 7, is easily adapted to be expressed through the kernel
function of the input space patterns, since the vectors of the
feature space are present in the calculations only through norms
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Fig. 7. Quantities, involved in S-K algorithm, are shown here for simplicity
for (not reduced) convex hulls:w is the best (until current step) approximation
to the closest point of convX to convX ;m is the distance of w from the
closest projection of points of X onto (w �w ) in lengths of (w �w ).
The new w belongs to the set with the least m (e.g., in this case in convX )
and it is the closest point of the line segment with one end the old w and the
other end the point presenting the closest projection (m ), which in the figure
is circled; this new w is shown in the figure as w .

and inner products. Besides, a caching scheme can be applied
with only storage requirements.

The adaptation of the above algorithm is easy, with the math-
ematical toolbox for RCHs presented above and after making
the following observations.

1) and should be initialized in such a way that it is
certain they belong to the RCHs of and , respec-
tively. An easy solution is to use the centroid of each class
as such. The algorithm secures that and evolve in
such a way that they are always in their respective RCHs
and converge to the nearest points.

2) Instead of the initial points (i.e., ), all the
candidates to be extreme points of the RCH have to be
examined. However, actually what matters is not the ab-
solute position of each extreme point but their projection
onto or to , if the points to be examined
belong to the RCHs of and , respectively.

3) The minimum projection belongs to the point which is
formed according to Theorem 2.

According to the above, and for the clarity of the adapted algo-
rithm to be presented, it will be helpful that some definitions and
calculations of the quantities involved are provided beforehand.

At each step, the points and , representing the closest
points (up to that step) for each class respectively, are known
through the coefficients , i.e., and

. However, the calculations do not involve and
directly, but only through inner products, which is also true for
all points. This is expected, since the goal is to compare distances
and calculate projections and not to examine absolute positions.
This is the point where the “kernel trick” comes into the scene,
allowing the transformation of the linear to a nonlinear classifier.

The aim at each step is to find the point , belonging to any of
the RCHs of both classes, which minimizes the margin ,
defined [as in (19)] as

(20)

The quantity is actually the distance, in lengths of
, of one of the closest points ( or ) from the

closest projection of the RCH of the other class, onto the line de-
fined by the points and . This geometric interpretation is
clearly shown in Fig. 7. The intermediate calculations, required
for (20), are given in the Appendix.

According to the above, the algorithm becomes

1) Initialization:
a) Set

and and secure that
and .

b) Set the vectors and to be the centroids of the
corresponding convex hulls, i.e., set

and .
2) Stopping condition: Find the vector

(actually the coefficients ) s.t.

where

(21)

using (53) and (54).
If the -optimality condition

[calculated after (44), (53) and (54)] holds, then the vector
and defines the

-solution; otherwise, go to step 3).
3) Adaptation: If , set

and compute , where

and

[using (57)–(59)]; hence
; otherwise, set and compute

, where

and

[using (60)–(62)]; hence
. Continue with step 2).

This algorithm (RCH-SK) has almost the same complexity
as the Schlesinger–Kozinec (SK) one (the extra cost is the sort
involved in each step to find the least and inner
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TABLE I
COMPARATIVE RESULTS FOR THE SMO ALGORITHM [11] WITH THE

ALGORITHM PRESENTED IN THIS WORK (RCH-SK)

products, plus the cost to evaluate the inner product );
the same caching scheme can be used, with only
storage requirements.

V. RESULTS

In the sequel, some representative results of RCH-SK al-
gorithm are included, concerning two known nonseparable
datasets, since the separable cases work in exactly the same
way as the SK algorithm, proposed in [16]. Two datasets were
chosen. One is an artificial dataset of a two-dimensional (2-D)
checkerboard with 800 training points in 4 4 cells, similar
to the dataset found in [25]. The reason that a 2-D example
was chosen is to make possible the graphical representation of
the results. The second dataset is the Pima Indians Diabetes
dataset, with 768 eight-dimensional (8-D) training patterns
[26]. Each dataset was trained to achieve comparable success
rates for both algorithms, the one presented here (RCH-SK)
and the SMO algorithm presented in [11], using the same
model (kernel parameters). The results of both algorithms (total
run time and number of kernel evaluations) were compared and
summarized in Table I. An Intel Pentium M PC has been used
for the tests.

1) Checkerboard: A set of 800 (Class A: 400, Class B:
400) randomly generated points on a 2-D checkerboard
of 4 4 cells was used. Each sample attribute ranged
from to 4 and the margin was (the negative
value indicating the overlapping between classes, i.e., the
overlapping of the cells). A RBF kernel was used with

and the success rate was estimated using 40-fold
cross validation (40 randomly generated partitions of
20 samples each, the same for both algorithms). The
classification results of both methods are shown in Fig. 8.

2) Diabetes: The 8-D 768 samples dataset was used to train
both classifiers. The model (RBF kernel with ),
as well as the error rate estimation procedure (cross
validation on 100 realizations of the samples) that was
used for both algorithms, is found in [26]. Both classifiers
(SMO and RCH-SK) closely approximated the success
rate 76.47% , reported in [26].

As it is apparent from Table I, substantial reductions with re-
spect to run-time and kernel evaluations can be achieved using
the new geometric algorithm (RCH-SK) proposed here. These
results indicate that exploiting the theorems and propositions
presented in this paper can lead to geometric algorithms that
can be considered as viable alternatives to already known de-
composition schemes.

Fig. 8. Classification results for the checkerboard dataset for (a) SMO and
(b) RCH-SK algorithms. Circled points are support vectors.

VI. CONCLUSION

The SVM approach to machine learning is known to have
both theoretical and practical advantages. Among these are
the sound mathematical foundation of SVM (supporting their
generalization bounds and their guaranteed convergence to
the global optimum unique solution), their overcoming of the
“curse of dimensionality” (through the “kernel trick”), and
the intuition they display. The geometric intuition is intrinsic
to the structure of SVM and has found application in solving
both the separable and nonseparable problem. The iterative
geometric algorithm of Schlesinger and Kozinec, modified here
to work for the nonseparable task employing RCHs, resulted
in a very promising method of solving SVM. The algorithm
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presented here does not use any heuristics and provides a clear
understanding of the convergence process and the role of the
parameters used. Furthermore, the penalty factor (which has
clear meaning corresponding to the reduction factor of each
convex hull) can be set different for each class, reflecting the
importance of each class.

APPENDIX

Proof of Lemma 1: In case that the lemma is obvi-
ously true since .

The other case will be proved by contradiction; so, let
and be a point of this RCH. Furthermore,

suppose that is a reduced convex combination with the
number of coefficients for which the number of co-
efficients for which and the position of the
only coefficient of such that with

(22)

by assumption.
Clearly, . Since ,

it is . Besides, it is

(23)

From the first inequality of (23) it is
and from the second inequality of (23) it is

. These inequalities combined become

(24)

According to the above and since , it is

(25)

Two distinct cases need to be examined: 1) and
2) .

1) Let

(26)

Then and

(27)

Substituting the above to (25), it becomes
and, therefore

(28)

a) If then , which, substituted
into (28) and using (27), gives , which contra-
dicts to the assumption that .

b) If then and from (26) it
gives which is a contradiction.

c) If then

(29)

But since , which through (28)
gives or , a contradiction
to (29).

2) Let

(30)

Then

(31)

and

(32)

The cases when and will be considered
separately.
a) Let

(33)

which, substituted to (25) gives

(34)

i) Let ; consequently (34) gives by sub-
stitution which is a
contradiction.

ii) Let ; substi-
tuting this value in (34) gives which is
a contradiction.

iii) Let and,
using (34), gives

which is a contradiction.
b) Let

(35)

i) If then, setting and
observing that from (31), (25) becomes

which is a contradiction, since the
LHS is negative whereas the RHS is positive.

ii) Similarly, if then

(36)

Setting and observing from
(31) that , (25) through (36) becomes

which is a contradiction, since
the LHS is negative whereas the RHS is positive.

iii) If then there exists a positive integer
such that

(37)

This relation, through (25), becomes

(38)
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Substituting (38) into (25) gives

(39)

This last relation states that, in this case, there is an al-
ternative configuration to construct [other than (25)],
which does not contain the coefficient but only coeffi-
cients belonging to the set . This contradicts to the initial
assumption that there exists a point in a RCH that is a
reduced convex combination of points of with all ex-
cept one coefficients belonging to , since is not
necessary to construct .

Therefore, the lemma has been proved.
Proof of Lemma 2: Let

, where if and
, where no ordering is imposed on

the . It is certain that .
is minimum if the additives are the minimum

elements of . If the proof is trivial. Therefore, let
and hence . Thus and

. In general, let and ,
with , where .
Then

;
equality is valid only if .

Each of the remaining cases (i.e., , or ) is
proved similarly as above.

Calculation of the Intermediate Quantities Involved in the Al-
gorithm: For the calculation of , it is

(40)

Setting

(41)

(42)

and

(43)

it is

(44)

According to the above Proposition 3, any extreme point of
the RCHs has the form

(45)

The projection of onto the direction is needed. Ac-
cording to Theorem 2, the minimum of this projection is formed
as the weighted sum of the projections of the original points onto
the direction .

Specifically, the projection of onto ,
where and

, is
, and by (44)

(46)

Since the quantity is constant at each step,
for the calculation of , the ordered inner products
of , with must be formed. From them, the
smallest numbers, each multiplied by the corresponding
coefficient (as of Theorem 2), must be summed. Therefore,
using

it is

(47)

(48)

In the sequel, the numbers must be ordered, for each set
of indices, separately

(49)

(50)

and

(51)

(52)

With the above definitions [(47)–(52)] and applying The-
orem 2, it is

and consequently [using definitions
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(53)

(54)

(20), (40)–-(43) and (47)–(52)], respectively, (53) and (54), as
shown at the top of the page.

Finally, for the adaptation phase, the scalar quantities

(55)

and

(56)

are needed in the calculation of . Therefore, the inner prod-
ucts and

need to be calculated. The result is

(57)

(58)

(59)

(60)

(61)

(62)
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