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Abstract

Partial caching of large media objects such as video files has been proposed recently as the

caching of entire objects can easily exhaust the storage resources of a proxy server. In this

paper the idea of segmenting video files into chunks and applying replacement decisions at the

chunk level rather than on entire videos is examined. It is shown that a higher byte hit ratio

(BHR) can be achieved by appropriately adjusting the replacement granularity. The price paid

for the improved BHR performance is that the replacement algorithm takes a longer time to

converge to the steady state BHR. For the segmentation of video into chunks two methods

are presented. The Fixed Chunk Size segmentation scheme that is rather simple and reveals

the basic trade-off between byte hit ratio (BHR) and responsiveness to changes of popularity;

the Variable Chunk Size segmentation scheme that uses the request frequencies to dynamically

adjust the size of the chunk and is shown to be capable of combining a small response time

with high BHR. Moreover, a variation of the fixed chunk size segmentation scheme is presented,

which is shown to improve its performance by switching between different chunk sizes. Video

segmentation is also considered as a mechanism to provide for caching differentiation based on

access costs. By employing access cost dependent chunk sizes an overall access cost reduction

is demonstrated.

∗Work supported in part by the General Secretariat for Research and Technology of Greece under the Joint
Greek-Italian Scientific and Technological Cooperation Programme
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1 Introduction

The explosive growth of demand for bandwidth, fuelled by the introduction of the world wide web,

found data networks unprepared to handle the new traffic volumes. This led to an increase in

both loss rates and user perceived latency, that could easily hamper the new global information

delivery system. Caching, i.e, demand driven replication of data objects close to the clients, has

been successfully used to relieve the backbone network and reduce the delivery delay of requested

data. In a similar way contemporary networks, although copying adequately with web traffic, seem

to have difficulty in managing effectively the delivery of information-rich content such as streaming

video, which is rising as the new popular media to be integrated in the internet infrastructure. In

the context of caching, the prominent characteristic of video, is it’s large size. The large size of video

makes the segmentation of video objects a sensible approach and has inspired the development of

partial caching techniques which operate on segments of video files rather than on entire videos.

A variety of caching schemes have been proposed to handle video. Initial works on video caching

have inherited the main characteristics of web caching and have treated videos as single entities

which are either cached completely or not at all [1, 2, 3]. More recent works have considered

the video characteristics such as the associated rate variability, structure and large size, and have

investigated the idea of partial video caching. In [4] the initial frames of each video (called the prefix)

are cached in the proxy in order to improve the startup latency experienced by users. Additionally,

smoothing is performed to reduce the peak bandwidth and increase the utilization of leased network

channels that connect the proxy with the origin server. In a similar approach in [5], the bursty part

of a VBR video stream is selected to be stored at the proxy while the remaining smooth part

is retrieved directly from the repository, thus reducing the peak bandwidth requirement in the

backbone links. Both aforementioned schemes deal with the burstiness, which is inherent in VBR

encoding algorithms.

In [6, 7] the prefix is stored in the cache and the remaining part (the suffix) is either explicitly

requested from the video repository or retrieved through an ongoing multicast transmission which

services a group of concurrent users; in the later case, a patch might be requested directly from the
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repository, so as to fill the temporal gap between the cached prefix and the currently multicasted part

of the suffix. The aim of these works is to reduce the volume of traffic that crosses the backbone; this

is achieved by merging requests into multicast groups. Window based request merging is poroposed

in [8, 9]. In particular, local proxies cache a sliding window of data, trying to merge requests for

the same stream that arrive closely in time so that they may serviced from a unique connection to

the origin server.

The caching of layered encoded video is studied in [10, 11]. In [10] an optimization algorithm

determines which videos and which layers should be stored in the cache. In [11] the focus is on the

maximization of the perceived quality for popular videos that are delivered over best-effort networks.

Unlike traditional web caching, most of the above video caching schemes, do not take into

consideration the dynamic nature of caching according to which cache contents are dynamically

updated based on demand, but rather employ replication of parts of the videos.

The work that is more closely related to ours is [12]. In that work, each video is segmented into

exponentially-sized segments and replacement decisions are applied on such segments. Segmentation

is associated with a replacement algorithm which depends on (a) the object reference frequency and

(b) the distance of each segment from the beginning of the video.

The work in this paper differs from the work in [12] in numerous ways. First, it proposes

two generalized segmentation schemes for the determination of the size of the segments. Second,

video segmentation is examined in isolation and it is not associated with a specialized replacement

algorithm. This allows for the derivation of conclusions that depend solely on the segmentation

scheme irrespectively of the replacement policy. Third, our work considers additional aspects of

performance such as the responsiveness to popularity changes and studies the trade-off between

responsiveness and byte hit ratio (BHR). Additionally, it considers the case of different access costs

for each video and proposes ways to integrate this information into the caching policy. Finally, it

provides for a performance comparison of the proposed schemes.

In this work two generalized segmentation techniques are studied and compared with each other:

the Fixed Chunk Size segmentation scheme, which gives the opportunity for a thorough understand-
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ing of the trade-off between BHR and responsiveness to changes in popularity; the Variable Chunk

Size segmentation scheme, which is shown to be capable of combining a small response time with

high BHR. To improve the performance of the Fixed Chunk Size segmentation scheme, a variation is

proposed which switches between different fixed chunk sizes. Video segmentation is also considered

as a mechanism to provide for caching differentiation based on access costs. By employing access

cost dependent chunk sizes an overall access cost reduction is achieved. Part of the work presented

here was first introduced in [13].

The rest of the work is organized as follows. The basic idea of segment-based caching is motivated

in section 2. In section 3 the proxy server architecture is presented and the proposed caching

techniques are introduced. The performance of the proposed schemes is evaluated via simulation in

Section 4. The work is concluded in Section 5.

2 Motivation of the Work

Cache replacement algorithms utilize the request history to estimate the current request probabilities

and self-organize accordingly. Given a time invariant request pattern and a large number of request

samples, the underlying request probabilities can be ”learned” by counting the requests for each

video. Replacement algorithms are able to provide a good estimate of the request probability without

the need to count a large number of requests, e.g. the Least Recently Used (LRU) replacement

algorithm simply replaces the least recently used object upon a request of a new object.

In web caching the arrival of a single request changes slightly both the recent request history

and the state of the cache, since the size of an ordinary web page is very small compared to the

capacity of the cache. In video caching a single replacement causes a relatively greater change to the

state of the cache, although a single request has similar impact on the recent request history as in

web caching. Segment-based replacement strategies (as studied here) try to establish a “Web-like”

relation between a single request and its impact on the state of the cache.

The potential advantage of a chunk-based replacement strategy is demonstrated in the following

simplified example. Assume that there are two equally sized videos, competing for a place in the
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Figure 2: State diagram of the cache for the second sce-

nario(*).

(*)State 1 (state 2) corresponds to video 1 (video 2) being entirely cached and state 1/2 corresponds to the first half of each

video being cached. The transition probabilities p1 and p2 are equal to the corresponding request probabilities.

cache that can store only one video. Let p1 (p2) denote the probability that video 1 (video 2) is

requested. In addition assume that the following simple request-based replacement algorithm is

used: A video that is not found in the cache upon request, is cached when it arrives from the server,

taking up the storage space that was previously occupied by the other video. Each transmission

from the server incurs a bandwidth cost equal to the size of the transmitted object. Two scenarios

are considered. In the first scenario the replacement unit is equal to the entire video, implying that

videos are cached or removed from the cache entirely. The state of the cache upon replacement

epochs1 can be modelled as a two state Markov chain (depicted in Fig. 1). The second scenario

allows the partial replacement of video, with a replacement unit that is equal to half of a video.

When the requested video is completely or partially missing from the cache, half of the previously

cached video is flushed, and half of the requested video is being cached. Replacement takes place

in such a way that when a video is partially cached, is is always its initial part that is stored in the

cache. This implies that the cache (when full) can be in one of either three states: video 1 fully

cached; video 2 fully cached; initial parts of both videos cached. The state diagram of the cache

content according to the second scenario is illustrated in Fig. 2.

For both scenarios, let the cost of a total cache miss (the entire requested video is missing from

the cache) be equal to 1 and the cost of a partial cache miss (one half of the requested video is

missing) be 0.5. If the requested video is completely cached, a cache hit occurs, and no cost is

incurred. It is straightforward to calculate the steady state probabilities and costs for each scenario.
1We assume that a video is immediately downloaded upon its request, so replacement decisions occur at request

arrival instants.
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Figure 3: Steady state cost for the two scenarios as a function of the request probability of video 1

More specifically, the steady state cost is equal to
∑

i,j πiPijcij where Pij is the transition probability

from state i to state j, cij is the cost corresponding to this transition and πi is the steady state

probability of state i. Let C1, C2 denotes the steady state cost for the first and the second scenario,

then:

C1 = 2p1p2 C2 =
3p1p2

2(1 − p1p2)
(1)

Fig 3 shows the two costs. It can be seen that C1 ≥ C2 for all p1 and p2 (equality holds only for

the special cases p1 = 0, p1 = 1, and p1 = .5)2, meaning that a chunk-based replacement scheme

may yield a reduction of cost even for this simplistic system.

3 Segment-Based Caching

3.1 System Architecture

Figure 4, illustrates the topology of the video distribution system under consideration. Videos are

stored at geographically dispersed origin servers. A proxy server is installed at the same local area

network with a number of clients. Requests for videos are directed to the proxy which services

them either from its local cache or by contacting the origin servers over the wide area network. It

is assumed that there is abundant bandwidth between the proxy and the clients to support video

streaming. On the other hand, the transmission of videos from the origin servers over the wide area
2The aforementioned analysis was carried out under the assumption that request interarrivals are always greater

than the time it takes to download half or the entire video; this in essence means that replacement decisions are

implemented instantly and do not have to wait until the missing data arrive from the origin server.
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Figure 5: The internal proxy architecture.

network is expensive as it consumes bandwidth, which is a scarce resource in the backbone. The

proxy caches the videos trying to improve the delivery delay and also to reduce the access to the

servers and consequently the volume of data transmitted over the wide area network.

Figure 5 illustrates the internal architecture of a proxy server. It consists of two major entities:

the request manager and the cache manager. The request manager is responsible for the continuous

streaming of video towards the clients. In general, its responsibility is to schedule the transmission

of the prefix to the clients and forward a request for the suffix to the origin server. Special is taken

to ensure the uninterrupted flow of data to the clients. This in general means that adequate buffers

are used to smooth out the delay jitter in both connections (server-proxy and proxy-clients). The

main responsibility of the cache manager is to efficiently allocate the proxy’s storage resources to

the requested videos. This work focuses on the functionality of the cache manager. To allow for the

isolated study of the cache manager, only a simple request manager is considered. It is assumed

that the request manager immediately initiates the transmission of the prefix (if any) to the client

and requests the suffix from the origin server.

The cache manager receives incoming data from the origin server and decides whether they will

be cached or not. When the decision is to cache the newly retrieved video segments the cache

manager also decides (a) how much space to dedicate to the incoming video, (b) which of the

missing segments to hold and (c) which data to remove from the cache to free space for the new

video segments.

The third decision is in essence the replacement policy. In traditional web-caching schemes, and
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in some video caching schemes as well, the functionality of the cache manager is limited to deciding

on the replacement actions. These schemes do not consider object segmentation and consequently

do not have to decide on the aforementioned issues which are specific to segment-based caching.

Instead they cache the entire objects. In contrast, this work focuses on the first two functions ((a)

and (b) above) of the cache manager which are performed before the replacement function.

The first function, that is, the decision about the space allocated to each video, in essence

controls the replacement granularity and as it will be shown in the sequel, affects significantly the

performance of the proxy. The second function of the cache manager, which is the selection of specific

segments of a certain size, does not affect the performance in terms of the cache hit ratio since it

does not affect the volume of data that is being cached. However it may affect the user perceived

quality or the delay of the perceived stream. For example, when layered encoding is assumed, the

selected segments can be specific layers of the video and this selection may affect the perceived

quality (analysis, rate). Otherwise, these segments can be consecutive frames at any distance from

the beginning of the video and this selection may affect the delay (initial delay, or delay due to VCR

operations) experienced by the users. In this work the initial consecutive segments of a video are

given preferential treatment, as compared with any other combination of same size data, in order

to reduce the initial delay, as neither layered encoding nor VCR operations are considered.

3.2 The Proposed Video Segmentation Schemes

The aforementioned functions that make up the operation of the cache manager, are performed

sequentially as follows. The cache manager uses a replacement unit, called a chunk. When a video

that is not in the cache is requested it is fetched from the server and its initial segments, up to

the size of a chunk are stored in the proxy. In case there is not sufficient space in the cache the

replacement algorithm selects a video for removal. The last chunk of the selected video is removed.

Each additional request for the same video results in the caching of an additional (consecutive)

chunk. This guarantees that only the prefix (initial consecutive parts) of each video is cached.

The size of the chunk determines the granularity of the replacement procedure, and thus, has a
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great impact on the overall performance of the cache. In the sequel two video segmentation schemes

are presented that are responsible for an appropriate selection of the chunk size: the Fixed Chunk

Size and the Variable Chunk Size segmentation schemes.

3.2.1 The Fixed Chunk Size scheme.

The Fixed Chunk Size (FCS) segmentation scheme has the advantage of being particularly simple

thus, allowing for a clear exposition of the impact of the replacement granularity on video proxies

performance as well as on the underlying trade-off between BHR and adaptability to changes of

popularity. Under FCS the size of the chunk is a tunable parameter which can vary from a few

frames to the complete video but once it has been selected, it remains the same for all videos and

for all requests. As mentioned earlier each request for a video results in the caching of an additional

chunk; when the missing part of a requested video is smaller than the chunk size, all the missing

segments are kept in the cache. When the size of the chunk is equal to a complete video this scheme

reduces to a standard web-like caching scheme.

3.2.2 The Variable Chunk Size scheme

Under the Variable Chunk Size (VCS) scheme, the size of the chunk is a function of the cached

part of each video at the time the request is made. This means that (a) typically the chunk size

is different for each video and (b) the size of the chunk is not the same for all the requests for a

given video. Specifically, the size of the chunk for a requested video i, depends on ki, the number

of chunks of i already in the cache at the time the request was made, through: chunk(ki) = g · ki,

ki �= 0. The factor g, g > 0, will be referred to as the acceleration factor. If the requested video is

missing from the cache, that is ki = 0, then a few segments are cached as the first chunk, chunk(0).

For subsequent requests the size of the chunk is equal to a multiple of the cached segments of

video i at the time instant that the request was made. The motivation under this scheme is (a)

to provide large chunk size to popular objects and consequently to increase the probability that a

greater portion of these objects will be held in the cache and (b) to give the opportunity to new

popular videos that are missing from the cache to increase their cached portion faster (within a
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fewer requests) by increasing the chunk size in each request.

3.3 Chunk Size Determination Based on the Access Costs

Replacement algorithms such as Least Recently Used (LRU) or Least Frequently Used (LFU), base

the replacement decisions solely on objects’ popularity. In most practical cases however, there are

additional issues that prompt for a differentiation of the treatment offered to each video. Different

link costs, may be considered to reflect diverse distance and/or congestion level of a remote server.

Content providers that pay for a preferential treatment of their content is another example for

treatment differentiation. In these cases there is a need for the caching system to be able to take

such factors into consideration. In the present work, the case of a different access cost for each video

is considered. In that case the quantity that regulates the decision of the algorithm is a generalized

notion of cost which is given by the product of the request probability and the access cost for the

requested video. In the sequel two alternative approaches to accommodate this issue are proposed.

The first approach provides differentiation based on the access costs by properly regulating the

chunk sizes. For this purpose a video segmentation scheme referred to as Chunk Based Differentia-

tion is proposed which is shown to reduce the overall access cost. Under this scheme, an appropriate

selection of the chunk size for each video is made based on its access cost. In particular, the largest

possible chunk size (a complete video) is assigned to the object with the highest access cost and

proportionally (based on the access cost)smaller chunk sizes for the remaining objects. In a sense,

this scheme is a combination of the FCS and VCS schemes proposed earlier, as the size of the chunk

is different for each video (it is proportional to its access cost) but it is the same for all requests for

the same video.

The second approach uses the FCS scheme combined with probabilistic LRU and leaves the

replacement algorithm to account for the different access costs. Probabilistic LRU has been proposed

for web-caching (caching of entire objects) in [14]. Under that scheme, when a new request for a

video arrives the least recently requested item is removed from the cache with a probability which

is proportional to its access cost and it remains in the cache (no replacement takes place) with the
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supplementary probability. The two approaches are compared with each other in section 4 and the

benefits of each scheme are presented.

4 Performance Study

4.1 Performance Metrics

As mentioned in Sect. 3.1, the main responsibility of the cache manager is to efficiently manage the

proxy’s storage resources so as to reduce the volume of the data that are fetched from the origin

servers. This performance aspect is captured by the Byte Hit Ratio (BHR), which is the fraction

of data that can be served directly from the local storage of the cache. In systems where partial

caching is applied a hit in most cases is partial and should capture the portion of data currently on

the proxy. Consequently, the BHR for a single request for video i is defined as:

BHRi =
Size of the cached portion of the requested video i

Size of the complete video i

BHRi takes values between 0 and 1; 0 for a complete miss, and 1 for a complete hit. The average

BHR of all requested videos over an interval x is denoted as BHR(x); the interval x can be a time

interval (e.g., a day) or a number of requests. The steady state BHR (ss-BHR) is determined from

BHR(x) as x tends to infinity assuming that the underlying request process is time invariant (i.e.,

the probability of a video remains unchanged over the interval x).

4.2 Simulation Model

The request distribution of the videos is assumed to be a zipf-like distribution similar to that

observed for web pages [15]. Typically, the request pattern in a proxy server exhibits temporal

locality. However due to the lack of access traces from real video servers, and the difficulty of

producing a synthetic workload that does exhibit temporal locality while the video popularity follows

zipf’s law [11, 16], the independent reference (IR) model is assumed. According to the IR model

a video i is requested with probability pi independently of previous requests. The fact that several

results obtained with real traces are qualitatively similar to those obtained with the simulation using
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Table 1: Simulation parameters

Notation System Parameters Default Values

L Video Size / Duration 1000 units / 1hour

K Cache Size 100 videos

N Number of Videos in the repository 1000

K/N Relative Cache Size 10%

a Zipf parameter 0.8

λ Mean request arrival rate 30 req/hour

the IR model [15] indicates that the IR model is sufficient to predict the relative performance of the

proposed caching algorithms.

The simulation model consists of a video server with N videos, and a proxy server with a storage

capacity of K complete videos; the ratio K/N captures the relative cache size of the proxy. For

simplicity it is assumed that all videos are constant bitrate encoded and have the same length

equal to L units. The video length units can be in units of time or storage. pi denotes the

request probability of video i which is also referred to as the popularity of video i. The video

popularity follows a Zipf distribution; that is, the request probability for video i is pi = C/ia, where

C = (
∑N

i=1
1
ia )−1 and a is the Zipf parameter determining the skewness of the distribution. Finally,

it is assumed that request arrivals follow a Poisson process with mean rate λ. The parameters of the

simulation study are summarized in Table 1. The popularity changes considered in the simulation

were implemented using the following setting: whenever a popularity change is about to occur, the

popularity of videos is transposed i.e., popular videos become unpopular and vise versa. Under the

new popularity distribution, unpopular videos that were missing from the cache appear as new hot

videos and eventually capture a significant part of the cache. Previously popular videos are made

unpopular and are eventually pushed out of the cache.

In the simulations the LRU replacement policy is used with a slight modification that prevents

the replacement of chunks belonging to “active videos” (videos that are currently streamed), i.e.,
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the least recently used inactive video is selected for the replacement. LRU is chosen as it is the

most widely studied replacement policy and is often used as a comparison standard.

4.3 Optimal Static Policy

If the request distribution is a-priori known, and time invariant, then an optimal replication strategy

can be derived with the ability to yield a smaller cost than any other conceivable replacement

algorithm3. Assuming a unicast-only backbone in the path from the server to the proxy, it can be

shown that the optimal caching policy – in terms of bytes that cross the backbone link – is the

Highest Popularity First (HPF) policy. Under HPF, the proxy stores entire videos in descending

order of popularity, until its cache capacity is reached. Only the last video is partially cached. The

optimality of HPF stems from the fact that HPF is an optimal solution to the partial knapsack

problem: maximize
∑N

i=1 vi · pi under the constraints:
∑N

i=1 vi ≤ S, 0 ≤ vi ≤ Li, where Li is the

length of video i in number of chunks, vi is the cached prefix of video i in number of chunks, S is

the proxy’s storage capacity in number of chunks, and N is the number of available videos (see [6]

for details). However in most cases the popularity of the requested objects is unknown and time

variant, thus, cache replacement algorithms take over the responsibility to dynamically conform

cache contents based on demand.

4.4 Simulation Results

4.4.1 The trade-off between BHR and responsiveness

Figures 6 and 7 provide a visualization of the contents of a cache that employs the FCS scheme

and the LRU replacement policy with chunk sizes of 2 and 100 units respectively, as time evolves.

These figures are compared with Fig. 8 which depicts the optimal static allocation given by the

HPF rule (assuming known request probability). For illustration purposes, only a total population

of five videos and a cache capacity of three videos is considered. The cache is empty prior to the first
3The optimal static policy is presented here, as it will be a point of reference in the sequel, even though the

assumption of a known and time invariant environment is not the one under which the proposed segment-based

replacement algorithms were designed.

13



request arrival and fills up as requests arrive. The LRU replacement policy is activated as soon as

the total capacity is reached. The video size is assumed to be 1000 units. The request distribution

is assumed to follow the Zipf’s law with parameter a = 0.8 for video-1 to video-5 (descending

popularity). From Fig. 6 and Fig. 7 it becomes clear that for a small chunk size, equal to 2 units,

the cache state converges to the optimal static allocation slowly and with negligible oscillations,

while for a larger chunk size, equal to 100 units (1/10 of the video length), the cache state converges

fast but significant oscillations appear. From this results the underlying trade-off between the BHR

and the duration of the convergence to the ss-BHR becomes visible. Oscillations are expected to

have a negative impact on the BHR while the convergence time is expected to affect the capability

of the system to adapt to popularity changes. This trade-off is investigated in detail in the sequel.

4.4.2 The effect of the relative cache size and the request distribution

Fig. 9 illustrates the effect of the relative cache size on ss-BHR, for several chunk sizes. As expected

the BHR increases with the relative cache size since a greater number of chunks fit in the cache.

Similar observations apply to Fig. 10 that depicts the ss-BHR as a function of the Zipf parameter.

The VCS scheme outperforms FCS especially for small caches sizes and highly skewed request

distributions. This results are reasonable since popular objects are treated preferentially by the

VCS scheme which allocates to them a larger chunk size resulting in a larger, effective occupation

of the cache storage capacity.

Figures 11 and 12 (for chunk sizes 10 and 1000 respectively) depict the BHR versus the sum of

1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

time (hours)

ca
ch

e 
al

lo
ca

tio
n

Video1
Video2
Video3
Video4
Video5

Figure 6: Cache state for chunk size

= 2 units

1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

time (hours)

ca
ch

e 
al

lo
ca

tio
n

Video1
Video2
Video3
Video4
Video5

Figure 7: Cache state for chunk size

= 100 units

1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

time (hours)

ca
ch

e 
al

lo
ca

tio
n

Video1
Video2
Video3
Video4
Video5

Figure 8: Optimal static allocation

14



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

B
H

R

Relative Cache Size

BHR vs. Relative Cache Size

Fixed Chunk: 1000 units
Fixed Chunk: 100 units

Fixed Chunk: 10 units
Variable Chunk (g=1)

Figure 9: The ss-BHR against the relative cache size for

several chunk sizes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
H

R

Zipf Parameter

BHR vs. Zipf Paramter

Fixed Chunk: 1000 units
Fixed Chunk: 100 units

Fixed Chunk: 10 units
Variable Chunk (g=1)

Figure 10: The ss-BHR against the Zipf parameter a, for

several chunk sizes

the popularities
∑m

i=1 pi of the videos that fit in the cache4, when videos are placed in the cache in

descending order of popularity; m is the index of the least popular video that fits in the cache. This

sum depends on two factors: the size of the cache and the skewness of the popularity distribution5.

Each line in Figures 11 and 12 corresponds to a different value of the Zipf parameter and the points

of each line correspond to different values of the cache size. From the figures it follows that for a

small chunk size different pairs of skewness and cache size result in the same BHR if the sum of the

popularities of the videos that fit in the cache is the same. That is, the latter sum fully determines

BHR under a small replacement unit. This conclusion suggests that a smaller cache size would be

required to achieve a certain BHR if the video request probabilities are highly skewed, compared to

the case under less skewed request probabilities. For a greater chunk size this result seems to hold

only for zipf parameters greater than some value e.g 0.5.

4.4.3 The effect of the chunk size

Fig. 13 illustrates the ss-BHR as a function of the chunk size for the FCS scheme, under a non-

changing popularity distribution and for the system parameters presented in Table 1. It is observed
4These figures relate to a discussion that is motivated by results in [18], where the relation between the fault

probability of LRU and the tail of the popularity (request) distribution is demonstrated.
5For a specific cache size, this sum increases as the zipf parameter increases, since a greater request probability

(pi) is associated with the videos involved in the sum. For a specific value of the zipf parameter the sum increases as

the cache size increases, since more videos are involved in the summation.
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Figure 11: ss-BHR vs
∑ m

i=1 pi for FCS with chunk size: 10,

where m is the index of the least popular video that fits in the

cache
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Figure 12: ss-BHR vs

∑ m
i=1 pi for FCS with chunk

size:1000, where m is the index of the least popular video that

fits in the cache

that as the chunk size increases, the BHR reduces initially fast and then slowly converges to a value

which is the steady state BHR of a web-like video caching scheme. Similar observations apply to

Fig. 14 which illustrates the ss-BHR as a function of the acceleration factor for the VCS scheme.

Generally a large value of the acceleration factor leads to large chunk sizes and consequently to the

reduction of the BHR. Observe that the impact of the acceleration factor in the VCS scheme, is

rather small comparatively with the impact of the chunk size on the FCS scheme (note the different

scale in the axis of these two figures) .

In the results presented above it was assumed that the popularity of videos does not change,

that is, the underlying request probability is time invariant. In a more realistic scenario, where the

demand distribution changes, the BHR is expected to decrease for some period and then to converge

to the new steady-state value. It should be noted that the new ss-BHR is not necessarily the same

with the old one as it depends on the skewness of the new popularity distribution. Responsiveness

can be qualitatively defined as the ability of the system to adapt to changes in popularities. In

order to capture this performance aspect, we flush the cache6 and measure the time needed for the
6This is an extreme case of popularity change since it is equivalent to a cache full with totally unpopular videos
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Figure 16: Response time for the VCS scheme

BHR to reach 90% of its steady-state value. Figures 15 and Fig. 16 illustrate the response time

as a function of the chunk size and the acceleration factor, for FCS and VCS schemes respectively.

For the FCS scheme, the response time is smaller for large chunk sizes and increases rapidly as the

chunk size decreases. The same happens in the VCS scheme with the acceleration factor. What is

worth noting in these figures is the relatively small response time under the VCS scheme even for

very small values of the acceleration factor.

Comparing figures 13, 15 with 14, 16 it can be concluded that the VCS scheme achieves a

more effective compromise in the trade-off between BHR performance and responsiveness compared

to the FCS scheme. For example, a BHR of 50% can be achieved with a fixed chunk size of 10

units (Fig. 13) at the cost of a huge response time of 1000 hours (Fig. 15). The same BHR can be

achieved under the proposed VCS scheme with accelerator factor 2 (Fig. 14) at the cost of response
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time of 10 hours (Fig. 16).

4.4.4 The BHR under popularity changes

The responsiveness of the caching system affects significantly the overall performance especially when

demand changes occur frequently. In such cases, the ss-BHR may practically never be reached if the

caching system has a long adaptation period compared to the frequency that changes occur. This

could lead a system that appears to have a high ss-BHR to a worst long term average BHR since

transient periods dominate the long term performance. This is illustrated in Figures 17 and 18.

These figures show the BHR(24h) versus time, under the FCS scheme, for different chunk sizes7.

The BHR initially oscillates around the steady-state value; In periods where popularity remains

stable a smaller chunk provides for a better BHR. For the periods that follow a popularity change

the BHR reduces for both chunk sizes but the reduction is smaller under a large chunk, as this

allows for a quick adaptation to the new popularity (observe the shallow gap in Fig. 17. A small

chunk size, although performing better under static popularity, it is outperformed during periods of

popularity changes as it needs a considerably larger time to catch-up with the new demand changes

and consequently, the gaps are deeper. The average BHR over the entire observation window, is

equal to 0.45 for the system that uses a chunk size of 50 units and 0.425 for the system that uses

a chunk size of 200 units. On the other hand, in Fig. 18 where demand changes occur more often

(every 170 hours), the system that uses a chunk size of 200 units achieves higher average BHR (0.41

over 0.39).

In figures 19 and 20 a comparison of the VCS and FCS scheme is illustrated. Fig. 19 shows the

BHR(24h) versus time for the FCS with chunk size of 30 units and the VCS scheme with g = 18.

The BHR initially oscillates around the steady-state value for both schemes. At time instant 500 a

demand change occurs. In the period that follows this change, the BHR reduces for both schemes
7In order to achieve a fast convergence to the steady state, the cache is considered initially full with the most

popular videos that fit in the cache.
8In order to achieve a fast convergence to the steady state, the cache is considered initially full with the most

popular videos that fit in the cache.
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Figure 20: The BHR(24h) versus time for the FCS with

chunk size of 100 units and VCS with g = 10. A sudden change

in the demand pattern occures at time instant 500.

and then again converges to the steady state value. It is observed that the VCS scheme with g = 1

achieves higher BHR than FCS with chunk size of 30 units on both the steady-state and the transient

period, resulting to a higher long term average BHR.

Similar observations apply to Fig 20 where the VCS scheme with g = 10 is compared with the

FCS with chunk size of 100 units. These results indicate that for any fixed chunk size of the FCS

scheme, an appropriate value of the acceleration factor (g) of the VCS may be identified such that

the VCS scheme results to a higher BHR than the FCS scheme in both the steady-state and the

transient period, achieving a higher long term average BHR.

4.4.5 Dynamic Adaptation of the Chunk Size

In this section, a variation of the FCS is presented which improves the performance of pure FCS

scheme by switching between different chunk sizes at different time periods. The main idea is to
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Figure 21: Dynamic adaptation of the chunk size; Main idea

use a small chunk size for periods where the popularity remains stable, thus achieving a high BHR

during these periods, and switch to a larger chunk size during periods where a change of popularity

occurs. Sophisticated methods can detect the change of popularity by looking for sudden decreases

of BHR and adjusting the chunk size automatically. In any case, once the cache content has been

updated the system could switch back to a small chunk size in order to achieve higher ss-BHR. This

is idea is illustrated in Fig 21.

The benefits under a dynamic selection of the chunk size are illustrated in Fig. 22 and Fig. 23

where the BHR is depicted as a function of time. The parameters are the same as those in Fig. 17

and Fig. 18 respectively. From these figures it becomes clear that a change of the chunk size at the

right moment combines the advantages of both, small and large, chunk sizes and results in a better

overall BHR performance than under the corresponding static schemes. Note that the average BHR

under the dynamic chunk selection (0.46 (0.44) for the system of Fig. 22 (Fig. 23)) is higher than

that under the fixed chunk size schemes for chunk size 50 (0.45 (0.39)) and chunk size 200 (0.425

(0.41)). The application of dynamic chunk selection corresponding to Fig. 17 is illustrated in Fig. 22.
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4.4.6 The Chunk Based Differentiation scheme

In this section some results are presented illustrating the ability of the Chunk Based Differentiation

scheme to reduce the overall cost when a different access cost for each video is assumed following the

arguments of section 3.3. In order for the results to be comparable with those in the previous section

it is assumed that all objects are requested with probability pi = 1/N and that the access costs follow

a zipf-like distribution similar to the popularity distribution in the previous section. Equivalently

with the BHR the performance metric of interest that is considered is the cost reduction ratio

CRR =

∑

i∈R

ki · ci

∑

i∈R

Li · ci

where, R is the set of video indexes which correspond to the requests made to the proxy and ki, ci

and Li are the size of the cached portion, the access cost, and total size, respectively, of the video

associated with request i.

In Fig. 24 the performance of the proposed algorithm for several cache sizes is illustrated. It is

observed that although FCS with probabilistic LRU performs better, the general behavior of the

Chunk Based Differentiation scheme, is similar to that of FCS with probabilistic LRU when no

demand changes occur. However since under the Chunk Based Differentiation scheme the chunk

sizes are different for each video, the responsiveness of this scheme will be closer to that of the VCS

scheme presented in Fig 16. In contrast, the responsiveness of the FCS with probabilistic LRU will
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Figure 24: Cost reduction ratio of FCS with probabilistic LRU and Chunk Based Differentiation for several cache sizes

be far worst than that of FCS with plain LRU presented in Fig. 15, since under the probabilistic

LRU, only a small fraction of requests is taken into account. Based on the findings about the

trade-off between efficiency and adaptability to demand changes discussed in figures 19, 20 and

more analytically in [13], the difference in the response time and the relatively small difference in

the cost reduction ratio under no demand changes, make the Chunk Based Differentiation scheme

an attractive solution when demand changes occur.

5 Conclusions

In this paper, several schemes for caching large media objects have been presented. For such large

objects the entire object caching has been shown to be inefficient mainly due to the fact that storing

only a few objects can easily exhaust the proxy storage capacity. As a solution to this problem it is

proposed that large media objects be segmented into a number of chunks and replacement decisions

be taken at the chunk level rather than based on the entire objects. It has been shown that the

size of the chunk, that is the replacement granularity, significantly affects the performance of the

proxy. Two video segmentation schemes have been proposed. The study of the Fixed Chunk Size

segmentation scheme clearly reveals the trade-off between BHR and responsiveness but provides

poor performance in terms of the long term average BHR, a performance metric which combines

both the BHR and the responsiveness to demand changes. The introduced Variable Chunk Size

22



segmentation scheme is shown to be capable of combining a small response time with high BHR,

thus resulting to a higher long term average BHR, by adjusting the size of chunk based on object

access frequencies. Moreover, a variation of the fixed chunk size segmentation scheme is proposed

and shown to improve its performance by switching between different chunk sizes.

The benefit of segment-based caching is also demonstrated for the case where different access cost

for each video is considered. Two schemes have been considered: one that combines probabilistic

LRU and fixed chunk sizes and another in which the chunk size is variable and based on the access

cost for each video. Under a fixed demand distribution it is shown that the former scheme achieves

a higher cost reduction than the Chunk Based Differentiation scheme. Nevertheless it is argued that

due to its good cost reduction ratio and better response to demand changes the later scheme may

be particularly effective under a demand changing environment in which the FCS scheme and the

probabilistic LRU respond rather slowly.
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