
XML Data Dissemination using Automata on Top of
Structured Overlay Networks

Iris Miliaraki
∗

iris@di.uoa.gr
Zoi Kaoudi

zoi@di.uoa.gr
Manolis Koubarakis
koubarak@di.uoa.gr

Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens

Athens, Greece

ABSTRACT

We present a novel approach for filtering XML documents
using nondeterministic finite automata and distributed hash
tables. Our approach differs architecturally from recent pro-
posals that deal with distributed XML filtering; they assume
an XML broker architecture, whereas our solution is built
on top of distributed hash tables. The essence of our work
is a distributed implementation of YFilter, a state-of-the-art
automata-based XML filtering system on top of Chord. We
experimentally evaluate our approach and demonstrate that
our algorithms can scale to millions of XPath queries under
various filtering scenarios, and also exhibit very good load
balancing properties.

Categories and Subject Descriptors

H.3.4 [Information Systems]: Systems and Software—
Distributed Systems; H.2.3 [Information Systems]: Lan-
guages—Data description languages (DDL), query languages;
F.1.1 [Theory of Computation]: Models of Computa-
tion—Automata (e.g., finite, push-down, resource-bounded)

General Terms

Algorithms, Design, Experimentation

1. INTRODUCTION
Publish/subscribe systems have emerged in recent years

as a promising paradigm for offering various popular no-
tification services including news monitoring, e-commerce
site monitoring, blog monitoring and web feed dissemination
(RSS). Since XML is widely used as the standard format for
data exchange on the Web, a lot of research has focused on
designing efficient and scalable XML filtering systems.

In XML filtering systems, subscribers submit continuous
queries expressed in XPath/XQuery to the system asking
to be notified whenever the query is satisfied by incoming
XML data. In recent years, many approaches have been pre-
sented for providing efficient filtering of XML data against
large sets of continuous queries within a centralized server
[5, 15, 10, 9, 23, 21, 25, 28]. However, in order to offer XML

∗This work was supported by Microsoft Research through
its PhD Scholarship Programme.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

filtering functionality on Internet-scale and avoid the typical
problems of centralized solutions, we need to deploy such a
service in a distributed environment. Consequently, systems
like [29, 12, 17, 16, 20, 32, 11] have employed distributed
content-based routing protocols to disseminate XML data
over a network of XML brokers or routers. XML brokers
are organized in mesh or tree-based overlay networks [29,
16], and disseminate XML data using information stored in
their routing tables. In the ONYX system [16], each broker
has a broadcast tree for reaching all other brokers in the
network, and also uses a routing table for forwarding mes-
sages only to brokers that are interested in the messages.
The routing tables in ONYX are instances of the YFilter
engine [15]. Other proposals like [20] employ summarization
techniques like Bloom Filters for summarizing the queries
included in the routing tables.

A major weakness of previous proposals for offering dis-
tributed content-based XML data dissemination is that they
do not deal with how much processing load is imposed on
each XML broker resulting in load imbalances. The process-
ing load of a broker includes both filtering of incoming XML
data, and delivering notifications to interested users. Unbal-
anced load can cause a performance deterioration as the size
of the query set increases, resulting in a fraction of peers to
become overloaded. In ONYX [16], a centralized compo-
nent is responsible for assigning queries and data sources
to the brokers of the network using criteria like topological
distances and bandwidth availability in order to minimize
latencies but without dealing with load balancing. Other
systems like [20] do not deal at all with the amount of load
managed by each broker. However, load balancing in a dis-
tributed setting can be crucial for achieving scalability.

Another weakness of previous systems [29, 12, 17, 16, 20,
11] is that the size of the routing tables is dependent on the
number of the indexed queries. Therefore, as the number
of indexed queries increases, so does the size of the routing
tables making their maintenance a bottleneck in the system.

In this paper, we deal with the aforementioned problems
in XML dissemination systems and propose an alternative
architecture that exploits the power of distributed hash ta-
bles (DHTs) (in our case, Chord [30]) to achieve XML fil-
tering functionality on Internet-scale. DHTs have been used
recently with much success to implement publish/subscribe
systems for attribute-value data models [7, 22, 31]. We base
our work on DHTs since we are interested in XML filtering
systems that will run on large collections of loosely main-
tained, heterogeneous, unreliable machines spread through-

855

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

out the Internet. One can imagine that collections of such
machines may be used in the future to run non-commercial
XML-based public filtering/alerting services for community
systems like CiteSeer, blogs etc.

The main idea of our approach is to adopt the success-
ful automata-based XML filtering engine YFilter [15] and
study its implementation on top of a DHT. We show how
to construct, maintain and execute a nondeterministic finite
automaton (NFA) which encodes a set of XPath queries on
top of a DHT. This distributed NFA is maintained by hav-
ing peers being responsible for overlapping fragments of the
corresponding NFA. The size of these fragments is a tunable
system parameter that allows us to control the amount of
generated network traffic and load imposed on each peer.

The main contributions of this paper are the following:

• We describe a set of DHT-based protocols for efficient
filtering of XML data on very large sets of XPath
queries. Our approach overcomes the weaknesses of
typical content-based XML dissemination systems built
on top of mesh or tree-based overlays. In particular,
there is no need for a centralized component for as-
signing queries to network peers, since queries are dis-
tributed among the peers using the underlying DHT
infrastructure (Section 4). Additionally, peers main-
tain routing tables of constant size regardless of the
number of indexed queries in the system.

• We utilize the successful automata-based XML filter-
ing engine YFilter [15] and study its implementation
on top of a DHT. We present and evaluate two meth-
ods for executing the NFA (Section 5). In the iterative
method a publisher peer is responsible for managing
the execution of the NFA while states are retrieved
from other network peers. The recursive method ex-
ploits the inherent parallelism of an NFA and executes
several active paths of the NFA in parallel. The recur-
sive approach preprocesses input XML documents and
enriches them with positional information to achieve
efficient parallel execution. Our focus is mainly on the
recursive method which outperforms the iterative one
in terms of network latency, while generating the same
or even less network traffic.

• We show how to balance the storage load and the fil-
tering load of the network peers without requiring any
kind of centralized control (Section 6.4). To achieve
this, we utilize two complementary techniques: virtual
nodes [30] and load-shedding [19, 31].

• We present an experimental evaluation for studying
the feasibility of our approach. We demonstrate that
our techniques scale to millions of XPath queries for
various workloads (Section 6).

2. BACKGROUND
In this section, we give a very short introduction to the

XML data model, the subset of XPath we allow, nondeter-
ministic finite automata and distributed hash tables.

2.1 XML and XPath
An XML document can be represented using a rooted,

ordered, labeled tree where each node represents an element

0

6

3

7

89

6

2

11

1

1312

dblp

e

* cite

author

*

phdth
es

is

proceedings

year

school

title

3

8

10

13

*

34

www

5title

{q1}

{q2}

{q3}

{q4}

{q5}

{q6}

q1: /dblp/phdthesis/year

q2: /dblp/www/title

q3: /dblp/proceedings/school

q4: /dblp/proceedings/title

q5: /dblp/*/author

q6: //*/cite

Figure 1: An example NFA constructed from a set
of XPath queries

or a value and each edge represents relationships between
nodes such as an element - subelement relationship.

XPath [13] is a language for navigating through the tree
structure of an XML document. XPath treats an XML doc-
ument as a tree and offers a way to select paths of this tree.
Each XPath expression consists of a sequence of location
steps. We consider location steps of the following form:

axis nodetest [predicate1] . . . [predicaten]

where axis is a child (/) or a descendant (//) axis, nodetest

is the name of the node or the wildcard character “*”, and
predicatei is a predicate in a list of zero or more predicates
used to refine the selection of the node. We support predi-
cates of the form value1 operator value2 where value1 is an
element name, an attribute name or the position() function,
operator is one of the basic logical comparison operators
{=, >, >=, <, <=,<>}, and value2 is an element value, an
attribute value or a number referring to the position of an
element.

A linear path query q is an expression of the form l1l2 . . . ln,
where each li is a location step. In this paper queries are
written using this subset of XPath, and we will refer to such
queries as path queries or XPath queries interchangeably.
Queries containing branches can be managed by our algo-
rithms by splitting them into a set of linear path queries.
Example path queries for the DBLP XML database [1] are:

q1: /dblp/phdthesis/[year=2007]

which selects PhD theses published in year 2007.

q2: /dblp/*/author[@name="John Smith"]

which selects any publication of author John Smith.

q3: //*/[school="University of Athens"]

which selects any publication written by authors from
the University of Athens.

2.2 Nondeterministic Finite Automata
A nondeterministic finite automaton (NFA) is a 5-tuple

A = (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a
finite set of input symbols, q0 ∈ Q is the start state, F ⊆ Q

is the set of accepting states and δ, the transition function,
is a function that takes as arguments a state in Q and a
member of Σ ∪ {ǫ} and returns a subset of Q [24].

Any path query can be transformed into a regular ex-
pression and consequently there exists an NFA that accepts

856

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

p1 p2

p3

p4

p5

p6

p7
p8

p9

p10

p11
9 10

2 3
3

0 1 9 10

10 11

1 2 4 7

4 5 6

5 6

7 8

8 11

0

6

3

5

87

4

2

9

1

1110

dblp

e

* cite

author

*

phdthesis

proceedings

year

school

title

*

Peer p1

Peer p2

Peer p3

Peer p4

Peer p5

Peer p6 Peer p7

Peer p8

Peer p10

Peer p11

NFA DHT network

State key Successor peer

0 p3

1 p5

2 p1

3 p2

4 p6

5 p7

6 p7

7 p8

8 p10

9 p11

10 p4

11 p10

Figure 2: Distributing the NFA on top of a DHT network (l=1)

the language described by this query [24]. Following [15],
for a given set of path queries, we will construct an NFA
A = (Q,Σ, δ, q0, F) where Σ contains element names and
the wildcard (*) character, and each path query is associ-
ated with an accepting state q ∈ F . An example of this
construction is depicted in Figure 1.

The language L(A) of an NFA A = (Q,Σ, δ, q0, F) is

L(A) = {w | δ̂(w, q0) ∩ F 6= 0}. L(A) is the set of strings

w in Σ ∪ {ǫ} such that δ̂(q0, w) contains at least one ac-

cepting state, where δ̂ is the extended transition function
constructed from δ. Function δ̂ takes a state q and a string
of input symbols w, and returns the set of states that the
NFA is in, if it starts in state q and processes the string w.

2.3 Distributed Hash Tables
DHTs like Chord [30] have emerged as a promising way

of providing a highly efficient, scalable, robust and fault-
tolerant infrastructure for the development of distributed
applications. DHTs are structured P2P systems which try
to solve the following lookup problem: given a data item
x stored by a network of peers, find x. In Chord [30], each
peer and each data item is assigned a unique m-bit identifier
by using a hash function such as SHA-1. The identifier of a
peer can be computed by hashing its IP address. For data
items, we first have to select a key, and then hash this key
to obtain an identifier for this data item. Identifiers are
ordered on an identifier circle modulo 2m, called the Chord
ring. Key k with identifier id is assigned to the first peer
whose identifier is equal to or follows id in the identifier
space. This peer is called the successor peer of key k or
identifier id, denoted by succ(k) or succ(id). Chord offers
an operation lookup(id) that returns a pointer to the peer
responsible for identifier id. When a Chord peer receives
a lookup request for identifier id, it efficiently routes the
request to succ(id) in O(log n) hops, where n is the number
of peers in the network. This bound can be achieved because

each peer in Chord maintains a routing table of size O(log n),
called the finger table.

In the rest of the paper we use Chord as the underlying
DHT. However, our techniques are DHT-agnostic; they can
be implemented on any DHT that offers the standard lookup
operation.

3. NFA-BASED DISTRIBUTED INDEX
We have selected to use an NFA-based model, similar to

the one used in the system YFilter [15], for indexing queries
in our system. The NFA is constructed from a set of XPath
queries and is used as a matching engine that scans incoming
XML documents and discovers matching queries. In this sec-
tion and Sections 4 and 5, we will describe in detail how the
NFA corresponding to a set of XPath queries is constructed,
maintained and executed on top of Chord.

The NFA corresponding to a set of path queries is essen-
tially a tree structure that needs to be traversed both for
inserting a query in the NFA, and for executing the NFA to
find matches against an incoming XML document. We will
distribute an NFA on top of Chord and provide an efficient
way of supporting these two basic operations performed by
a filtering system. Our main motivation for distributing
the automaton derives from the nondeterministic nature of
NFAs that allows them to be in several states at the same
time, resulting in many different parallel executions. More-
over, an NFA was preferred to an equivalent DFA for reduc-
ing the number of states.

The states of the NFA are distributed by assigning each
state qi along with every other state included in δ̂(qi, w),
where w is a string of length l included in Σ ∪ {ǫ}, to a
single peer in the network. Note that l is a parameter that
determines how much of the NFA is the responsibility of each
peer. If l = 0, each state is indexed only once at a single
peer, with the exception of states that are reached by an ǫ-
transition, which are also stored at the peers responsible for

857

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

Procedure 1: IndexQuery(): Indexing a query

procedure n.IndexQuery(q, d, s)1

st is state at depth d of q.NFA;2

if n.states does not contain st then add st to n.states;3

// final state

if d = q.NFA.depth() then add q to st.queries;4

else5

t := transition label at depth d;6

if there is a transition labeled t from st to st′ then7

nextPeer := Lookup(st′.key);8

nextPeer.IndexQuery(q, d + 1, s);9

else10

add a transition labeled t from st to a new state st′;11

if (t = ǫ) then12

st′.selfchild:=true;13

end14

st′.key := st.key + t;15

nextPeer := Lookup(st′.key);16

nextPeer.IndexQuery(q, d + 1, s);17

end18

end19

end procedure20

the state which contains the ǫ-transition. For larger values of
l, each state is stored at a single peer along with other states
reachable from it by following a path of length l. This results
in storing each state at more than one peers. Therefore,
peers store overlapping fragments of the NFA and parameter
l characterizes the size of these fragments.

Each state is uniquely identified by a key and this key is
used for determining the peer that will be responsible for this
state. The responsible peer for state with key k is the succes-
sor peer of Hash(k), where Hash() is the SHA-1 hash func-
tion used in Chord. The key of an automaton state is formed
by the concatenation of the labels of the transitions included
in the path leading to the state. For example, the key of
state 2 in Figure 1 is the string “start”+“dblp”+“phdthesis”,
the key of the start state is “start” and state 11 has key
“start”+“$”, since ǫ-transitions are represented using char-
acter $. Operator + is used to denote the concatenation of
strings.

3.1 Peer local structures
Each peer p keeps a list, denoted by p.states, which con-

tains the states assigned to p. Each state s included in
states is associated with a data structure containing the
state’s identifier, the transitions from this state, including
potential self-loops and, in the case of accepting states, the
identifiers and the subscribers of the relevant queries, in a
list denoted by s.queries.

An example of how the NFA is distributed on top of Chord
for l = 1 is depicted in Figure 2. We assume a network of 11
peers and each state stored is depicted on the Chord ring.
Notice that state 10 is included in p3.states = {0, 1, 9, 10}
because the ǫ-transition does not contribute to the specified
length l. In the figure, we use unique integers instead of
state keys for readability purposes.

4. CONSTRUCTING THE NFA
To achieve the above distribution of the NFA, the automa-

ton is incrementally constructed as queries arrive in the sys-
tem. We will describe first how YFilter constructs the NFA
incrementally, and then describe how this has been adjusted
in our work.

Procedure 2: PublishDocument(): Publishing an XML docu-
ment - Iterative way

procedure n.PublishDocument(doc)1

add startState to activeStates2

runtimeStack.push(activeStates);
foreach event from parsing doc do3

if event is a startElement then4

foreach st in activeStates do5

add st.queries to satisfiedQueries;6

nextPeer := Lookup(st.key);7

states := nextPeer.ExpandState(st, event,8

myId);
add states to targetStates;9

end10

else11

runtimeStack.pop();12

end13

activeStates := targetStates;14

clear targetStates;15

runtimeStack.push(activeStates);16

end17

foreach q in satisfiedQueries do18

notify subscriber of q;19

end20

end procedure21

4.1 NFA construction in YFilter
The construction of the NFA in YFilter is done as follows.

A location step can be represented by an NFA fragment [15].
The NFA for a path query can be constructed by concate-
nating the NFA fragments of the location steps it consists
of, and making the final state of the NFA the accepting state
of the path query.

Inserting a new query into an existing NFA requires to
combine the NFA of the query with the already existing
one. Formally, if L(R) is the language of the NFA already
constructed by previously inserted queries, and L(S) is the
language of the NFA of the query being indexed, then the
resulting NFA has language L(R) ∪ L(S). To insert a new
query represented by an NFA S to an existing NFA R, we
start from the common start state shared by R and S and we
traverse R until either the accepting state of S is reached or
we reach a state for which there is no transition that matches
the corresponding transition of S. If the latter happens, a
new transition is added to that state in R.

4.2 Distributed NFA construction
In our work, an NFA corresponding to a given set of path

queries is constructed incrementally as queries are submit-
ted, and it is distributed throughout the DHT. Thus, we
will use the term distributed NFA to refer to it. We will now
describe how a query q is inserted into the distributed NFA.
The exact steps followed are depicted in Procedure 1. Algo-
rithms in this paper are described using a notation, where
p.Proc() means that peer p receives a message and executes
procedure Proc().

Using Chord, the subscriber peer s sends a message
IndexQuery(q, d, s) to peer r, where q is the query being
indexed in the form of an NFA, d is the current depth of
the query NFA reached and s is the subscriber peer. Ini-
tially d = 0 and r is the peer responsible for the start state,
i.e. succ(“start”). Starting from this peer, each peer p1

that receives an IndexQuery message, checks the state st of
q at depth d, retrieves the state with key st.key from its
local data structure states, and checks whether st is the ac-
cepting state of q. If so, p1 inserts q in the list st.queries.

858

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

Procedure 3: ExpandState(): Expanding a state by following
transitions - Iterative way

procedure n.ExpandState(st, event, publisherId)1

e := element name of event;2

foreach element in {e, ∗, ǫ} do3

st′ := follow transition labeled element;4

if st′ is not null then5

add st′ to targetStates;6

if element is ǫ then7

nextPeer = LookUp(st′.key);8

nextPeer.ExpandState (st′, event, myId);9

end10

end11

end12

if st.selfState is true then add st to targetStates;13

return targetStates;14

end procedure15

Otherwise, let t be the label of the transition from state st

to a target state st′ as it appears in the NFA of q. If there
is no such transition from st, p1 adds a new transition to
state st with label t with target state st′. Finally, p1 sends
a IndexQuery(q, d, s) message to peer p2 with the same pa-
rameters except that depth d is increased by 1. If k is the
key of state st, then k + t is the key of state st′ and p2 is
succ(k + t).

For the sake of simplicity, Procedure 1 describes the base
case for constructing the NFA when parameter l which de-
termines the size of the NFA fragments assigned to each peer
is 0. For larger values of l, each peer, instead of storing only
the state that it is responsible for, it also stores a number
of additional states defined by l. Constructing the NFA as
described above, results in as many IndexQuery messages
being sent to the network as the number of states in the
NFA of q. Notice that the number of messages needed dur-
ing the construction of the NFA is independent of the value
of parameter l.

5. EXECUTING THE NFA
Again, we will first describe how YFilter operates for ex-

ecuting the NFA and then describe in detail our approach
for executing a distributed NFA.

5.1 NFA execution in YFilter
The NFA execution proceeds in an event-driven fashion.

The XML document is parsed using a SAX parser and the
produced events are fed, one event at a time, to the NFA.
The parser produces events of the following types:
StartOfElement, EndOfElement, StartOfDocument, EndOf-
Document and Text. The nesting of elements in an XML
document requires that when an EndOfElement event is
raised, the NFA execution should backtrack to the states it
was in when the corresponding StartOfElement was raised.
For achieving this, YFilter maintains a stack, called the run-
time stack, while executing the NFA. Since many states can
be active at the same time in an NFA, the stack is used
for tracking multiple active paths. The states placed on the
top of the stack will represent the active states while the
states found during each step of execution after following
the transitions caused by the input event, will be called the
target states. Execution is initiated when a StartOfDocu-
ment event occurs and the start state of the NFA is pushed
into the stack as the only active state. Then, each time a
StartOfElement event occurs for element e, all active states

Procedure 4: RecExpandState(): Recursively expand states at
each execution path - Recursive way

procedure n.RecExpandState(st, path, events)1

if st.isAcceptingState then2

add st.queries to satisfiedQueries;3

end4

event = events.next();5

if event.hasSiblings() then6

siblingEvents = event.getSiblings();7

else8

siblingEvents = {event};9

end10

foreach e in siblingEvents do11

if e.isStartElement then12

compute targetStates from st for input e;13

foreach s in targetStates do14

newPath = path.add(e,s);15

next = Lookup(s.key);16

next.RecExpandState(s, newPath, events);17

end18

end19

foreach q in satisfiedQueries do20

notify subscriber of q;21

end22

end23

end procedure24

are checked for transitions labeled with e, wildcard and ǫ-
transitions. In case of an ǫ-transition, the target state is
recursively checked one more time. All active states con-
taining a self-loop are also added to the target states. The
target states are pushed into the run-time stack and become
the active states for the next execution step. If a EndOfEle-
ment event occurs, the top of the run-time stack is popped
and backtracking takes place. Execution proceeds in this
way until the document has been completely parsed.

5.2 Distributed NFA execution
Let us now describe how we execute a distributed NFA

in our approach. Similarly to YFilter, we maintain a stack
in order to be able to backtrack during the execution of the
NFA. For each active state, we want to retrieve all target
states reached by a certain parsing event. Given that the
NFA states in our approach are distributed among the peers
of the network, at each step of the execution, the relevant
parsing event should be forwarded to all the peers responsi-
ble for the active states. Therefore, we can identify two ways
for executing the NFA: the first proceeds in an iterative way
while the other executes the NFA in a recursive fashion.

In the iterative method, the publisher peer is responsible
for parsing the document, maintaining the run-time stack
and forwarding the parsing events to the responsible peers.
In this case, the execution of the NFA proceeds in a similar
way as in YFilter, with the exception that target states can-
not be retrieved locally but need to be retrieved from other
peers. Procedures 2 and 3 describe the actions required by
the publisher peer and the actions required by each peer
responsible for an active state.

The publisher peer p publishes a document by follow-
ing the steps described in procedure PublishDocument(doc)
where doc is the XML document being published. For each
active state, p sends an ExpandState(st, event, publisherId)
message to peer r = succ(st.key), where st is the active state
being expanded, event is the current event produced by the
parser and publisherId is the identifier of the publisher peer.
At first, the only active state is the start state.

859

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

When r receives a message ExpandState, it computes the
transitions from state st that is stored in its local states, and
returns to the publisher peer the set with all the target states
computed. p continues the execution of the NFA until the
document has been completely parsed. p is also responsible
for notifying the subscribers for all the queries satisfied.

Although the iterative method performs poorly due to the
fact that the majority of the load of the system is imposed
on the publisher, we present it here for the reader’s con-
venience (it might also be helpful in understanding the de-
tails of the recursive method). In the iterative approach, a
stack mechanism is employed for maintaining multiple ac-
tive paths during NFA execution. Each active path consists
of a chain of states, starting from the start state and link-
ing it with the reached target states. The main idea of the
recursive method is that these active paths will be executed
in parallel.

The details of the recursive method are as follows. The
publisher peer forwards the XML document to the peer re-
sponsible for the start state to initiate the execution of the
NFA. The execution continues recursively, with each peer
responsible for an active state continuing the execution. No-
tice that the run-time stack is not explicitly maintained in
this case, but it implicitly exists in the recursive executions
of these paths. The execution of the NFA is parallelized in
two cases. The first case is when the input event processed
has siblings with respect to the position of the element in
the tree structure of the XML document. In this case, a dif-
ferent execution path will be created for each sibling event.
The second case is when more than one target states result
from expanding a state. Then, a different path is created for
each target state, and a different peer continues the execu-
tion for each such path. Procedure 4 describes the actions
required by each peer responsible for an active state during
the execution of a path.

The publisher peer p publishes an XML document by
sending a message RecExpandState(st, path, events) to peer
r = succ(“start”), where st is the start state of the dis-
tributed NFA, path is a stack containing only the pair con-
sisting of the event StartOfDocument and the start state,
and events is the list with the parsing events. The pars-
ing events StartOfElement and EndOfElement are enriched
with a positional representation to efficiently check struc-
tural relationships between two elements. Specifically, the
events are enriched with the position of the corresponding
element with a pair (L:R,D), where L and R are generated
by counting tags from the beginning of the document until
the start tag and the end tag of this element, and D is its
nesting depth. The publisher peer is responsible for enrich-
ing the parsing events. This representation was introduced
in [14].

When peer r′ which is responsible for state st, receives
message RecExpandState, it first checks whether the next
input event e in events has siblings. Note that e is deter-
mined by the last event included in stack path. If this is
the case, then r′ computes the transitions from state st for
each sibling using its local data structure states. If st′ is
a target state reached from st then r′ pushes the relevant
sibling event along with st′ onto the stack path and sends
a message RecExpandState(st′, path, events) to peer r′′ =
succ(st′.key). Suppose e1, . . . , es are the sibling events and
TS(e1), . . . , TS(es) represent the sets with the target states
computed by each event. Then, r′ will send

∑
| TS(ei) | dif-

ferent messages, one for each of the different execution paths.
The execution for each path continues until the document
fragment has been completely parsed. Peers that partici-
pate in the execution process are responsible for notifying
the subscribers of the satisfied queries.

Again, the steps described for executing the NFA, refer to
the case where l = 0. For larger values of l, the operations
ExpandState and RecExpandState instead of simulating the
transition function δ, they simulate the extended transition
function δ̂.

Note that the recursive method assumes that the XML
document being filtered is relatively small and this is the
reason for deciding to forward the whole document at each
step of execution. In realistic scenarios XML documents are
usually small as discussed in [6]. However, in the case we
want to filter larger XML documents, our method can be
easily adjusted so that we forward smaller fragments of the
document.

5.3 Predicate evaluation
We evaluate the predicates included in the queries af-

ter the execution of the NFA. This technique of delaying
predicate processing until after the structure of a query is
matched resembles the Selection Postponed (SP) approach
presented in the original YFilter proposal [15]. An alterna-
tive approach called Inline, also presented in [15], evaluates
the predicates of a query during the filtering process at each
step of the NFA execution. As demonstrated in [15], SP out-
performs Inline especially when queries contain a large num-
ber of predicates. This is mainly due to the fact that a lot
of effort is spent evaluating predicates of queries which their
structure may not be matched against the filtering data.

In future work, we plan to consider potential sharing of
value-based predicates. Works like [23] and [25] identify the
need for exploiting the potential commonalities between the
predicates of the queries and not only structural commonal-
ities.

6. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of

our algorithms using a Chord [30] simulator we implemented
in Java. All experiments were conducted on a machine with
a Pentium IV 2.99 GHz processor and 4 GB memory run-
ning the Fedora Core 4 distribution of Linux. Our goal is
to demonstrate the feasibility of our approach and study its
overall performance for various workloads. The performance
of our approach under churn or for different parameters char-
acterizing the underlying DHT overlay is beyond the scope
of this paper.

We generated two different document workloads to evalu-
ate our approach. The first one is created using a set of 10
DTDs including DBLP DTD, NITF (News Industry Text
Format) DTD, ebXML (Electronic Business using eXtensi-
ble Markup Language) DTD and the Auction DTD from the
XMark benchmark [3] and will be referred to as aggregated
workload. Using this workload, we study the performance
of our approach in a realistic scenario where users subscribe
to the same system to receive notifications concerning dif-
ferent interests of theirs (e.g., information about scientific
papers vs. news feeds). The second workload is created us-
ing only the NITF DTD, which has also been used in [10,
15, 25], and will be referred to as NITF workload. We chose
to run separate experiments using the NITF DTD because

860

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

Parameter Aggregated NITF

Number of documents 1000 1000
Dataset size (MBs) 6 1, 5
Number of elements 383 123
Number of attributes 694 513

Number of queries 106 106

Query depth 10 10
Query fanout 1 1
Wildcard prob. 0.2 0.2
Descendant axis prob. 0.2 0.2
Skewness of element names (θ) 0 0
Predicates per query 0 0

Network size 103 103

Table 1: Experiment parameters

it represents an interesting case where a large fraction of el-
ements are allowed to be recursive. For each workload 1000
documents are synthetically generated using the IBM XML
generator [2]; 100 documents for each DTD in the aggre-
gated workload. The path queries used in the experiments
were generated using the XPath generator available in the
YFilter release [4]. For each workload, we create two kinds
of query sets: the distinct set which contains no duplicate
queries and the random set which may contain duplicates.
The random query set represents a more realistic scenario
allowing subscribers to share interests.

The default values of the parameters used for generating
the document workloads, the query sets and creating the
network for our experiments are shown in Table 1. The
number of the indexed queries does not affect the size of
the routing table, which for a network of n peers is at most
log n (in our case log 103). Note that this is not true in
XML content-based dissemination systems like [16], where
the maintenance of large routing tables can become a bottle-
neck. The average document size is 4.8Kb in the aggregated
workload and 36.5Kb in the NITF workload. Note that the
average document size of an XML document in the Web is
only 4 Kb, while the maximum size reaches 500Kb as men-
tioned in the study presented in [6]. In addition, these sizes
are also typical for XML data dissemination settings [10,
11].

The metrics used in the experiments and their definitions
are as follows. The network traffic is defined as the total
number of messages generated by network peers while ei-
ther indexing queries or filtering incoming XML documents.
The filtering latency is measured in network hops as follows.
While filtering an XML document, we measure the longest
chain of hops needed during the execution of the NFA. In
other words, we make the assumption that if a number of
messages are sent simultaneously to a number of peers, the
latency is equal to the maximum number of hops needed
for a message to reach its destination. Lastly, we define the
NFA size as the total number of states included in the NFA.

In Figure 4, we demonstrate the sizes of the NFAs for
different DTDs. For instance, indexing 106 queries from
the Auction DTD results in an NFA with 592199 states.
Considering that in an Internet scale scenario we want to
support millions of path queries from several DTDs, we can
see the benefit of distributing such large NFAs to a large
number of peers in a DHT network which cooperate for the
NFA execution.

The following experiments are divided into four groups.
The first group compares the iterative and the recursive
method for executing the distributed NFA. The second group

0

2000

4000

6000

8000

10000

200K 400K 600K 800K 1000K

Queries

N
et

w
o
rk

 t
ra

ff
ic

 (
m

es
sa

g
es

)

NITF - Recursive

NITF - Iterative

(a) Network traffic

0

400

800

1200

1600

2000

200K 400K 600K 800K 1000K

Queries

L
a
te

n
cy

 (
h

o
p

s)

NITF - Recursive

NITF - Iterative

(b) Latency

Figure 3: Iterative vs. Recursive

~13%

0

150000

300000

450000

600000

EBXML RSS 2.0 AUCTION DBLP NITF PSD SIGMOD

Rec.

DTD

N
F

A
 s

iz
e

(s
ta

te
s)

500K queries

1M queries

Figure 4: NFA size per DTD

studies the scalability of our approach for filtering XML
data as the number of indexed queries increases. Then, in
the third group of experiments we evaluate our approach as
the size of the network increases. Finally, the fourth group
demonstrates the effectiveness of load balancing techniques
for distributing the load imposed on the network peers.

We have also evaluated our algorithms in the case where
non-determinism in the query set increases (i.e., increasing
probability of wildcards and descendant axis), and also for
different values of l. The results of these experiments will
appear in the extended version of this paper.

6.1 Recursive vs. Iterative
In this group of experiments, we compare the recursive

and the iterative method for executing the distributed NFA.
Even though the recursive method has obvious advantages
over the iterative, we include the experiment for complete-
ness. In this experiment, we created a network of 103 peers
and incrementally indexed 2∗105 to 106 distinct path queries.
After each indexing iteration, which doubles the amount of
queries we have, we published 1000 XML documents and
counted the average number of messages and the average
filtering latency for filtering this set of documents. We show
the results for the NITF workload in Figure 3. We observe
that the iterative method needs approximately twice more
messages than the recursive one, mainly due to response
messages that are needed to be sent back to the publisher.
In terms of filtering latency, the recursive method always
outperforms the iterative method by more than 10 times.
The reason for this is that the recursive method executes
in parallel all active paths during the filtering of XML doc-
uments. Since the recursive approach always outperforms
the iterative, in the rest of our experimental results, we only
show the performance of the recursive method.

861

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

~16%

~24%

0

1000

2000

3000

4000

5000

0K 200K 400K 600K 800K 1000K

Queries

M
es

sa
g
es

NITF

Aggregated

0

5000

10000

15000

20000

25000

30000

200000 400000 600000 800000 1000000

Queries

N
et

w
o

rk
 t

ra
ff

ic
 (

m
es

sa
g

es
)

NITF-distinct

NITF-random

Aggregated-distinct

Aggregated-random

(a) Network traffic

~16%

~24%

0

10

20

30

40

50

0K 200K 400K 600K 800K 1000K

Queries

L
a
te

n
cy

 (
h

o
p

s)

NITF

Aggregated

0

10

20

30

40

50

60

70

200000 400000 600000 800000 1000000

Queries

L
a

te
n

cy
 (

h
o

p
s)

NITF-distinct

NITF-random

Aggregated-distinct

Aggregated-random

(b) Latency

0

50000

100000

150000

200000

250000

200000 400000 600000 800000 1000000

Queries

N
F

A
 s

iz
e

(s
ta

te
s)

NITF-distinct

NITF-random

Aggregated-distinct

Aggregated-random

(c) NFA size

Figure 5: Varying number of queries

0

10

20

30

40

50

60

70

80

1000 2000 3000 4000 5000

Network size (peers)

L
a

te
n

cy
 (

h
o

p
s)

NITF-distinct

NITF-random

Aggregated-distinct

Aggregated-random

Figure 6: Varying network size (Latency)

6.2 Varying the number of queries
In this group of experiments, we study the performance of

the system as the number of the indexed queries increases.
We created a network of 103 peers and incrementally indexed
2 ∗ 105 to 106 distinct path queries. After each indexing
iteration, which doubles the amount of queries we have, we
published 1000 XML documents and counted the average
number of messages and the average filtering latency for
these documents. We run four different experiments: two
for the aggregated workload and two for the NITF workload
for both a random and a distinct query set. The results are
shown in Figure 5.

As depicted in Figure 5(a), the generated network traf-
fic for both workloads scales linearly with the number of
queries. The NITF workload results in almost twice more
messages than the aggregated one mainly due to the larger
size of the constructed NFA. In Figure 5(c), the constructed
NFA for the NITF workload consists of almost 225000 states
while the corresponding size for the aggregated workload is
125000 states. Another factor that results in more network
traffic for the random query set of NITF workload is its large
document size.

In Figure 5(b), we show the filtering latency for both work-
loads. We observe that the latency remains relatively unaf-
fected as the number of indexed queries grows. This happens
because even though the size of the NFA increases, as more
queries are added to it, the number of execution steps re-
mains the same. In other words, the NFA reaches a state
where the longest path corresponding to latency remains
constant.

We omit the results for the generated network traffic and
the latency during the indexing of queries in the network due

to space limitations. Note that the network traffic generated
during query indexing scales linearly with the length of the
query automaton being indexed.

6.3 Varying the size of the network
This set of experiments evaluates how the performance of

our approach is affected when we increase the size of the
network. We created networks of 103 to 5∗103 peers and in-
dexed 106 distinct path queries. After indexing the queries,
we published 1000 XML documents and counted the aver-
age number of messages and the average filtering latency for
filtering these documents.

We run two different experiments, one for the aggregated
workload and one for the NITF workload. The results are
shown in Figure 6. We observe that filtering latency remains
unaffected as the size of the network increases for the same
reasons explained above. We do not show graphs concern-
ing network traffic as it remains unaffected as the size of the
network increases. The reason for this is that the filtering
process results in roughly the same number of messages re-
gardless of the network size. We repeated the experiments
for a random query set and we observed that the overall
trends were similar.

However the main motivation for using a larger network
is to decrease the average load of each peer assuming that
load is equally shared among the peers. The next section
presents our techniques that allow us to ensure a balanced
load in various settings.

6.4 Load balancing
We distinguish between two types of load: storage and

filtering load [31, 22]. The storage load of a peer is the to-
tal size of the states stored locally by the peer. The size of
each state is defined as the number of transitions associated
with it. The filtering load of a peer is the number of filter-
ing requests that it processes (measured by the number of
messages it receives during the filtering process).

For achieving a balanced storage load in our system, we
can use a simple load balancing scheme proposed in Chord
[30] which balances the number of keys per node by asso-
ciating keys with virtual nodes and then mapping multiple
virtual nodes (with unrelated identifiers) to each real peer.
As demonstrated in [30], we need to allocate logN randomly
chosen virtual nodes to each peer for ensuring an equal par-
titioning of the identifier space between the peers.

We run an experiment for demonstrating the effectiveness
of the above load balancing technique for balancing the stor-

862

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

~13%

0

500

1000

1500

2000

2500

0 99 198 297 396 495 594 693 792 891 990

Peers ranked by storage load

S
to

ra
g

e
lo

a
d

NITF-no load balancing

NITF-with load balancing

(a) Storage load (NITF)

0

10000

20000

30000

40000

50000

60000

70000

1 100 199 298 397 496 595 694 793 892 991

 Peers ranked by number of filtering requests

F
il

te
ri

n
g

 l
o

a
d

NITF - no load balancing

NITF -with load balancing

(b) Filtering load (NITF)

0

2000

4000

6000

8000

10000

12000

1 100 199 298 397 496 595 694 793 892 991

 Peers ranked by number of filtering requests

F
il

te
ri

n
g

 l
o

a
d

Aggregated - no load balancing

Aggregated -with load balancing

(c) Filtering load (Aggregated)

Figure 7: Load balancing

age load in our approach. We created a network of 103 peers
(each one assigned with 3 virtual nodes) and indexed 106

distinct path queries. Figures 7(a) shows the distribution of
storage load across the peers. On the x-axis of this graph,
peers are ranked starting from the peer with the highest
load. For the NITF workload, we observe that prior to load
balancing the first 200 peers received 118023 states which
is 53% of total storage load and represents an unbalanced
distribution. On the other hand, after assigning 3 virtual
nodes to each network peer we achieve a fairer distribution
of the storage load. Particularly, the first 200 peers received
86427 states or 38% of the total storage load.

Let us now consider the case where all peers share equal
storage load. Then, if the states of the NFA are uniformly
accessed, peers would equally share filtering load. However,
the case where all states of the NFA are uniformly accessed is
unrealistic. This is due to the inherent tree-structure of the
NFA which results in skewness during accessing the states
of the NFA. Peers responsible for states at smaller depths of
the NFA will receive more filtering load than others. Fur-
thermore, another factor that can cause additional imbal-
ance during traversing the NFA is the potential skewness
of elements contained in the XML document set being fil-
tered. For this reason, using the virtual nodes load balanc-
ing scheme is insufficient for balancing the filtering load. For
this reason, we have implemented and evaluated a load bal-
ancing method based on the concept of load-shedding used
successfully in [19, 31]. The main idea is that when a peer p

becomes overloaded, it chooses the most frequently accessed
state st and contacts a number of peers requesting to repli-
cate state st. Then, p notifies the rest of the peers that st

has been replicated, so when a peer needs to retrieve it, it
will randomly select one of the responsible peers.

To demonstrate the effectiveness of load-shedding, we run
the following experiment. We created a network of 103 peers
(each one assigned with 3 virtual nodes) and indexed 106

distinct path queries. A peer considers itself overloaded if
more than 10% of the incoming documents access the same
state that it is responsible for and then it assigns 10 peers to
store a replica of that state. After each indexing iteration,
which doubles the amount of queries we have, we publish
1000 XML documents and count the average filtering load
suffered by each peer. We run the experiment for both ag-
gregated and NITF workloads and the respective results are
shown in Figures 7(b) and 7(c). We observe a significant im-
provement in load distribution when load balancing is used.
For instance, prior to load balancing the first 50 peers re-

ceive almost 20% of the total filtering requests while the
last 200 peers receive almost no load at all. In contrast,
after applying the load balancing method, no peer receives
more than 0.3% of the overall filtering load. We also experi-
mented with different values for both the number of replicas
and the access rate that determines if a peer is overloaded,
but we did not observe any further improvements in the load
distribution.

7. RELATED WORK
We classify related work in the area of XML filtering in

two basic categories, centralized approaches and distributed
approaches. Many approaches exist for XML filtering in a
centralized setting: YFilter [15] and its predecessor XFilter
[5], XTrie [10], XPush [23], the BEA streaming processor
[18], the work of Green et al. [21], XSQ [28], Index-Filter
[9] and others. As we already said in the introduction, lit-
tle attention has been paid so far to providing a distributed
Internet-scale XML filtering service. Systems like [29, 12, 17,
16, 20, 32, 11] have employed distributed content-based rout-
ing protocols to disseminate XML data over broker-based
networks. XML brokers are organized in mesh or tree-based
overlay networks [29, 16], and disseminate XML data us-
ing information stored in their routing tables. In the ONYX
system [16], each broker has a broadcast tree for reaching all
other brokers in the network and also uses a routing table
for forwarding messages only to brokers that are interested
in them. The routing tables in ONYX are instances of the
YFilter engine. In [32], the authors concentrate on load
balancing issues and present a system where XPath queries
are transferred from overloaded to under-loaded servers by
a centralized component called XPE control server. Other
techniques like [20] employ summarization techniques like
Bloom Filters for summarizing the queries included in the
routing tables. Also, recent works like [27, 11] focus on op-
timizing the functionality of each of these XML brokers.

A recent system called SONNET [33], is most related to
our work since it studies XML data dissemination on top of
DHT. Each peer keeps a Bloom-filter-based engine for for-
warding XML packets. Load balancing is concerned with
balancing the number of packets forwarded by each peer
regardless the size of each packet. Finally, [17] presents a
hierarchical XML routing architecture based on XTrie. The
authors describe both a data-sharing and a filter-sharing
strategy for distributing the filtering task. The authors men-
tion that they consider load balancing strategies but they do
not provide any further details regarding a specific strategy.

863

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

Finally, we point out that there are various interesting
papers on storing XML documents in P2P networks and
executing XPath queries like [8, 19, 26]. We do not present
an in-depth discussion of these papers since their emphasis
is not on filtering algorithms.

8. CONCLUSIONS
We presented a novel XML filtering approach which dis-

tributes the state-of-the-art filtering engine YFilter [15] on
top of structured overlays. Our approach differs architec-
turally from recent proposals [29, 12, 17, 16, 20, 32, 11] that
deal with distributed XML filtering as these systems assume
broker-based architectures, whereas our solution is built on
top of DHTs. Our approach is the first that achieves load
balancing between the network peers for XML data dissem-
ination in a distributed setting without requiring any kind
of centralized control. Additionally, peers keep routing ta-
bles of constant sizes whereas in systems like ONYX [16]
the routing tables have size dependent on the number of the
indexed queries causing it to become a bottleneck. We ex-
perimentally evaluate our approach and demonstrate that
our algorithms can scale to millions of XPath queries under
various filtering scenarios, and also exhibit very good load
balancing properties. Our future work concentrates on im-
plementing the proposed methods on a real DHT, evaluating
them on a testbed like Planetlab and comparing them with
other available systems.

9. REFERENCES
[1] DBLP XML records. http://dblp.uni-trier.de/xml/.

[2] IBM XML Generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator.

[3] XMark: An XML Benchmark Project.
http://www.xml-benchmark.org/.

[4] YFilter 1.0 release.
http://yfilter.cs.umass.edu/code release.htm.

[5] M. Altinel and M. J. Franklin. Efficient Filtering of
XML Documents for Selective Dissemination of
Information. In VLDB 2000.

[6] D. Barbosa, L. Mignet, and P. Veltri. Studying the
XML Web: Gathering Statistics from an XML
Sample. World Wide Web, 9(2):187–212, 2006.

[7] A. R. Bharambe, M. Agrawal, and S. Seshan.
Mercury: Supporting Scalable Multi-attribute Range
Queries. In SIGCOMM 2004.

[8] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and
M. Jain. XPath Lookup Queries in P2P Networks. In
WIDM 2004.

[9] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava.
Navigation- vs. Index-Based XML Multi-Query
Processing. In ICDE 2003.

[10] C. Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Efficient Filtering of XML Documents
with XPath Expressions. In ICDE 2002.

[11] C. Y. Chan and Y. Ni. Efficient XML Data
Dissemination with Piggybacking. In SIGMOD 2007.

[12] R. Chand and P. A. Felber. A Scalable Protocol for
Content-Based Routing in Overlay Networks. In NCA
2003.

[13] J. Clark and S. J. DeRose. XML Path Language
(XPath) Version 1.0. World Wide Web Consortium,
Recommendation, November 1999.

[14] M. P. Consens and T. Milo. Optimizing Queries on
Files. In SIGMOD 1994.

[15] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path Sharing and Predicate Evaluation for
High-Performance XML Filtering. ACM TODS,
28(4):467–516, 2003.

[16] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an
Internet-Scale XML Dissemination Service. In VLDB
2004.

[17] P. Felber, C.-Y. Chan, M. Garofalakis, and
R. Rastogi. Scalable Filtering of XML Data for Web
Services. IEEE Internet Computing, 7(1):49–57, 2003.

[18] D. Florescu, C. Hillery, D. Kossmann, P. Lucas,
F. Riccardi, T. Westmann, J. Carey, and
A. Sundararajan. The BEA Streaming XQuery
Processor. The VLDB Journal, 13(3):294–315, 2004.

[19] L. Galanis, Y. Wang, S. Jeffery, and D. J. DeWitt.
Locating Data Sources in Large Distributed Systems.
In VLDB 2003.

[20] X. Gong, W. Qian, Y. Yan, and A. Zhou. Bloom
Filter-Based XML Packets Filtering for Millions of
Path Queries. In ICDE 2005.

[21] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and
D. Suciu. Processing XML Streams with Deterministic
Automata and Stream Indexes. ACM Trans. Database
Syst., 29(4):752–788, 2004.

[22] A. Gupta, O. D. Sahin, D. Agrawal, and A. E.
Abbadi. Meghdoot: Content-based publish/subscribe
over P2P networks. In Middleware 2004.

[23] A. K. Gupta and D. Suciu. Stream Processing of
XPath Queries with Predicates. In SIGMOD 2003.

[24] J. E. Hopcroft, R. Motwani, Rotwani, and J. D.
Ullman. Introduction to Automata Theory, Languages
and Computability. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[25] S. Hou and H.-A. Jacobsen. Predicate-based Filtering
of XPath Expressions. In ICDE 2006.

[26] G. Koloniari and E. Pitoura. Content-based Routing of
Path Queries in Peer-to-Peer Systems. In EDBT 2004.

[27] M. M. Moro, P. Bakalov, and V. J. Tsotras. Early
Profile Pruning on XML-aware Publish/Subscribe
Systems. In VLDB 2007.

[28] F. Peng and S. S. Chawathe. XPath queries on
streaming data. In SIGMOD 2003.

[29] A. C. Snoeren, K. Conley, and D. K. Gifford.
Mesh-Based Content Routing using XML. SOSP 2001,
35(5):160–173, 2001.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In
SIGCOMM 2001.

[31] C. Tryfonopoulos, S. Idreos, and M. Koubarakis.
Publish/Subscribe Functionality in IR Environments
using Structured Overlay Networks. In SIGIR 2005.

[32] H. Uchiyama, M. Onizuka, and T. Honishi.
Distributed XML Stream Filtering System with High
Scalability. In ICDE 2005.

[33] A. Zhou, W. Qian, X. Gong, and M. Zhou. Sonnet:
An Efficient Distributed Content-Based Dissemination
Broker (Poster paper). In SIGMOD 2007.

864

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China

