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Approximation Algorithms for Connected
Dominating Sets1

S. Guha2 and S. Khuller3

Abstract. The dominating set problem in graphs asks for a minimum size subset of vertices with the
following property: each vertex is required to be either in the dominating set, or adjacent to some vertex in
the dominating set. We focus on the related question of finding aconnected dominating setof minimum size,
where the graph induced by vertices in the dominating set is required to beconnectedas well. This problem
arises in network testing, as well as in wireless communication.

Two polynomial time algorithms that achieve approximation factors of 2H(1) + 2 andH(1) + 2 are
presented, where1 is the maximum degree andH is the harmonic function. This question also arises in relation
to the traveling tourist problem, where one is looking for the shortest tour such that each vertex is either visited
or has at least one of its neighbors visited. We also consider a generalization of the problem to the weighted
case, and give an algorithm with an approximation factor of(cn + 1) ln n wherecn ln k is the approximation
factor for the node weighted Steiner tree problem (currentlycn = 1.6103). We also consider the more general
problem of finding a connected dominating set of aspecified subsetof vertices and provide a polynomial time
algorithm with a(c+ 1)H(1) + c− 1 approximation factor, wherec is the Steiner approximation ratio for
graphs (currentlyc = 1.644).
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1. Introduction. Theconnected dominating set(CDS) problemis defined as follows.
Given a graphG = (V, E), find a minimum size subsetS of vertices, such that the
subgraph induced byS is connected andS forms a dominating set inG. This problem
is known to beNP-hard [8]. Recall that a dominating set is one in which each vertex is
either in the dominating set, or adjacent to some vertex in the dominating set.

A related problem is thetraveling tourist problem. Given a graphG = (V, E) find the
shortest walk visiting a subset of vertices, such that each vertex is either visited, or has
at least one of its neighbors visited. The vertices of the graph correspond to monuments
the tourist would like to see, and an edge between two vertices denotes visibility of one
monument from another. The shortest such walk would guarantee that the tourist sees
all monuments of interest.

A β approximation algorithm for a minimization problem runs in polynomial time
and guarantees that the ratio of the cost of the solution to the optimal does not exceed
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β. We also refer toβ as the approximation factor of the algorithm. We show that aβ

approximation for the connected dominating set problem yields a 2β approximation for
the traveling tourist problem. Consider a spanning tree of the connected dominating set
Sand perform a tree traversal. This yields a walk in which exactly 2(|S| − 1) edges are
traversed. Any set of vertices visited by the tourist form a connected dominating set.
ThusS ≤ β · |OPTCDS| ≤ β · |OPTTT|, whereOPTCDS denotes an optimal connected
dominating set andOPTTT denotes an optimal traveling tourist tour, and the result follows.

We study the connected dominating set problem when the vertices have weights, and
we wish to minimize the total weighted sum of the vertices that form the connected
dominating set. This also yields an approximation algorithm for the weighted traveling
tourist problem, where the weights denote the tourist’s cost of buying a ticket to visit the
monument.

We consider the Steiner CDS problem, where only a specified subset of vertices have
to be dominated by a connected dominating set (defined formally in Section 1.2). For
the unweighted Steiner CDS problem, we provide approximation algorithms that run
in polynomial time. When the vertices have weights, the Steiner CDS problem is at
least as hard as the notorious set TSP problem on graphs (defined in Section 1.2) for
which no nontrivial approximation algorithm is known. The same is true for the CDS
problem when the edges have weights. Recent work by Marathe et al. [18] gives bicriteria
approximation algorithms for the “service-constrained network design problem.” The
goal is to design a tree that has low cost and is sufficiently close to each vertex in the
graph (these service requirements can be nonuniform). They obtain bicriteria algorithms
by relaxing the domination distance requirement, as well as the network cost.

1.1. Our Results. We present two approximation algorithms for the connected domi-
nating set problem. The first approach is to develop a greedy algorithm for solving the
problem. A naive greedy algorithm is shown to do badly. Surprisingly, with a simple
modification we are able to show an approximation factor of 2(1+ H(1)) (in practice,
this algorithm appears to do very well). We also provide an efficient implementation of
this algorithm. This algorithm is described in Section 2.

The second algorithm is an improvement of the first algorithm. The algorithm finds a
dominating set in the first phase, and in the second phase connects the dominating set. In
an earlier version of this paper [9] we established a bound ofH(1)+ H(H(1)). Using
Slav́ik’s greedy set-cover bound [22], we were able to show that the approximation factor
is lnn+O(1). Recently, Berman (personal communication) suggested a modification to
our algorithm [9], which improves the approximation factor toH(1)+ 2. We describe
the algorithm and give a simple proof of an approximation ratio of ln1 + 3 (since
ln1 ≈ H(1)−0.7, the difference is very small). This algorithm is described in Section 3.

We also show an approximation preserving reduction from the set-cover problem
to the connected dominating set problem, showing that it is hard to improve the ap-
proximation guarantee ofH(1) for any graph and asymptotically largen and1 unless
NP⊆ DTIME[nO(log logn)] [17], [7]. This is described in Section 5.1.

In Section 4.1 we give a(cn+1) ln n approximation for the node weighted CDS prob-
lem, wherecn ln k is the approximation factor for the node weighted Steiner tree problem
[13] andk is the number of terminals (currentlycn = 1.6103 [10]). We next consider the
Steiner CDS problem, where only a specified subset of vertices have to be dominated
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by a connected dominating set. For the unweighted case, we provide an approximation
algorithm that runs in polynomial time in Section 4.2. It has an approximation factor
of (1+ c)H(min(1, k)) + c − 1, wherec is the approximation ratio for the Steiner
tree problem [4] (currentlyc = 1.644 [12]) andk is the size of the set we want to
dominate.

When the vertices have weights, the Steiner connected dominating set problem is at
least as hard as the notorious set TSP problem on graphs (defined shortly) for which no
non-trivial approximation algorithms are known. The same is true for the edge weighted
CDS problem. These reductions are described in Section 5.2.

1.2. Preliminaries and Problem Definitions. In all the following discussion theweight
of a set is the sum of the weights of the elements contained in it.

Theconnected dominating setproblem is the following: given a graphG = (V, E)
find the smallest subsetSof vertices that induce a connected subgraph and each vertex
in V − S is adjacent to at least one vertex inS.

Thenode weighted connected dominating setproblem is the generalization of the
connected dominating set problem to the case where the vertices have weights, and we
are looking for the smallest weighted subsetS.

The Steiner connected dominating setproblem is the following: given a graph
G = (V, E) and a subsetR of required vertices, find the smallest subsetS of vertices
that induce a connected subgraph and each vertex ofR− S is adjacent to at least one
vertex onS.

Thenode weighted Steiner connected dominating setproblem is the generalization
of the Steiner connected dominating set problem to the case where the vertices have
weight, and we are looking for the smallest weighted subsetS.

The edge weighted connected dominating setproblem is the following: given a
graphG = (V, E) with weights on the edges, find a smallest weight tree whose vertices
form a dominating set.

The Steiner tree problem is defined as follows: given a graphG = (V, E), and a
setR ⊆ V of required vertices (terminals) in an edge weighted graph, find a minimum
weight tree connecting the terminals. Note that the tree may include other vertices that
are not required vertices. These vertices are termedSteiner vertices.

Thenode weighted Steiner treeproblem is the Steiner tree problem, except that the
vertices of the graph have weights associated with them and the weight of the tree is the
sum of the weights of its vertices. (The case when both vertices and edges have weights
can easily be reduced to the case when only the vertices have weights.)

Theset coverproblem is the following: given a set of elementsU , and a setS of subsets
of U , we wish to find the smallest collection of setsS ′ ⊂ S such that

⋃
S∈S ′ S= U .

Theset TSPproblem is defined as follows: given an edge weighted graphG = (V, E)
and a partition ofV = (V1 ∪ V2 ∪ · · · ∪ Vk), find the shortest tour that contains at least
one vertex from eachVi .

Given a graphG = (V, E), we use1 to denote the maximum degree of a vertex in the
graph. We usen andm to denote the numbers of vertices and edges inG, respectively.
We useN(v) to denote the set of neighbors of a vertexv. The degree of a vertexv is
denoted byd(v).
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1.3. Applications and Related Work. The paper by Paul and Miller [20] discusses
applications related to testing nodes in a computer network using a short “traveling
tourist tour.” They also consider the related question of finding a tour that visits each
edge of the graph (connected vertex cover). This is needed when testing the links as well
as the nodes is required. Approximation algorithms for the latter problem were given by
Arkin et al. [1]. We observe that there is a simple algorithm for the unweighted connected
vertex cover problem that gives a factor 2 approximation (the one given in [1] is more
complicated). Perform a depth first search, and take all the nonleaf vertices as the vertex
cover. This clearly induces a connected graph, and the approximation ratio is 2, as shown
by Savage [21]. In practice, however, this method will probably give large connected
vertex covers.

Other applications for the connected dominating set problem are in doing broadcasts
for wireless computers in digital battlefields. The broadcast is done to the vertices in the
connected dominating set. The nodes in the connected dominating set are responsible for
relaying messages. Each node not in the dominating set is not responsible for relaying
any messages [15]. Many of the ideas in our paper have been used to design a distributed
algorithm for routing based on minimum connected dominating sets in ad hoc net-
works [5].

Recent work by Marathe et al. [18] gives bicriteria approximation algorithms for the
“service-constrained network design problem.” The goal is to design a tree that has low
cost and is sufficiently close to each node in the graph (these service requirements can
be nonuniform). They obtain bicriteria algorithms by relaxing the domination distance
requirement, as well as the network cost.

The nodes in the connected dominating set together with the remaining nodes of the
graph form a spanning tree withmanyleaves. The maximum leaf spanning tree problem
is another related problem that has been studied and factor 3 approximations are known
for it [16].

Recently, Harary and Raghavachari [11] have shown that the email gossip number of
a graph is exactlyn− 1+OPTCDS, whereOPTCDS is the size of the optimal connected
dominating set. This indicates that the connected dominating set problem has many in-
teresting applications. Polynomial algorithms for the connected dominating set problem
for special classes of graphs were given by White et al. [23].

2. Algorithm I. We introduce an algorithm that finds a connected dominating set by
“growing” a tree.

The idea behind the algorithm is the following: grow a treeT , starting from the vertex
of maximum degree. At each step we pick a vertexv in T and “scan it.” Scanning a
vertex adds edges toT from v to all its neighbors not inT . In the end we find a spanning
treeT , and pick the nonleaf nodes as the connected dominating set.

Initially all vertices are unmarked (white). When we scan a vertex (color it black),
we mark all its neighbors that are not inT and add them toT (color them gray). Thus
marked nodes that have not been scanned are leaves inT (gray nodes). All unmarked
nodes are white. The algorithm continues scanning marked nodes, until all the vertices are
marked (gray or black). The set of scanned nodes (black nodes) will form the connected
dominating set (CDS) in the end.
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Fig. 1.Example to show that the scanning rule fails ford = 5.

The main question is the following: what rule should we use for picking a vertex
to be scanned? A natural choice is to pick the vertex that has the maximum number of
unmarked (white) neighbors. We call this the “yield” of the scan step. Unfortunately, as
the following example shows this may not work well (see Figure 1).

Let u andv be vertices of degreed. There is a solution of size four, by picking a
path fromu to v as the CDS. The algorithm begins by marking and scanningu. This
adds all ofu’s neighbors toT . We pick a vertex fromN(u) and scan it, adding its only
unmarked neighbor (fromN(v)) to T . At this point, each vertex inT has exactly one
unmarked neighbor. We could pick a vertex fromN(u) again, and scan it, adding its
only unmarked neighbor toT . This continues until all the vertices fromN(u) have been
scanned. Finally we scan a vertex fromN(v) and markv. At this point the algorithm has
pickedd + 2 vertices.

The entire algorithm can be implemented inO(m) steps [9]. This implementation
is useful because it leads to a heuristic for themaximum leaf spanning treeproblem as
well [14].

MODIFIED GREEDY ALGORITHM. We now modify the scanning rule to prove a good
approximation ratio for this class of algorithms (that maintain a connected set that even-
tually becomes a CDS). We define a new operation of scanning a pair of adjacent vertices
u andv. Let u be gray and letv be white.Scanning the pairmeans first makingu black
(this makesv, along with some other nodes, gray) and then coloringv black (makes more
nodes gray). The total number of nodes that are colored gray is called the “yield” of the
scan step.At each step, we either scan a single vertex or a pair of vertices, whichever
gives the higher yield. (In some sense we are doing a “look-ahead” by one extra vertex,
and are willing to scan a pair of vertices if this has a higher yield.)

It is clear that this algorithm finds the optimal solution in the example shown in
Figure 1. What is perhaps a little surprising is that this simple modification lets us prove
the following theorem.

THEOREM2.1. Using the scanning rule described above yields a connected dominating
set of size at most2(1+ H(1)) · |OPTDS|, where OPTDS is an optimal dominating set4

in the graph.

4 It is easy to see that|OPTDS| ≤ |OPTCDS|.
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PROOF. Let OPTDS be the set of vertices in an optimal dominating set. The sets of
vertices ofG dominated by vertexi ∈ OPTDS is calledSi (we assume thati also belongs
to Si ). If a vertex is dominated by more than one vertex, we arbitrarily put it in one of
the sets. The proof is based on a charging scheme. Each time we color a vertex black, we
add a new vertex to our connected dominating set. We “charge” each new vertex marked
(colored gray) in this step. Since each vertex in the graph gets marked exactly once, it
is charged exactly once (the first time it is marked). We then prove that the total charge
on the vertices belonging to a setSi (for any i ) is at most 2(1+ H(1)). Since there are
|OPTDS| sets in the optimal solution, the theorem follows.

Assume that when we color a vertex black, we markx new vertices. We charge each
such newly marked vertex 1/x. In some steps we scan two vertices, and charge each
newly marked vertex 2/x. The main advantage of the “look-ahead” is the following.The
instant we mark some nodes in set Si , even if vertex i has not been marked, since it is
adjacent to a marked vertex, it becomes eligible to be scanned as part of a pair. Without
the “look-ahead,” only marked vertices were candidates to be scanned.

We now prove the upper bound on the total charges to vertices belonging to a single
setSi . At each step, some vertices may get marked. The number of unmarked vertices in
Si is initially u0, and finally drops to 0. Letuj denote the number of unmarked vertices
in Si after stepj . For simplicity, we assume that at each step some vertices ofSi are
marked, so the number of unmarked vertices inSi decreases at each step.

The number of marked vertices inSi after the first step isu0− u1. Each vertex gets a
charge of at most 2/(u0− u1) (the actual charge may be a lot smaller, if only one vertex
was scanned at this step, or if we marked many other vertices as well). Once some vertex
in Si is marked, vertexi becomes an “eligible” vertex to be scanned as a part of a pair,
since it isadjacentto a marked vertex. In thej th step, the number of vertices of setSi

that get marked isuj −uj+1, and the charge to each vertex inSi is at most 2/uj as vertex
i was an eligible vertex to be scanned. Letuk = 0. Adding up all the charges we get

2

u0− u1
(u0− u1)+

k−1∑
j=1

2

uj
(uj − uj+1) ≤ 2+ 2

k−1∑
j=1

(uj − uj+1)

uj
.

(With some algebraic manipulation (see p. 977 of [6]) and using the fact thatu0 ≤ 1+1,
one can show that this is at most 2(1+ H(1).)

REMARK. We could modify the algorithm and at each step scan either one or two
vertices, whichever results in a smaller charge to each vertex. In practice, this should
give better solutions. Thus we only pick a pair of nodes if its yield is at least twice that
of a single node.

IMPLEMENTATION ISSUES. A naive implementation appears to give a worst case running
time of O(mn2). In each iteration we choose either one vertex, or a pair of vertices, and
color them black. It is clear that we may have2(n) iterations, since the optimal solution
may have2(n) vertices. In each iteration, we wish to identify a pair of nodes with the
highest yield. For each gray vertexu, we scan its adjacency list and consider all its white
neighbors. Foreachwhite neighborv of u, we wish to determine the number of vertices
that would get marked if we scanned the pair(u, v). Sinceu andv have common white
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neighbors, we cannot simply add up the number of white neighbors of each vertex to
obtain the “yield” of this pair. We need to identify the number of white neighbors ofv

that arenot adjacent tou (since those will not be colored gray byu). The number of
steps in a single iteration can be computed as follows.

Let GRbe the gray nodes inT . Let W be the white vertices that are adjacent to gray
vertices. We can upper bound the total work done in a single iteration as follows:

S=
∑
u∈GR

∑
v∈N(u)∧v∈W

d(v).

In the double summation each vertex inW is counted as many times as the number of
its gray neighbors, we obtain the following:

S≤
∑
v∈W

d(v)2 ≤
∑
v∈W

n · d(v) ≤ O(mn).

This yields a bound ofO(mn2). We now show that the total number of steps over all
iterations isO(mn) by a more careful analysis.

For each vertex we can maintain two adjacency lists, one of its gray neighbors and
one of its white neighbors. We usedW(u) to denote the number of white neighbors of
u anddGR(u) to denote the number of gray neighbors ofu. The work done in a single
iteration is as follows:

S =
∑
u∈GR

∑
v∈W∧v∈N(u)

dW(v)

=
∑
v∈W

dW(v) · dGR(v).

(In the double summation, each vertexv is counted as many times as the number of its
gray neighbors.) Observe that at this step, we make a subset of white vertices gray.

LEMMA 2.2. The number of white vertices that are made gray in this iteration is at
least

max
v∈W

dW(v).

PROOF. We pick the pair of vertices that give the highest “yield”; we certainly consider
all such verticesv, and color their white neighbors gray.

At this step we can “charge” the vertices whose color changed from white to gray.
The charge to each such vertex is at most∑

v∈W dW(v) · dGR(v)

maxv∈W dW(v)
≤
∑
v∈W

dGR(v) ≤ 2m.

Since each vertex changes color from white to gray exactly once over the entire
algorithm, and there aren such vertices the total number of steps isO(mn).

The only remaining issue is maintaining the required adjacency lists. This can be done
each time we change the color of a vertex from white to gray by scanning its adjacency
list, and updating the structures for its neighbors.
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3. Algorithm II. An alternate approach to growing one connected tree is to grow
separate components that form a dominating set and then to connect them together. One
straightforward approach is to find a dominating set using a greedy heuristic, and to
use a Steiner tree algorithm to connect it. Since members of the optimum connected
dominating set, along with the members of the dominating set we found, induce a
connected subgraph, we can prove an approximation ratio ofc(1+ H(1)), wherec is
the approximation ratio for the unweighted Steiner tree problem (currentlyc = 1.644
[12]).

For the special case when the required vertices form a dominating set in a graph and
all edges have unit weight, Berman and F¨urer [3] have announced a new algorithm with
c = 4

3. Thus we can improve the approximation ratio to4
3(1+ H(1)) by using their

algorithm. By applying a simple greedy strategy to connect the vertices in the dominating
set, we proved a bound ofH(1)+ H(H(1)) [9]. Here we present a modification of the
above algorithm, as suggested by Berman, and prove an approximation ratio of ln1+3.
(Berman has an alternate proof for an approximation ratio ofH(1)+ 2.)

The algorithm runs in two phases. At the start of the first phase all nodes are colored
white. Each time we include a vertex in the dominating set, we color it black. Nodes
that are dominated are colored gray (once they are adjacent to a black node). In the first
phase the algorithm picks a node at each step and colors it black, coloring all adjacent
white nodes gray. Apieceis defined as a white node or a black connected component.
At each step we pick a node to color black that gives the maximum (nonzero) reduction
in the number of pieces.

We show that at the end of this phase if no vertex gives a nonzero reduction to the
number of pieces, then there are no white nodes left.

In the second phase we have a collection of black connected components that we
need to connect. Recursively connect pairs of black components by choosing a chain of
vertices, until there is one black connected component. Our final solution is the set of
black vertices that form the connected component.

LEMMA 3.1. At the end of the first phase there are no white vertices left.

PROOF. Suppose there is a white nodev at the end of the phase. We will show that there
is a vertex that strictly reduces the number of pieces.

All neighbors ofv are white or gray. Ifv has a white neighbor, then coloringv
black reduces the number of white nodes by two, and increases the number of black
components by one, thus pickingv would reduce the number of pieces. Otherwise,v

has a gray neighboru. Coloringu black would reduce the number of white nodes, and
not increase the number of black components sinceu is adjacent to a black node. Thus
pickingu reduces the number of pieces.

LEMMA 3.2. At the end of the first phase if there is more than one black component,
then there is always a pair of black components that can be connected by choosing a
chain of two vertices.

PROOF. Consider the shortest path connecting two black components. Assume this path
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consists of verticesu0, u1, u2, u3, . . . ,uk whereu0 anduk belong to black components
i and j , respectively. Vertexu1 is dominated by vertexu0. If u2 is black, then we can
reduce the number of pieces by makingu1 black. By Lemma 3.1,u2 must be gray.
Vertexu2 is adjacent to a black component`, distinct fromi . Componentsi and` can
be connected by choosing a chain of two vertices.

THEOREM3.3. The connected dominating set found by the algorithm is of size at most
(ln1+ 3) · |OPTCDS|.

PROOF. Defineai to be the number of pieces left after thei th iteration, anda0 = n.
Since a node can connect up to1 pieces,|OPTCDS| ≥ a0/1. (This is true if the optimal
solution has at least two nodes.) Consider the(i + 1)th iteration. The optimal solution
can connectai pieces. Hence the greedy procedure is guaranteed to pick a node which
connects at leastdai /|OPTCDS|e pieces. Thus the number of pieces will reduce by at
leastdai /|OPTCDS|e − 1. This gives us the recurrence relation

ai+1 ≤ ai −
⌈

ai

|OPTCDS|
⌉
+ 1≤ ai

(
1− 1

|OPTCDS|
)
+ 1.

Its solution is

ai ≤ a0

(
1− 1

|OPTCDS|
)i

+
i−1∑
j=0

(
1− 1

|OPTCDS|
) j

.

Notice after|OPTCDS| · ln(a0/|OPTCDS|) iterations, the number of pieces left is less than
2 · |OPTCDS|. After this, for each node we choose, we decrease the number of pieces
by at least one until the number of black components is at most|OPTCDS|, thus at most
|OPTCDS| more vertices are picked. So after|OPTCDS| · ln(a0/|OPTCDS|) + |OPTCDS|
iterations at most|OPTCDS| pieces are left to connect.

Assume from this point onward, we stop after choosingaf more nodes. The number
of pieces left to connect is at most|OPTCDS| − af . We connect the remaining pieces
choosing chains of two vertices in the second phase. The total number of nodes chosen
is at most|OPTCDS| · ln(a0/|OPTCDS|)+ |OPTCDS| + af + 2(|OPTCDS| − af ), and since
1 ≥ a0/|OPTCDS|, the solution found has at most|OPTCDS| · (ln1+ 3) nodes.

REMARK. Berman [2] has an alternate proof ofH(1) + 2 of the same algorithm.
However, since ln1 ≈ H(1)− 0.7, the difference is very small.

4. Generalizations

4.1. Node Weighted Connected Dominating Sets. An approximation factor of
(cn + 1) ln n is possible for the node weighted connected dominating set problem. The
algorithm first finds a dominating set, and then connects the nodes in the dominating set.
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Step1. Use a weighted set cover approximation algorithm to find a dominating set
DS. (A set cover instance is created by making each vertex an element, and each vertex
corresponds to a set that contains the vertex itself, together with its neighbors. The greedy
algorithm picks sets based on the ratio of their weight to the number of new elements
they cover.)

Step2. To connect the vertices inDSwe use a node weighted Steiner tree approximation
algorithm [13], [10] to find a Steiner tree that includes all the vertices inDS, after making
the weights of all vertices inDSequal to zero. This yields a connected dominating set
CDS.

THEOREM4.1. The weight of vertices in CDS is at most(cn + 1) ln n · w(OPTCDS)

where OPTCDS is the minimum weight connected dominating set in G, and cn ln k is
the approximation factor for the node weighted Steiner tree problem for k terminals
(currently cn = 1.6103).

PROOF. The weight of the vertices inDS is at most ln1 ·w(OPTCDS). We now run the
node weighted Steiner tree algorithm [10] to find a node weighted Steiner tree which
connects the vertices inDS. The approximation factor of the algorithm is 1.6103 lnk,
wherek is the number of terminals (the paper by Klein and Ravi [13] gives a 2 lnk
approximation factor). Consider the vertices inOPTCDS; these together with the vertices
in DS induce a connected subgraph. Hence there exists a node weighted Steiner tree of
weightw(OPTCDS). Thus the tree found in Step 2 weighs at most 1.6103 lnn·w(OPTCDS).
The total weight of the vertices in the connected dominating set is the weight ofDS
together with the weights of optional vertices chosen fromG in the Steiner instance.
Adding the weight of the two sets gives the required bound.

4.2. Steiner Connected Dominating Sets. We now address the Steiner connected dom-
inating set problem when we are required to dominate only a specified subsetR of the
vertices. The cost of the solution is the size of the smallest connected dominating set
that dominates the vertices inR. (Notice that the objective function is slightly different
from the node weighted Steiner tree problem, where required vertices have zero cost. In
the Steiner CDS problem, we are charged for all vertices in the final solution that are not
leaf nodes in the tree that connectsR.)

Let |R| = k, and letOPTCDS(R) denote the optimal solution. We present an algorithm
that solves this problem. A straightforward strategy is first to find a small dominating set
A, of the vertices inR, and then to connect these nodes.

ALGORITHM

Step1. Modify the greedy set cover algorithm to run on the set of elementsR, with
the vertices inV and the nodes inR that they dominate, corresponding to sets; until no
vertex covers strictly more than one uncovered vertex ofR. We call the set of vertices
chosenB.

Step2. Choose the uncovered vertices ofR, call this setB′.

Step3. For each member ofB, choose a representative element ofR that it dominates.
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Let this set beR(B). Apply an (edge weighted) Steiner tree approximation, with the set
of required nodesR(B) ∪ B′. The final solution is the nodes of this tree and the nodes
of B.

THEOREM4.2. The connected dominating set for the subset R is at most(c+1)H(δ)+
c− 1 times the optimal(where c is the Steiner approximation ratio). We defineδ as the
size of the largest subset of R, adjacent to a node in the graph(δ ≤ min(1, k)).

PROOF. By a slight modification to the proof given on p. 977 of [6] we can prove
|B| ≤ (H(δ)− 1) · |OPTCDS(R)|. (Since the first step reduces to finding a set cover with
the size of the largest set beingδ.) SinceOPTCDS(R) cannot dominate any two vertices
of B′ by one vertex,|B′| ≤ |OPTCDS(R)|. Note thatB ∪ B′ dominates the setR.

Consider the setR(B); there is a Steiner tree with|R(B)| + |B′| + |OPTCDS(R)|
edges that connects the nodes ofR(B) ∪ B′.

Apply an (edge weighted) Steiner tree approximation, with all edges having unit
weight, and find a tree of sizec · (|R(B)| + |B′| + |OPTCDS(R)|), wherec is the Steiner
approximation ratio [12]. Since this tree is edge weighted, it has essentially the same
number of nodes, including those ofR(B) ∪ B′. Since we have to add the vertices ofB
as well, we get an upper bound ofc · (|R(B)| + |B′| + |OPTCDS(R)|)+ |B|. Notice that
|R(B)| ≤ |B| ≤ (H(δ) − 1) · |OPTCDS(R)|, and|B′| ≤ |OPTCDS(R)|. This gives us a
solution of cost at most((c+ 1) · H(δ)+ c− 1) · |OPTCDS(R)|.

5. Lower Bounds on Approximation Factors

5.1. Hardness Result for Connected Dominating Set. We can prove that the set-cover
problem can be reduced to the connected dominating set problem by an approximation
preserving reduction, thus showing that the approximation factorH(1) will be hard to
improve for general graphs. This is based on the hardness results for set cover proven by
Lund and Yannakakis [17] and Feige [7].

Given a set-cover instance we reduce it to a connected dominating set problem as
follows:

Let the set-cover instance be to cover setU , with a minimum number of sets from the
collectionS = {S1, S2, . . . , Sm}.

Construct a graphG that has vertex setU ∪{u, v, v1, v2, . . . , vm}. An elemente∈ U ,
andvi has an edge joining them if and only ife∈ Si . Eachvi has an edge tov. Vertexu
has an edge only tov (see Figure 2).

Consider a minimum connected dominating set ofG. Vertexv belongs to any con-
nected dominating set, and henceu does not belong to any minimal connected dominating
set. No vertexej is chosen in a minimal connected dominating set, since any node that
it might potentially dominate is already dominated byv, which also provides the con-
nectivity. Hence we will only havev and somevi ’s. Thesevi ’s will correspond to the
minimum cover for the given instance of set cover.

The size of the connected dominating set is one more than the minimum set cover.
Thus approximating the connected dominating set with a factor of(1− ε)H(δ) (for all
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Fig. 2.Reduction of set cover to connected dominating sets.

1) would imply approximating minimum set cover within the same factor. This would
imply thatNP⊆ DTIME[nO(log logn)] [7].

5.2. Hardness Results for Generalizations. We show two simple reductions that demon-
strate that other generalizations of the CDS problem may be as hard to approximate as
the “set TSP” problem for which no nontrivial approximation algorithms are known.
(For the Euclidean case, Mata and Mitchell [19] have given approximation algorithms
for this problem.)

THEOREM5.1. A polynomial approximation algorithm for the edge weighted connected
dominating set problem with factor f(n) would imply a polynomial approximation al-
gorithm for the set TSP problem with factor2 f (n).

PROOF. We show how to reduce the set TSP problem to the edge weighted connected
dominating set problem. Consider a set TSP instanceG = (V, E) whereV = (V1 ∪
V2 ∪ · · · ∪ Vk). For each subsetVj , introduce a special vertexcj , and add edges fromcj

to all v ∈ Vj , with very high cost edges. Foru, v ∈ Vj , if (u, v) 6∈ E, add the edge(u, v)
with very high cost. Call this new graphG′.

Any set TSP tour inG chooses at least one vertex ofVj to visit. Thus all nodes of
Vj ∪ {cj } will be dominated by the corresponding node in the tour. Since every node of
G occurs in someVj , this yields a dominating set. Since these are nodes on a tour, they
also form a connected set. HenceOPTCDS(G′) ≤ OPTTOUR(G).

If we have a connected dominating set ofG′, then it must have a vertex ofVj to
dominatecj . Hence the dominating set must have at least one vertex from each setVj . If
the cost of this connected dominating set is small (≤ f (n)OPTCDS(G′)), since we are not
using the high cost edges inG′, we are using only the edges of the graphG. By traversing
this tree twice, we can produce a tour inG, with cost at most 2f (n)OPTCDS(G′) ≤
2f (n)OPTTOUR(G). Thus, if we can approximate the connected dominating set with
edge weights to a factorf (n), we can approximate set TSP within a factor 2f (n).

THEOREM5.2. A polynomial approximation algorithm for the node weighted Steiner
connected dominating set problem with factor f(n) would imply a polynomial approxi-
mation algorithm for the set TSP problem with factor2 f (n).
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Fig. 3.Reduction of set TSP problem to edge weighted CDS.

PROOF. The proof is similar to the proof of the previous theorem. Given a set TSP
instanceG = (V, E) whereV = (V1 ∪ V2 ∪ · · · ∪ Vk) we construct a graphG′. First
convert the edge weights of the set TSP problem into node weights. For every edge
e = (vp, vq) ∈ E, create an extra nodevpq of the same cost, connected tovp andvq.
All other nodes are given zero cost. For every subsetVj , introduce a special vertexcj

(of very high cost), and connect it to allv ∈ Vj . We show that the problem reduces
to finding a node weighted Steiner CDS of the subsetR = {cj | j = 1 · · · k} of nodes
of G′.

Any set TSP tour inG chooses at least one vertex ofVj to visit. Thus eachcj

will be dominated. The weight of the edgese= (vp, vq) translates to the weight of the
corresponding verticesvpq. Since the nodes form a tour, they also form a connected set in
G′, together with the new nodes that subdivide edges. ThusOPTCDS(G′) ≤ OPTTOUR(G).

Consider a connected dominating set that dominatesR. To dominatecj , it must pick
a vertex fromVj . (Without loss of generality, the connected dominating set does not
containcj .) If the cost of this connected dominating set is small (≤ f (n)OPTCDS(G′)),
since we are not using the high cost nodes inG′, we are using only the nodes of the
graphG along with nodes that correspond to the subdivided edges. Thus the dominating
set chooses vertices that are also inG, and the corresponding vertices for each edge of
G that it includes. This yields a tree that connects at least one element from eachVj

using edges ofG. By traversing this tree twice, we can produce a tour inG, of cost
at most 2f (n)OPTCDS(G′) ≤ 2f (n)OPTTOUR(G). Thus, if we are able to approximate
the connected dominating set of a subset with node weights to a factorf (n), we can
approximate set TSP within a factor 2f (n).
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