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Approximation Algorithms for Connected
Dominating Sets

S. Guh& and S. Khulle?

Abstract. The dominating set problem in graphs asks for a minimum size subset of vertices with the
following property: each vertex is required to be either in the dominating set, or adjacent to some vertex in
the dominating set. We focus on the related question of findicgnaected dominating sef minimum size,
where the graph induced by vertices in the dominating set is requireddoriveectechs well. This problem
arises in network testing, as well as in wireless communication.

Two polynomial time algorithms that achieve approximation factorstéf®) + 2 andH (A) + 2 are
presented, wher& is the maximum degree arttlis the harmonic function. This question also arises in relation
to the traveling tourist problem, where one is looking for the shortest tour such that each vertex is either visited
or has at least one of its neighbors visited. We also consider a generalization of the problem to the weighted
case, and give an algorithm with an approximation factaicef+ 1) Inn wherec, Ink is the approximation
factor for the node weighted Steiner tree problem (curremtly 1.6103). We also consider the more general
problem of finding a connected dominating set spacified subseif vertices and provide a polynomial time
algorithm with a(c + 1)H(A) + ¢ — 1 approximation factor, whereis the Steiner approximation ratio for
graphs (currentlg = 1.644).

Key Words. Approximation algorithms, Steiner trees, Dominating sets, Graph algorithms.

1. Introduction. Theconnected dominating s6EDS problemis defined as follows.
Given a graphG = (V, E), find a minimum size subse& of vertices, such that the
subgraph induced bg is connected an& forms a dominating set its. This problem

is known to beNP-hard [8]. Recall that a dominating set is one in which each vertex is
either in the dominating set, or adjacent to some vertex in the dominating set.

Arelated problem is theaveling tourist problemGiven a graplc = (V, E) find the
shortest walk visiting a subset of vertices, such that each vertex is either visited, or has
at least one of its neighbors visited. The vertices of the graph correspond to monuments
the tourist would like to see, and an edge between two vertices denotes visibility of one
monument from another. The shortest such walk would guarantee that the tourist sees
all monuments of interest.

A B approximation algorithm for a minimization problem runs in polynomial time
and guarantees that the ratio of the cost of the solution to the optimal does not exceed
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B. We also refer t@8 as the approximation factor of the algorithm. We show thAt a
approximation for the connected dominating set problem yields aproximation for

the traveling tourist problem. Consider a spanning tree of the connected dominating set
Sand perform a tree traversal. This yields a walk in which exaati$|2- 1) edges are
traversed. Any set of vertices visited by the tourist form a connected dominating set.
ThusS < B8 - |OPTepg < B - |OPTr|, whereOPTeps denotes an optimal connected
dominating setan@P T+ denotes an optimal traveling tourist tour, and the result follows.

We study the connected dominating set problem when the vertices have weights, and
we wish to minimize the total weighted sum of the vertices that form the connected
dominating set. This also yields an approximation algorithm for the weighted traveling
tourist problem, where the weights denote the tourist’s cost of buying a ticket to visit the
monument.

We consider the Steiner CDS problem, where only a specified subset of vertices have
to be dominated by a connected dominating set (defined formally in Section 1.2). For
the unweighted Steiner CDS problem, we provide approximation algorithms that run
in polynomial time. When the vertices have weights, the Steiner CDS problem is at
least as hard as the notorious set TSP problem on graphs (defined in Section 1.2) for
which no nontrivial approximation algorithm is known. The same is true for the CDS
problem when the edges have weights. Recent work by Marathe et al. [18] gives bicriteria
approximation algorithms for the “service-constrained network design problem.” The
goal is to design a tree that has low cost and is sufficiently close to each vertex in the
graph (these service requirements can be nonuniform). They obtain bicriteria algorithms
by relaxing the domination distance requirement, as well as the network cost.

1.1. Our Results We present two approximation algorithms for the connected domi-
nating set problem. The first approach is to develop a greedy algorithm for solving the
problem. A naive greedy algorithm is shown to do badly. Surprisingly, with a simple
modification we are able to show an approximation factor(@f2 H(A)) (in practice,

this algorithm appears to do very well). We also provide an efficient implementation of
this algorithm. This algorithm is described in Section 2.

The second algorithm is an improvement of the first algorithm. The algorithm finds a
dominating set in the first phase, and in the second phase connects the dominating set. In
an earlier version of this paper [9] we established a bourtd @) + H(H (A)). Using
Slavk’s greedy set-cover bound [22], we were able to show that the approximation factor
isInn+ O(1). Recently, Berman (personal communication) suggested a modification to
our algorithm [9], which improves the approximation factortgA) + 2. We describe
the algorithm and give a simple proof of an approximation ratio of I 3 (since
In A =~ H(A)—0.7, the difference is very small). This algorithmis described in Section 3.

We also show an approximation preserving reduction from the set-cover problem
to the connected dominating set problem, showing that it is hard to improve the ap-
proximation guarantee dfl (A) for any graph and asymptotically largeand A unless
NP € DTIME[n©(09ledm] [17], [7]. This is described in Section 5.1.

In Section 4.1 we give &, + 1) In n approximation for the node weighted CDS prob-
lem, wherez, In k is the approximation factor for the node weighted Steiner tree problem
[13] andk is the number of terminals (currentty = 1.6103 [10]). We next consider the
Steiner CDS problem, where only a specified subset of vertices have to be dominated
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by a connected dominating set. For the unweighted case, we provide an approximation
algorithm that runs in polynomial time in Section 4.2. It has an approximation factor
of (L 4+ c)H(min(A, k)) + ¢ — 1, wherec is the approximation ratio for the Steiner
tree problem [4] (currenthic = 1.644 [12]) andk is the size of the set we want to
dominate.

When the vertices have weights, the Steiner connected dominating set problem is at
least as hard as the notorious set TSP problem on graphs (defined shortly) for which no
non-trivial approximation algorithms are known. The same is true for the edge weighted
CDS problem. These reductions are described in Section 5.2.

1.2. Preliminaries and Problem Definitions In all the following discussion theeight
of a set is the sum of the weights of the elements contained in it.

Theconnected dominating seproblem is the following: given a grapgh = (V, E)
find the smallest subs&of vertices that induce a connected subgraph and each vertex
in V — Sis adjacent to at least one vertex3n

Thenode weighted connected dominating segiroblem is the generalization of the
connected dominating set problem to the case where the vertices have weights, and we
are looking for the smallest weighted subSet

The Steiner connected dominating seproblem is the following: given a graph
G = (V, E) and a subseR of required vertices, find the smallest subSeif vertices
that induce a connected subgraph and each verték-efS is adjacent to at least one
vertex onS.

Thenode weighted Steiner connected dominating sptoblem is the generalization
of the Steiner connected dominating set problem to the case where the vertices have
weight, and we are looking for the smallest weighted suBset

The edge weighted connected dominating seproblem is the following: given a
graphG = (V, E) with weights on the edges, find a smallest weight tree whose vertices
form a dominating set.

The Steiner tree problem is defined as follows: given a gragh= (V, E), and a
setR C V of required vertices (terminals) in an edge weighted graph, find a minimum
weight tree connecting the terminals. Note that the tree may include other vertices that
are not required vertices. These vertices are ter@tether vertices

Thenode weighted Steiner tregoroblem is the Steiner tree problem, except that the
vertices of the graph have weights associated with them and the weight of the tree is the
sum of the weights of its vertices. (The case when both vertices and edges have weights
can easily be reduced to the case when only the vertices have weights.)

Theset covemproblem is the following: given a set of elemebltsand a sef of subsets
of U, we wish to find the smallest collection of sé¥scC S such that Jg.5 S=U.

Theset TSPproblem is defined as follows: given an edge weighted g&aph (V, E)
and a partition oV = (VL UV, U --- U V), find the shortest tour that contains at least
one vertex from each;.

Givenagraplc = (V, E), we useA to denote the maximum degree of a vertex in the
graph. We us@ andm to denote the numbers of vertices and edgés,inespectively.
We useN (v) to denote the set of neighbors of a veriexThe degree of a vertexis
denoted byd(v).
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1.3. Applications and Related Wark The paper by Paul and Miller [20] discusses
applications related to testing nodes in a computer network using a short “traveling
tourist tour.” They also consider the related question of finding a tour that visits each
edge of the graph (connected vertex cover). This is needed when testing the links as well
as the nodes is required. Approximation algorithms for the latter problem were given by
Arkin etal. [1]. We observe that there is a simple algorithm for the unweighted connected
vertex cover problem that gives a factor 2 approximation (the one given in [1] is more
complicated). Perform a depth first search, and take all the nonleaf vertices as the vertex
cover. This clearly induces a connected graph, and the approximation ratio is 2, as shown
by Savage [21]. In practice, however, this method will probably give large connected
vertex covers.

Other applications for the connected dominating set problem are in doing broadcasts
for wireless computers in digital battlefields. The broadcast is done to the vertices in the
connected dominating set. The nodes in the connected dominating set are responsible for
relaying messages. Each node not in the dominating set is not responsible for relaying
any messages [15]. Many of the ideas in our paper have been used to design a distributed
algorithm for routing based on minimum connected dominating sets in ad hoc net-
works [5].

Recent work by Marathe et al. [18] gives bicriteria approximation algorithms for the
“service-constrained network design problem.” The goal is to design a tree that has low
cost and is sufficiently close to each node in the graph (these service requirements can
be nonuniform). They obtain bicriteria algorithms by relaxing the domination distance
requirement, as well as the network cost.

The nodes in the connected dominating set together with the remaining nodes of the
graph form a spanning tree withanyleaves. The maximum leaf spanning tree problem
is another related problem that has been studied and factor 3 approximations are known
forit [16].

Recently, Harary and Raghavachari [11] have shown that the email gossip number of
a graph is exactly — 1 + OPTcps, whereOPTcpsis the size of the optimal connected
dominating set. This indicates that the connected dominating set problem has many in-
teresting applications. Polynomial algorithms for the connected dominating set problem
for special classes of graphs were given by White et al. [23].

2. Algorithm 1. We introduce an algorithm that finds a connected dominating set by
“growing” a tree.

The idea behind the algorithm is the following: grow a tfeestarting from the vertex
of maximum degree. At each step we pick a vertei T and “scan it.” Scanning a
vertex adds edges from v to all its neighbors notifT . In the end we find a spanning
treeT, and pick the nonleaf nodes as the connected dominating set.

Initially all vertices are unmarked (white). When we scan a vertex (color it black),
we mark all its neighbors that are notThand add them td@ (color them gray). Thus
marked nodes that have not been scanned are leavieggray nodes). All unmarked
nodes are white. The algorithm continues scanning marked nodes, until all the vertices are
marked (gray or black). The set of scanned nodes (black nodes) will form the connected
dominating setCDY9 in the end.
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Fig. 1. Example to show that the scanning rule fails do& 5.

The main question is the following: what rule should we use for picking a vertex
to be scanned? A natural choice is to pick the vertex that has the maximum number of
unmarked (white) neighbors. We call this the “yield” of the scan step. Unfortunately, as
the following example shows this may not work well (see Figure 1).

Let u andv be vertices of degred. There is a solution of size four, by picking a
path fromu to v as the CDS. The algorithm begins by marking and scanainthis
adds all ofu’s neighbors tal'. We pick a vertex fronN (u) and scan it, adding its only
unmarked neighbor (fror (v)) to T. At this point, each vertex i has exactly one
unmarked neighbor. We could pick a vertex frowfu) again, and scan it, adding its
only unmarked neighbor t6. This continues until all the vertices frod(u) have been
scanned. Finally we scan a vertex frditv) and marky. At this point the algorithm has
pickedd + 2 vertices.

The entire algorithm can be implemented@(m) steps [9]. This implementation
is useful because it leads to a heuristic for t@ximum leaf spanning trggoblem as
well [14].

MoDIFIED GREEDY ALGORITHM.  We now modify the scanning rule to prove a good
approximation ratio for this class of algorithms (that maintain a connected set that even-
tually becomes a CDS). We define a new operation of scanning a pair of adjacent vertices
u andv. Letu be gray and let be white.Scanning the paimeans first making black

(this makew, along with some other nodes, gray) and then colosibtack (makes more
nodes gray). The total number of nodes that are colored gray is called the “yield” of the
scan stepAt each stepwe either scan a single vertex or a pair of verticegichever

gives the higher yieldIn some sense we are doing a “look-ahead” by one extra vertex,
and are willing to scan a pair of vertices if this has a higher yield.)

It is clear that this algorithm finds the optimal solution in the example shown in
Figure 1. What is perhaps a little surprising is that this simple modification lets us prove
the following theorem.

THEOREM2.1. Usingthe scanning rule described above yields a connected dominating
set of size at mo(1 + H(A)) - |[OPTps|, where OP s is an optimal dominating st
in the graph

4 Itis easy to see thaOPTpg| < |OPTcps.
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PROOF Let OPTps be the set of vertices in an optimal dominating set. The sets of
vertices ofG dominated by vertek € OPTpgis calledS (we assume thatalso belongs

to §). If a vertex is dominated by more than one vertex, we arbitrarily put it in one of
the sets. The proof is based on a charging scheme. Each time we color a vertex black, we
add a new vertex to our connected dominating set. We “charge” each new vertex marked
(colored gray) in this step. Since each vertex in the graph gets marked exactly once, it
is charged exactly once (the first time it is marked). We then prove that the total charge
on the vertices belonging to a sgt(for anyi) is at most 21 + H(A)). Since there are
|OPTpg| sets in the optimal solution, the theorem follows.

Assume that when we color a vertex black, we marilew vertices. We charge each
such newly marked vertex/%. In some steps we scan two vertices, and charge each
newly marked vertex 2. The main advantage of the “look-ahead” is the followihge
instant we mark some nodes in sete&ven if vertex i has not been markethce it is
adjacent to a marked vertgit becomes eligible to be scanned as part of a.pafithout
the “look-ahead,” only marked vertices were candidates to be scanned.

We now prove the upper bound on the total charges to vertices belonging to a single
setS. At each step, some vertices may get marked. The number of unmarked vertices in
S is initially uo, and finally drops to O. Lat; denote the number of unmarked vertices
in § after stepj. For simplicity, we assume that at each step some vertic& arfe
marked, so the number of unmarked vertice§idecreases at each step.

The number of marked vertices & after the first step isg — u;. Each vertex gets a
charge of at most/2up — u;) (the actual charge may be a lot smaller, if only one vertex
was scanned at this step, or if we marked many other vertices as well). Once some vertex
in § is marked, vertex becomes an “eligible” vertex to be scanned as a part of a pair,
since it isadjacentto a marked vertex. In theth step, the number of vertices of sgt
that get marked ig; — u;41, and the charge to each vertex3ns at most Zu; as vertex
i was an eligible vertex to be scanned. Lgt= 0. Adding up all the charges we get

2
Up — Up

k—1 k—
2
(Up— )+ (U —Ujy1) <2423
j=1 ") i

1
(Uj — Ujy1)
j=1 W

(With some algebraic manipulation (see p. 977 of [6]) and using the faaighatA + 1,
one can show that this is at mogti2+ H(A).) O

REMARK. We could modify the algorithm and at each step scan either one or two
vertices, whichever results in a smaller charge to each vertex. In practice, this should
give better solutions. Thus we only pick a pair of nodes if its yield is at least twice that
of a single node.

IMPLEMENTATION ISSUES A naive implementation appears to give aworst case running
time of O(mr?). In each iteration we choose either one vertex, or a pair of vertices, and
color them black. It is clear that we may ha®én) iterations, since the optimal solution
may have® (n) vertices. In each iteration, we wish to identify a pair of nodes with the
highest yield. For each gray vertaxwe scan its adjacency list and consider all its white
neighbors. Foeachwhite neighbow of u, we wish to determine the number of vertices
that would get marked if we scanned the gairv). Sinceu andv have common white
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neighbors, we cannot simply add up the number of white neighbors of each vertex to
obtain the “yield” of this pair. We need to identify the number of white neighborns of
that arenot adjacent tau (since those will not be colored gray loy. The number of
steps in a single iteration can be computed as follows.

Let GRbe the gray nodes ifi. Let W be the white vertices that are adjacent to gray
vertices. We can upper bound the total work done in a single iteration as follows:

S= )" > d).

ueGR veN(u)AveW

In the double summation each vertex\Whis counted as many times as the number of
its gray neighbors, we obtain the following:

S< Zd(v)2 < Z n-d(v) < O(mn).
veW veW
This yields a bound o©(mr?). We now show that the total number of steps over all
iterations isO(mn) by a more careful analysis.
For each vertex we can maintain two adjacency lists, one of its gray neighbors and
one of its white neighbors. We usiy, (u) to denote the number of white neighbors of
u anddggr(u) to denote the number of gray neighborsuofThe work done in a single

iteration is as follows:
YooY dww

ueGR veWAveN(u)

> dw() - der(v).

veW

S

(In the double summation, each verteis counted as many times as the number of its
gray neighbors.) Observe that at this step, we make a subset of white vertices gray.

LEMMA 2.2. The number of white vertices that are made gray in this iteration is at
least

Eﬁ‘é‘vx"W(”)'

PrOOF  We pick the pair of vertices that give the highest “yield”; we certainly consider
all such vertice®, and color their white neighbors gray. O

At this step we can “charge” the vertices whose color changed from white to gray.
The charge to each such vertex is at most

Zvew dw (v) - der(v)
max,ew dw (v) = vez\;vdeR(v) <2m.

Since each vertex changes color from white to gray exactly once over the entire
algorithm, and there amesuch vertices the total number of stepignn).

The only remaining issue is maintaining the required adjacency lists. This can be done
each time we change the color of a vertex from white to gray by scanning its adjacency
list, and updating the structures for its neighbors.



Approximation Algorithms for Connected Dominating Sets 381

3. Algorithm 1l.  An alternate approach to growing one connected tree is to grow
separate components that form a dominating set and then to connect them together. One
straightforward approach is to find a dominating set using a greedy heuristic, and to
use a Steiner tree algorithm to connect it. Since members of the optimum connected
dominating set, along with the members of the dominating set we found, induce a
connected subgraph, we can prove an approximation ratiolof H(A)), wherec is

the approximation ratio for the unweighted Steiner tree problem (currentlyl.644

[12]).

For the special case when the required vertices form a dominating set in a graph and
all edges have unit weight, Berman anar&i[3] have announced a new algorithm with
cC= ‘5‘. Thus we can improve the approximation ratio%t(i + H(A)) by using their
algorithm. By applying a simple greedy strategy to connect the vertices in the dominating
set, we proved a bound &f(A) + H(H(A)) [9]. Here we present a modification of the
above algorithm, as suggested by Berman, and prove an approximation rati®-#f3n
(Berman has an alternate proof for an approximation ratid @k) + 2.)

The algorithm runs in two phases. At the start of the first phase all nodes are colored
white. Each time we include a vertex in the dominating set, we color it black. Nodes
that are dominated are colored gray (once they are adjacent to a black node). In the first
phase the algorithm picks a node at each step and colors it black, coloring all adjacent
white nodes gray. 4ieceis defined as a white node or a black connected component.
At each step we pick a node to color black that gives the maximum (nonzero) reduction
in the number of pieces.

We show that at the end of this phase if no vertex gives a nonzero reduction to the
number of pieces, then there are no white nodes left.

In the second phase we have a collection of black connected components that we
need to connect. Recursively connect pairs of black components by choosing a chain of
vertices, until there is one black connected component. Our final solution is the set of
black vertices that form the connected component.

LEmmMA 3.1. Atthe end of the first phase there are no white vertices left

PROOF  Suppose there is a white nodat the end of the phase. We will show that there
is a vertex that strictly reduces the number of pieces.

All neighbors ofv are white or gray. Ifv has a white neighbor, then coloring
black reduces the number of white nodes by two, and increases the number of black
components by one, thus pickingwould reduce the number of pieces. Otherwise,
has a gray neighbar. Coloringu black would reduce the number of white nodes, and
not increase the number of black components siniseadjacent to a black node. Thus
picking u reduces the number of pieces. O

LEMMA 3.2. At the end of the first phase if there is more than one black component
then there is always a pair of black components that can be connected by choosing a
chain of two vertices

PrROOFE Consider the shortest path connecting two black components. Assume this path
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consists of verticesg, Uz, Uy, Us, ..., Ux whereug anduy belong to black components
i and j, respectively. Vertexi; is dominated by vertexo. If u; is black, then we can
reduce the number of pieces by making black. By Lemma 3.1y, must be gray.
Vertexu, is adjacent to a black componehtdistinct fromi. Component$ and¢ can
be connected by choosing a chain of two vertices. O

THEOREM3.3. The connected dominating set found by the algorithm is of size at most
(In A+3)- |OPTCD3|.

ProOOF Defineg to be the number of pieces left after tié iteration, andyy = n.

Since a node can connect upAgieces|OPTeps| > ap/A. (This is true if the optimal
solution has at least two nodes.) Consider(ihe 1)th iteration. The optimal solution

can connecd; pieces. Hence the greedy procedure is guaranteed to pick a node which
connects at leadta; /|OPTcps|1 pieces. Thus the number of pieces will reduce by at
least[a; /|OPTcpg|] — 1. This gives us the recurrence relation

a 1
a <& — | —— —i—lSai(l—i)—i-l.
o LOPTCDSJ |OPTcod

Its solution is
1 j
(- o) -
|OPTcps|

Notice aftefOPTcpg| - In(ag/|OPTcpg|) iterations, the number of pieces left is less than
2 - |OPTcpgl. After this, for each node we choose, we decrease the number of pieces
by at least one until the number of black components is at I@RTcpg|, thus at most
|OPTcps| more vertices are picked. So aft@PTcpg| - INn(ag/|OPTcps|) + |OPTepg|
iterations at mostOPTcpg| pieces are left to connect.

Assume from this point onward, we stop after choosingnore nodes. The number
of pieces left to connect is at mogPTcps| — &. We connect the remaining pieces
choosing chains of two vertices in the second phase. The total number of nodes chosen
is at mosiOPTcpg| - In(ag/|OPTeps|) + |OPTeps| + & + 2(|OPTeps| — &), and since
A > a9/|OPTcpgl, the solution found has at mg&PTcpg| - (In A + 3) nodes. ]

=

1 |
a <a(1- 7) +
( |OPTcps| J-

I
o

REMARK. Berman [2] has an alternate proof bf(A) + 2 of the same algorithm.
However, since Im\ ~ H(A) — 0.7, the difference is very small.

4. Generalizations

4.1. Node Weighted Connected Dominating Set&n approximation factor of
(ch + 1) Innis possible for the node weighted connected dominating set problem. The
algorithm first finds a dominating set, and then connects the nodes in the dominating set.
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Stepl. Use a weighted set cover approximation algorithm to find a dominating set
DS. (A set cover instance is created by making each vertex an element, and each vertex
corresponds to a set that contains the vertex itself, together with its neighbors. The greedy
algorithm picks sets based on the ratio of their weight to the number of new elements
they cover.)

Ste2. Toconnectthe verticesSwe use a node weighted Steiner tree approximation
algorithm [13], [10] to find a Steiner tree that includes all the vertic&3pafter making

the weights of all vertices iDS equal to zero. This yields a connected dominating set
CDs

THEOREM4.1. The weight of vertices in CDS is at mast, + 1) Inn - w(OPT¢ps)
where OPEps is the minimum weight connected dominating set ina@d G, Ink is

the approximation factor for the node weighted Steiner tree problem for k terminals
(currently g, = 1.6103).

PROOF The weight of the vertices iDSis at most InA - w(OPTcps). We now run the

node weighted Steiner tree algorithm [10] to find a node weighted Steiner tree which
connects the vertices IDS. The approximation factor of the algorithm i$6103 Ink,
wherek is the number of terminals (the paper by Klein and Ravi [13] gives &2In
approximation factor). Consider the vertice€ORTcps; these together with the vertices

in DSinduce a connected subgraph. Hence there exists a node weighted Steiner tree of
weightw (OPT¢ps). Thusthe tree foundin Step 2 weighs at mo6iD3 Inn-w (OPTcps).

The total weight of the vertices in the connected dominating set is the weidhs of
together with the weights of optional vertices chosen fi@nn the Steiner instance.
Adding the weight of the two sets gives the required bound. O

4.2. Steiner Connected Dominating SetdVe now address the Steiner connected dom-
inating set problem when we are required to dominate only a specified fiod¢he
vertices. The cost of the solution is the size of the smallest connected dominating set
that dominates the vertices R (Notice that the objective function is slightly different
from the node weighted Steiner tree problem, where required vertices have zero cost. In
the Steiner CDS problem, we are charged for all vertices in the final solution that are not
leaf nodes in the tree that conne&9

Let|R] = k, and letOPTcps(R) denote the optimal solution. We present an algorithm
that solves this problem. A straightforward strategy is first to find a small dominating set
A, of the vertices inR, and then to connect these nodes.

ALGORITHM

Stepl. Modify the greedy set cover algorithm to run on the set of elemBntsith

the vertices iV and the nodes iR that they dominate, corresponding to sets; until no
vertex covers strictly more than one uncovered verteRdfVe call the set of vertices
chosenB.

Step2. Choose the uncovered verticesRyfcall this setB’.

Step3. For each member @&, choose a representative elemenRdhat it dominates.
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Let this set bR (B). Apply an (edge weighted) Steiner tree approximation, with the set
of required node® (B) U B'. The final solution is the nodes of this tree and the nodes
of B.

THEOREM4.2. The connected dominating set for the subset R is at @ast)H () +
¢ — 1times the optimalwhere c is the Steiner approximation ratidVe defing as the
size of the largest subset of &ljacent to a node in the grapldi < min(A, k)).

PrROOF By a slight modification to the proof given on p. 977 of [6] we can prove
Bl < (H(8) — 1) - |OPTcps(R)|. (Since the first step reduces to finding a set cover with
the size of the largest set beidg SinceOPTeps(R) cannot dominate any two vertices
of B’ by one vertex|B’| < |OPTcps(R)|. Note thatB U B’ dominates the seR.

Consider the seR(B); there is a Steiner tree withiR(B)| + |B’| + |OPTcps(R)|
edges that connects the nodesuB) U B'.

Apply an (edge weighted) Steiner tree approximation, with all edges having unit
weight, and find a tree of size (|R(B)| + |B’| + |OPTcps(R)|), wherec is the Steiner
approximation ratio [12]. Since this tree is edge weighted, it has essentially the same
number of nodes, including those®Bfi(B) U B’. Since we have to add the vertices®f
as well, we get an upper boundof (|R(B)| + |B’| + |OPTcps(R)|) + |B|. Notice that
IR(B)| < |B| = (H() — 1) - |OPTcps(R)|, and|B'| < |OPTcps(R)|. This gives us a
solution of costat mostic+ 1) - H(8) +¢c — 1) - |OPTcps(R)|. O

5. Lower Bounds on Approximation Factors

5.1. Hardness Result for Connected Dominating S&t/e can prove that the set-cover
problem can be reduced to the connected dominating set problem by an approximation
preserving reduction, thus showing that the approximation fadiax) will be hard to
improve for general graphs. This is based on the hardness results for set cover proven by
Lund and Yannakakis [17] and Feige [7].

Given a set-cover instance we reduce it to a connected dominating set problem as
follows:

Let the set-cover instance be to coverdetvith a minimum number of sets from the
collectionS ={S,, S, ..., Su).

Construct a grapts that has vertex sét U{u, v, vy, vo, ..., vm}. Anelemene e U,
andv; has an edge joining them if and onlyeife §. Eachy; has an edge to. Vertexu
has an edge only to (see Figure 2).

Consider a minimum connected dominating seGof\Vertexv belongs to any con-
nected dominating set, and heno#oes not belong to any minimal connected dominating
set. No vertexg; is chosen in a minimal connected dominating set, since any node that
it might potentially dominate is already dominatedywhich also provides the con-
nectivity. Hence we will only have and somey;’s. Thesev;’s will correspond to the
minimum cover for the given instance of set cover.

The size of the connected dominating set is one more than the minimum set cover.
Thus approximating the connected dominating set with a factét ef¢)H (8) (for all
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Fig. 2. Reduction of set cover to connected dominating sets.

A) would imply approximating minimum set cover within the same factor. This would
imply thatNP € DTIME[n®(oglogm] [7].

5.2. Hardness Results for Generalizations/Ve show two simple reductions that demon-
strate that other generalizations of the CDS problem may be as hard to approximate as
the “set TSP” problem for which no nontrivial approximation algorithms are known.
(For the Euclidean case, Mata and Mitchell [19] have given approximation algorithms
for this problem.)

THEOREMbS.1. A polynomial approximation algorithm for the edge weighted connected
dominating set problem with factor(fi) would imply a polynomial approximation al-
gorithm for the set TSP problem with fact®f (n).

PrROOF We show how to reduce the set TSP problem to the edge weighted connected
dominating set problem. Consider a set TSP instdbce (V, E) whereV = (V1 U
Vo U - -+ U V). For each subsaéf;, introduce a special vertex, and add edges fro
to allv € V;, with very high cost edges. Farv € V;, if (u, v) ¢ E, add the edgeu, v)
with very high cost. Call this new grap®'.

Any set TSP tour irG chooses at least one vertex\gfto visit. Thus all nodes of
V; U {c;} will be dominated by the corresponding node in the tour. Since every node of
G occurs in somé/, this yields a dominating set. Since these are nodes on a tour, they
also form a connected set. Heo®Tcps(G) < OPTrour(G).

If we have a connected dominating set®f, then it must have a vertex of; to
dominatec;. Hence the dominating set must have at least one vertex from ea¢h Het
the cost of this connected dominating set is smallf(n)OPTcps(G')), since we are not
using the high cost edges®i, we are using only the edges of the gr&pIBy traversing
this tree twice, we can produce a tour@) with cost at most 2(N)OPTcps(G) <
2f (N)OPTrour(G). Thus, if we can approximate the connected dominating set with
edge weights to a factdr(n), we can approximate set TSP within a factdr®). O

THEOREM5.2. A polynomial approximation algorithm for the node weighted Steiner
connected dominating set problem with factan¥would imply a polynomial approxi-
mation algorithm for the set TSP problem with fac®&dr(n).
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Fig. 3. Reduction of set TSP problem to edge weighted CDS.

ProOOF The proof is similar to the proof of the previous theorem. Given a set TSP
instanceG = (V, E) whereV = (V1 UV, U --- U V) we construct a grapt’. First
convert the edge weights of the set TSP problem into node weights. For every edge
e = (vp, vg) € E, create an extra nodg of the same cost, connectedup andvy.
All other nodes are given zero cost. For every subetntroduce a special vertex
(of very high cost), and connect it to all € V;. We show that the problem reduces
to finding a node weighted Steiner CDS of the suliRet {c;|j = 1---k} of nodes
of G'.
Any set TSP tour inG chooses at least one vertex gf to visit. Thus eaclt;
will be dominated. The weight of the edges= (vp, vq) translates to the weight of the
corresponding verticas,q. Since the nodes form a tour, they also form a connected setin
G/, together with the new nodes that subdivide edges. ORIk ps(G') < OPTrour(G).
Consider a connected dominating set that dominRt€& dominateg;, it must pick
a vertex fromV,. (Without loss of generality, the connected dominating set does not
containg;.) If the cost of this connected dominating set is smallf{(n)OPTcps(G)),
since we are not using the high cost node&inwe are using only the nodes of the
graphG along with nodes that correspond to the subdivided edges. Thus the dominating
set chooses vertices that are als@inand the corresponding vertices for each edge of
G that it includes. This yields a tree that connects at least one element fronVeach
using edges ofs. By traversing this tree twice, we can produce a touGinof cost
at most & (N)OPTcps(G) < 2f (N)OPTrour(G). Thus, if we are able to approximate
the connected dominating set of a subset with node weights to a fa@gy we can
approximate set TSP within a factof ¢n). O
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