
Digital Object Identifier (DOI) 10.1007/s00446-004-0112-5
Distrib. Comput. (2005) 17: 303–310

Constant-time distributed dominating set approximation�

Fabian Kuhn, Roger Wattenhofer

Computer Engineering and Networks Laboratory, ETH Zürich, 8092 Zürich, Switzerland (e-mail: kuhn@tik.ee.ethz.ch)

Received: September 9, 2003 / Accepted: September 2, 2004
Published online: January 13, 2005 – c© Springer-Verlag 2005

Abstract. Finding a small dominating set is one of the most
fundamental problems of classical graph theory. In this pa-
per, we present a new fully distributed approximation algo-
rithm based on LP relaxation techniques. For an arbitrary,
possibly constant parameter k and maximum node degree
∆, our algorithm computes a dominating set of expected size
O
(
k∆2/k log(∆)|DSOPT|) in O

(
k2
)

rounds. Each node has
to send O

(
k2∆

)
messages of size O(log ∆). This is the first

algorithm which achieves a non-trivial approximation ratio in
a constant number of rounds.

1 Introduction

In a graph, a dominating set is a subset of nodes such that
for every node v, either a) v is in the dominating set or b) a
direct neighbor of v is in the dominating set. The minimum
dominating set (MDS) problem asks for a dominating set of
minimum size. MDS and the closely related minimum set cover
problem are two of the first problems that have been shown
to be NP-hard [9,13]. In this paper, we present a distributed
approximation algorithm for MDS. In computer networks, it
is often desirable to have a dominating set in order to enable a
hierarchical structure in which the members of the dominating
set provide a service for their neighbors.

A particular application can be found in the fast growing
field of mobile ad-hoc networks. In mobile ad-hoc networks,
wireless devices (called nodes) communicate without station-
ary server infrastructure. When sending a message from one
node to another, intermediate network nodes have to serve as
routers. Although a number of interesting suggestions have
been made, finding efficient algorithms for the routing pro-
cess remains the most important problem for ad-hoc networks.
Since the topology of an ad-hoc network is constantly chang-
ing, routing protocols for ad-hoc networks differ significantly
from the standard routing schemes which are used in wired

� The work presented in this paper was supported (in part) by the
National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

networks. One effective way to improve the performance of
routing algorithms is by grouping nodes into clusters.The rout-
ing is then done between clusters. The most basic method for
clustering is by calculating a dominating set. Only the nodes
of the dominating set (the ‘cluster heads’) act as routers, all
other nodes communicate via a neighbor in the dominating
set.

Two main distinctions can be made between traditional
wired networks and mobile ad-hoc networks: First, typically
wireless devices have much lower bandwidth than their wired
counterparts and second, wireless devices are mobile and thus
the topology of the network changes rather frequently. As a
consequence, distributed algorithms which run on such de-
vices should have as little communication as possible and they
should run as fast as possible. Both goals can only be achieved
by developing algorithms requiring a small number of com-
munication rounds (often called local algorithms). Because of
the restrictive conditions imposed by the properties of wireless
networks, it is often beneficial to keep the number of rounds
small even at the cost of a somewhat non-optimal solution. So
far, for MDS the only algorithm which achieves a nontrivial
approximation ratio – o(∆) – in a nontrivial number of rounds
– o(diam(G)) – is that developed by Jia, Rajaraman, and Suel
[11]. In expectation, their algorithm achieves an O(log ∆)-
approximation while the number of rounds is O(log n log ∆)
with high probability. In this paper, we present the first dis-
tributed MDS algorithm which achieves a nontrivial approx-
imation ratio in a constant number of rounds. Precisely, for
an arbitrary parameter k, we achieve an expected approxima-
tion ratio of O

(
k∆2/k log ∆

)
in O

(
k2
)

rounds. All messages
are of size O(log ∆). The established trade-off between time
complexity and approximation quality is especially interest-
ing in light of a recent lower bound showing that in k rounds,
minimum dominating set cannot be approximated better than
Ω(∆1/k/k) [14].

The paper is structured in the following way. Section 2
gives an overview over relevant previous work, Sect. 3 in-
troduces some notation as well as some well-known facts,
and the dominating set algorithm is developed in Sects. 4 and
5. Thereby Sect. 4 introduces the fractional dominating set
problem (LP relaxation) and presents an algorithm to deduce
a dominating set from a solution to the fractional variant of

304 F. Kuhn, R. Wattenhofer: Constant-time distributed dominating set approximation

the problem, whereas Sect. 5 shows how to approximate the
fractional dominating set problem by means of a distributed
algorithm. The paper is concluded in Sect. 6.

2 Related work

The problem of finding small dominating sets in a graph and
the closely related problem of finding small set covers has been
studied extensively over the last 30 years. The problem of find-
ing a minimum dominating set has been proven to be NP-hard
in [9,13]. The best known approximation is achieved by the
greedy algorithm [4,12,16,21]. As long as there are uncov-
ered nodes, the greedy algorithm picks a node which covers
the largest number of uncovered nodes and puts it into the dom-
inating set. It achieves an approximation ratio of ln∆ where
∆ is the highest degree in the graph. Unless the problems of
NP can be solved by deterministic nO(log log n) algorithms, this
is the best possible up to lower order terms [7]. For the related
problem of finding small connected dominating sets, a similar
approach is shown to be a (ln∆ + O(1))-approximation in
[10].

For the distributed construction of dominating sets, sev-
eral algorithms have been developed. An algorithm which
calculates a dominating set of size at most n/2 in O(log∗n)
rounds has been proposed in [15]. [22] presents a (connected)
dominating set algorithm which runs in a constant number
of rounds. None of those algorithms achieves a non-trivial
asymptotic bound on the approximation ratio. Note that O(∆)
is trivial since the set V of all nodes of G forms a dominating
set of size at most (∆ + 1) times the size of an optimal one.
The first algorithm which achieves a non-trivial approximation
ratio in less than Θ(diam(G)) rounds was presented in [11].
The expected approximation ratio is asymptotically optimal –
O(log ∆) – and the algorithm terminates after O(log n log ∆)
rounds with high probability. The algorithm of [11] is related
to the parallel set cover algorithms in [3,19], which achieve
O(log ∆) approximations in polylogarithmic time. For the
connected dominating set problem, a distributed algorithm
which also achieves an approximation ratio of O(log ∆) in
a polylogarithmic number of rounds has been recently pre-
sented in [6]. In our algorithm, we first solve the LP relaxation
– a positive linear program – of MDS. Parallel and distributed
algorithms for positive linear programming have been studied
in [17] and [2], respectively. In polylogarithmic time they both
achieve a (1 + ε)-approximation for the linear program.

For ad-hoc networks, the (connected) dominating set prob-
lem has also been studied for special graphs. In particular, a
number of papers studied MDS for the unit disk graph (e.g.
[1,8]). For the unit disk graph the problem is known to remain
NP-hard; however, constant factor approximations are possi-
ble in this case. For a recent survey on ad-hoc routing and
related problems, we refer to [20].

3 Notation and preliminaries

In this section we introduce notations as well as some mathe-
matical theorems which are used in the paper.

The subject of this paper is the distributed construction of
dominating sets of a network graph G = (V, E). For conve-
nience, we assume that V = {v1, v2, . . . , vn}, i.e., we assume

that the network nodes are labeled from 1 to n. These labels are
not used in our algorithms, but they simplify some proofs. By
Ni, we denote the closed neighborhood of vi, i.e., Ni includes
vi as well as all direct neighbors of vi. Where appropriate, Ni

also denotes the set of the indices j of the nodes vj in Ni.
The degree of a node vi is called δi whereas ∆ denotes the
maximum degree in the network graph G. We will often make
use of the maximum degree in a certain range around a node
vi. For this purpose we define δ

(1)
i and δ

(2)
i as follows:

δ
(1)
i := max

j∈Ni

δj , δ
(2)
i := max

j∈Ni

δ
(1)
j .

Thus δ
(1)
i is the maximum degree of all nodes in the closed

neighborhood Ni of vi whereas δ
(2)
i is the maximum degree

among all nodes at distance at most 2 from vi.
We use a purely synchronous model for communication.

That is, in every communication round, each node is allowed
to send a message to each of its direct neighbors in G. In
principle, those messages can be of arbitrary size; however,
our algorithms only use messages of size O(log ∆).

We conclude this section by giving two facts which will
then be used in subsequent sections. Proofs are omitted and
can be found in standard mathematical text books.

Fact 1. (Means Inequality) Let A ⊂ R
+ be a set of positive

real numbers. Then,

∏
x∈A

x ≤
(∑

x∈A x

|A|
)|A|

.

Fact 2. For n ≥ x ≥ 1, we have

(
1 − x

n

)n

≤ e−x.

4 Approximating MDS by LP relaxation

In this section, we show how to obtain a ln∆ approximation
for MDS by using LP relaxation techniques. For an introduc-
tion to linear programming see e.g. [5]. We first derive the in-
teger program which describes the MDS problem. Let S ⊆ V
denote a subset of the nodes of G. To each vi ∈ V , we assign
a bit xi such that xi = 1 ⇔ vi ∈ S. For S to be a dominating
set, we have to demand that for each node vi ∈ V , at least
one of the nodes in Ni is in S. Therefore, S is a dominating
set of G if and only if ∀i ∈ [1, n] :

∑
j∈Ni

xj ≥ 1. We define
the neighborhood matrix N to be the sum of the adjacency
matrix of G and the identity matrix (N is the adjacency ma-
trix with ones in the diagonal). The MDS problem can then be
formulated as an integer program:

min
n∑

i=1

xi

subject to N · x ≥ 1
x ∈ {0, 1}n.

(IPMDS)

F. Kuhn, R. Wattenhofer: Constant-time distributed dominating set approximation 305

By relaxing the condition x ∈ {0, 1}n to x ≥ 0, we
get the following fractional dominating set linear program:

min
n∑

i=1

xi

subject to N · x ≥ 1
x ≥ 0.

(LPMDS)

The corresponding dual linear program looks very similar
to LPMDS:

max
n∑

i=1

yi

subject to N · y ≤ 1

y ≥ 0.

(DLPMDS)

We have to assign a positive value yi to each node vi. The
sum of the y-values of the nodes in the neighborhood Ni of a
node vi has to be at most 1 (for the corresponding x-values,
this sum has to be at least 1) and the sum of all y-values, i.e.,
the objective function has to be maximized. As a consequence
we get the following lower bound on the size of a minimum
dominating set.

Lemma 1. Let δ(1)
i be the maximum of the degrees of all nodes

in Ni as defined in Sect. 3. For any dominating set DS (in-
cluding an optimal one), we have

n∑
i=1

1

δ
(1)
i + 1

≤ |DS|.

Proof. Assigning yi := 1/(δ(1)
i +1) yields a feasible solution

to the dual linear program DLPMDS. By the weak duality
theorem, the value of the objective function for any feasible
solution for DLPMDS is smaller than or equal to the value
of the objective function for any feasible solution for LPMDS.
Hence, the objective function for the DLPMDS-solution is also
smaller or equal to the size of any dominating set because any
feasible solution for the integer program IPMDS is feasible for
LPMDS too. �	

Let x∗ be an optimal solution for LPMDS. Let x(α) be an
α-approximation for LPMDS, i.e., x(α) is a feasible solution
for which

n∑
i=1

x
(α)
i ≤ α ·

n∑
i=1

x∗
i . (1)

In order to get an approximate solution xDS for IPMDS from
an α-approximation x(α) for LPMDS, each node applies the
distributed Algorithm 1. The algorithm uses a standard ran-
domized rounding scheme [18], applied in a distributed sce-
nario. For each node vi, there is a variable xDS,i which is set
to 1 if and only if vi joins the dominating set.

Remark: In line 2, δ
(2)
i is calculated as follows. In a first

round, each node vi sends its degree δj to all neighbors. Af-

terwards δ
(1)
i (:= maxj∈Ni δk) is sent to all neighbors in a

second round. δ
(2)
i can then be computed as maxj∈Ni

δ
(1)
j .

Algorithm 1 LPMDS −→ IPMDS

Input: feasible solution x(α) for LPMDS

Output: IPMDS-solution xDS (dom. set)
1: calculate δ

(2)
i

2: pi := min{1, x
(α)
i · ln(δ(2)

i + 1)}
3: xDS,i :=

{
1 with probability pi

0 otherwise
4: send xDS,i to all neighbors
5: if xDS,j = 0 for all j ∈ Ni then
6: xDS,i := 1
7: fi

Theorem 3. Let DSOPT be a minimum dominating set and
let ∆ be the greatest degree of the network graph G. x(α)

is an α-approximation for LPMDS and xDS is the IPMDS-
solution calculated by Algorithm 1 with x(α) as its input. For
the expected value of the resulting dominating set, we have

E [|DS|] ≤ (1 + α ln(∆ + 1)) · |DSOPT|.
Proof. A node can become a member of the dominating set in
lines 3 and 6 of Algorithm 1. Let the random variables X and
Y denote the numbers of nodes which are selected in lines 3
and 6, respectively. For the expected value of X , we have

E [X] =
n∑

i=1

pi ≤
n∑

i=0

x
(α)
i · ln(δ(2)

i + 1)

≤
(∆≥δ

(2)
i)

ln(∆ + 1)
n∑

i=1

x
(α)
i

≤
Eqn. (1)

α ln(∆ + 1)
n∑

i=0

x∗
i

≤ α ln(∆ + 1) · |DSOPT|.
In order to compute the expected value of Y , we look at the
probability qi that no node in the direct neighborhood of node
vi (i.e. no node in Ni) has been selected. If x

(α)
j ln(δ(2)

j) ≥ 1
for a vj ∈ Ni, pj = 1 and therefore qi = 0. Therefore, we
only have to consider the case where all pj < 1. We obtain

qi =
∏

j∈Ni

(1 − pj) ≤
∏

j∈Ni

(
1 − x

(α)
j ln(δ(1)

i + 1)
)

≤
(

1 −
∑

j∈Ni
x

(α)
j ln(δ(1)

i + 1)
δi + 1

)δi+1

≤
(

1 − ln(δ(1)
i + 1)

δi + 1

)δi+1

≤ e− ln(δ(1)
i +1)

=
1

δ
(1)
i + 1

.

The first inequality follows from δ
(1)
i ≤ δ

(2)
j , the second in-

equality follows from Fact 1, the third inequality holds because
x(α) is feasible and therefore

∑
j∈Ni

x
(α)
j ≥ 1, and the fourth

inequality follows from Fact 2. For E [Y], we then have

E [Y] =
n∑

i=1

qi ≤
n∑

i=1

1

δ
(1)
i + 1

≤ |DSOPT|.

306 F. Kuhn, R. Wattenhofer: Constant-time distributed dominating set approximation

The last inequality follows from Lemma 1. Adding E [X] and
E [Y] concludes the proof. �	

Remark: In line 3 of Algorithm 1 we could multiply xi with(
ln(δ(2)

vi + 1) − ln ln(δ(2)
vi + 1)

)
instead of ln(δ(2)

vi + 1). We

would then obtain qi ≤ ln(∆+1)/(δ(2)
vi +1) and the expected

total size of the resulting dominating set would be at most
2α
(
ln(∆ + 1) − ln ln(∆ + 1)

)|DSOPT|.

In [7], Feige has proven that up to lower order terms, the dom-
inating set problem cannot be approximated better than ln∆
unless NP ∈ DTIME(nO(log log n)). Hence, unless problems
in NP can be solved in quasi-polynomial time, the above algo-
rithm is optimal when applied to an optimal solution of the LP
relaxation LPMDS of the dominating set problem. However,
the strength of the approach ofAlgorithm 1 lies in the potential
of distributing the calculation over the nodes of the network
graph. When applied on a single computer, the greedy algo-
rithm achieves the same approximation in time O(n∆) [21]
while computing the linear program LPMDS with an interior
point method would take significantly longer. In the next sec-
tion, we will show how to compute an approximation of the
linear program LPMDS using a distributed algorithm.

5 Approximating LPMDS

In this section, we present the main algorithm of this paper.
We show how to find a O(k∆2/k)-approximation of LPMDS
in O(k2) rounds. We will present the algorithm in two variants.
For the sake of simplicity and clarity, we will first present an
algorithm for the case that all nodes know the highest degree
∆ in the network. In a second step, we will generalize this
algorithm such that the knowledge of ∆ is not necessary any
more.

During the algorithms executions, the nodes increase their
x-values over time. In accordance with other dominating set
papers (e.g. [10,11]), we say that a node vi is colored gray as
soon as the sum of the weights xj for vj ∈ Ni exceeds 1, i.e.,
as soon as the node is covered. Initially all nodes are colored
white. The number of white nodes vj ∈ Ni at a given time is
called the dynamic degree of vi and denoted by δ̃(vi). When
starting the algorithms, all nodes are white, thus δ̃(vi) = δi+1.

Assume now that all nodes know ∆, the maximum degree
of the network. Algorithm 2 is synchronously executed by all
nodes.

Before coming to a detailed analysis of Algorithm 2, we
give a general overview. The algorithm is closely related to the
classic greedy dominating set algorithm [4,12,16,21]. During
the algorithm, each node vi calculates the corresponding com-
ponent xi of the solution for LPMDS. Initially all xi are set to
0. Compared to the sequential greedy algorithm where in each
step exactly one node increases its x-value from 0 to 1, Al-
gorithm 2 raises the x-values of many nodes simultaneously.
In order to avoid the problem of overloading a node which
has many neighbors increasing their xi, we only increase the
x-values by small amounts each time. Initially all xi are set
to 0, they are gradually increased as the algorithm progresses.

Algorithm 2 LPMDS approximation (∆ known)

1: xi := 0; δ̃(vi) := δi + 1;
2: for � := k − 1 to 0 by −1 do
3: (∗ δ̃(vi) ≤ (∆ + 1)(�+1)/k, zi := 0 ∗)
4: for m := k − 1 to 0 by −1 do
5: (∗ a(vi) ≤ (∆ + 1)(m+1)/k ∗)
6: if δ̃(vi) ≥ (∆ + 1)�/k then

7: xi := max
{

xi,
1

(∆+1)m/k

}
8: fi;
9: send colori to all neighbors;

10: δ̃(vi) :=
∣∣{j ∈ Ni | colorj = ‘white’}∣∣;

11: send xi to all neighbors;
12: if

∑
j∈Ni

xj ≥ 1 then colori := ‘gray’ fi;
13: od
14: (∗ zi ≤ 1/(∆ + 1)(�−1)/k ∗)
15: od

The algorithm consists of two nested loops. The purpose of
the outer loop is to gradually reduce the highest dynamic de-
gree in the network. As indicated by the invariant in line 3,
δ̃(vi) is reduced by a factor (∆ + 1)1/k in every iteration of
the outer loop. Each iteration of the outer loop yields a primal
infeasible solution. By rearranging the weights in a similar
way as in the original greedy set cover proof, this primal so-
lution can be converted into a dual solution z = (z1, . . . , zn)
which is feasible up to a factor (∆+1)2/k. The combined pri-
mal solutions of all outer loop iterations give a primal feasible
k(∆+1)2/k-approximation. As in the sequential greedy algo-
rithm, only the nodes of large degrees increase their x-values.
In the inner loop, the x-values are increased stepwise. We call
the high-degree nodes which increase their x-values, active
nodes. The increase of xi of a node vi is at most indirectly
proportional to the number of active neighbors of the white
neighbors of vi. By this, the number of active neighbors a(vi)
of vi is reduced in every iteration of the inner loop (invariant
in line 5) and we can guarantee that the total x-increase is not
too high. That is, no nodes is overloaded because of too many
high-degree neighbors increasing their xi by too much.

Lemma 2 explains the invariant of line 3.

Lemma 2. At the beginning of each iteration � of the outer
loop of Algorithm 2, i.e., at line 3, the dynamic degree δ̃(vi)
of each node vi is

δ̃(vi) ≤ (∆ + 1)(�+1)/k.

Proof. For � = k − 1 the condition reduces to δ̃(vi) ≤ ∆ + 1
and therefore follows from the definition of ∆. For all other
iterations the lemma is true because in the very last step of
the preceding iteration (� + 1), all nodes with δ̃(vi) ≥ (∆ +
1)(�+1)/k have set xi := 1 in line 7. By this all nodes in Ni

have turned gray and therefore δ̃(vi) has become 0. Thus all
degrees exceeding (∆ + 1)(�+1)/k have been set to 0, for all
others the invariant already held beforehand. �	

In a single iteration of the outer loop, only nodes with
δ̃(vi) ≥ (∆ + 1)�/k increase their x-value (lines 6-8). We
call those nodes active. The number of active nodes in the
closed neighborhood Ni of a white node vi at the beginning
of an inner-loop iteration (line 5) is called a(vi). We define

F. Kuhn, R. Wattenhofer: Constant-time distributed dominating set approximation 307

a(v) ≥ (∆ + 1)3/4

a(v) ≥ (∆ + 1)2/4
a(v) ≥ (∆ + 1)1/4

a(v) ≥ 1

Fig. 1. Example with k = 4: First, the nodes which have a(v) ≥
(∆+1)3/4 active neighbors are covered when the x-values are set to
1/(∆+1)3/4, then the nodes which have a(v) ≥ (∆+1)2/4 active
neighbors are covered when the x-values are set to 1/(∆+1)2/4, and
so on. By this, it is guaranteed that the dual weights do not become
too high

a(vi) := 0 if vi is a gray node. The purpose of the inner
loop is to gradually reduce the maximum a(v) in the graph
(invariant in line 5).

Lemma 3. At the beginning of each iteration of the inner loop
of Algorithm 2, i.e., at line 5,

a(vi) ≤ (∆ + 1)(m+1)/k

for all nodes vi ∈ V .

Proof. For m = k−1 we have a(vi) ≤ ∆+1 which is always
true. For m �= k − 1, we prove that all nodes vi with more
than (∆ + 1)(m+1)/k active neighbors are gray and therefore
a(vi) = 0. It is sufficient to show that all nodes vi for which
a(vi) > (∆ + 1)m/k at line 5 are colored gray at the end
of the inner-loop iteration (i.e. after line 14). All active nodes
vj increase xj such that xj ≥ 1/(∆ + 1)m/k (lines 6-8 of
Algorithm 2). If a(vi) > (∆ + 1)m/k there are more than
(∆ + 1)m/k active nodes in Ni. Therefore the sum of the x-
values in Ni is greater or equal to 1 after line 10. Figure 1
serves as an illustration for Lemma 3. �	

In order to bound the weights assigned during the iterations
of the inner loop, we assign a variable zi to each node vi. In
line 3 all zi are set to 0. Whenever a node vi increases xi, the
additional weight is equally distributed among the zj of all
the nodes vj in Ni which are white before the increase of xi.
Hence the sum of the z-values is always equal to the sum of
the x-increases during the current iteration of the outer loop.
In Lemma 4, we show that at the end of every iteration of the
outer loop, i.e., at line 14, all zi are bounded. Together with
the invariant in line 3 (Lemma 2), this enables us to prove a
bound on the total weight of the additional x-values in each
iteration of the outer loop.

Lemma 4. At the end of an iteration of the outer loop of Al-
gorithm 2, i.e., at line 14,

zi ≤ 1

(∆ + 1)
�−1

k

for all nodes vi ∈ V .

Proof. Because zi is set to 0 in line 3, we only have to consider
a single iteration of the outer loop (�-loop), i.e., a period in
which � remains constant. zi can only be increased as long as
vi is a white node. The increases all happen in line 7 because
the x-values are increased only there. For each white node
vi, we divide the iteration of the outer loop into two phases.
The first phase consists of all inner-loop iterations where vi

remains white. The second phase consist of the remaining
inner-loop iterations where vi becomes or is gray. During the
whole first phase

∑
j∈Ni

xj < 1. Because all increases of x-

values are distributed among at least (∆ + 1)�/k z-values we
therefore get

zi <

∑
j∈Ni

xj

(∆ + 1)
�
k

≤ 1

(∆ + 1)
�
k

(2)

for phase 1. In line 7 of the first inner-loop iteration of the sec-
ond phase, zi gets its final value because only z-values of white
nodes are increased. All active nodes have already been active
in the preceding inner-loop iteration because δ̃(vj) can only
become smaller over time. Thus from the preceding iteration,
all a(vi) active nodes vj ∈ Ni have xj ≥ 1/(∆ + 1)(m+1)/k.
In line 7, the x-values of these nodes are now increased to
1/(∆ + 1)m/k. The difference of this value is distributed
among at least (∆ + 1)�/k z-values and so the increase of
zi is at most

1
(∆+1)

m
k

− 1

(∆+1)
m+1

k

(∆ + 1)
�
k

a(vi). (3)

To obtain a bound on zi, we have to add its value before the
increase which is given by Eq. (2). From Lemma 3 we know
that a(vi) ≤ (∆ + 1)(m+1)/k. Plugging this into the sum of
(2) and (3), we obtain

zi ≤ (∆ + 1)
1
k − 1

(∆ + 1)
�
k

+
1

(∆ + 1)
�
k

=
1

(∆ + 1)
�−1

k

,

which concludes the proof. �	
We are now ready to consider the overall approximation ratio
of Algorithm 2.

Theorem 4. For all network graphs G, Algorithm 2 computes
a feasible solution x for the linear program LPMDS such that x
is a k(∆+1)2/k-approximation of LPMDS. Further Algorithm
2 terminates after 2k2 rounds.

Proof. For the number of rounds, we see that each iteration
of the inner loop involves the sending of two messages and
therefore takes two rounds. The number of such iterations is
k2.

Further, the calculated x-values form a feasible solution
of LPMDS because in the very last iteration of the inner loop

308 F. Kuhn, R. Wattenhofer: Constant-time distributed dominating set approximation

(� = 0, m = 0) all nodes vi with δ̃(vi) ≥ 1 set xi := 1. This
includes all remaining white nodes. We prove the approxima-
tion ratio of k(∆+1)2/k by showing that the additional weight
(i.e. sum of x-values) is upper-bounded by (∆+1)2/k in each
iteration of the outer loop. From Lemma 2, we know that at
line 3, i.e., when the iteration starts, the dynamic degree δ̃(vi)
of each node vi is δ̃(vi) ≤ (∆ + 1)(�+1)/k. Hence there are at
most (∆ + 1)(�+1)/k non-zero z-values in the closed neigh-
borhood of every node vi at the end of an outer-loop iteration
at line 14. Further Lemma 4 implies that all z-values are less
than or equal to (∆ + 1)−(�−1)/k at line 14. The sum of the
z-values in the direct neighborhood of a node vi during each
iteration of the outer loop is therefore upper-bounded by

∑
j∈Ni

zj ≤ (∆ + 1)
�+1

k

(∆ + 1)
�−1

k

= (∆ + 1)
2
k .

If we assign yi := zi/(∆+1)2/k, the y-values form a feasible
solution for the dual LP DLPMDS because ∀i :

∑
j∈Ni

yj ≤
1. Hence the sum of all y-values is a lower bound on the size
of an optimal dominating set DSOPT and therefore

n∑
i=1

zi ≤ (∆ + 1)2/k|DSOPT|

for every iteration of the outer loop. Because z is defined such
that the sum over all z-values is equal to the sum over all
increases of the x-values, and because there are k iterations of
the outer loop, we have

n∑
i=1

xi ≤ k(∆ + 1)
2
k |DSOPT|.

at the end of Algorithm 2. �	

Remark: Algorithm 2 can easily be extended to solve the
weighted fractional dominating set problem. For simplicity,
assume that all nodes vi have weights ci between 1 and cmax.
Let γ̃(vi) := cmax/ciδ̃(vi) and let a node be active if γ̃(vi) ≥
[cmax(∆ + 1)]�/k. If we change lines 6 and 10 of Algorithm 2
in the appropriate way, we obtain an algorithm which approx-
imates the weighted fractional dominating set. The new ap-
proximation ratio is k(∆ + 1)1/k[cmax(∆ + 1)]1/k.

The only thing which cannot be calculated locally inAlgorithm
2 is the maximum degree ∆. Algorithm 3 is an adaptation of
Algorithm 2 where nodes do not need to know ∆. In each
iteration, Algorithm 3 assigns an xi which is greater or equal
to the xi assigned in the corresponding iteration of Algorithm
2. However, the xi are chosen such that the approximation
ratio of k(∆ + 1)2/k is preserved.

As for Algorithm 2, we first introduce some notation. By
γ(d)(vi), we denote the maximum dynamic degree of all nodes
with distance at most d from vi at the beginning of the outer-
loop iteration. We use the notation γ(d)(vi) instead of δ̃(d)(vi)
because γ(d)(vi) remains constant during an iteration of the
outer loop (�-loop) while δ̃(vi) potentially changes after every

Algorithm 3 LPMDS approximation (∆ not known)
1: xi := 0;
2: calculate δ

(2)
i ; (∗ 2 communication rounds ∗)

3: γ(2)(vi) := δ
(2)
i + 1; δ̃(vi) := δi + 1;

4: for � := k − 1 to 0 by −1 do
5: (∗ δ̃(vi) ≤ (∆ + 1)(�+1)/k, zi := 0 ∗)
6: for m := k − 1 to 0 by −1 do

7: if δ̃(vi) ≥ γ(2)(vi)
�

�+1 then
8: send ’active node’ to all neighbors
9: fi;

10: a(vi) := |{j ∈ Ni|vj is ’active node’}|;
11: if colori = ‘gray’ then a(vi) := 0 fi;
12: send a(vi) to all neighbors;
13: a(1)(vi) := maxj∈Ni{a(vj)};
14: (∗ a(vi), a(1)(vi) ≤ (∆ + 1)(m+1)/k ∗)
15: if δ̃(vi) ≥ γ(2)(vi)

�
�+1 then

16: xi := max
{

xi, a
(1)(vi)− m

m+1

}
17: fi;
18: send xi to all neighbors;
19: if

∑
j∈Ni

xj ≥ 1 then colori := ‘gray’ fi;
20: send colori to all neighbors;
21: δ̃(vi) :=

∣∣{j ∈ Ni | colorj = ‘white’}∣∣
22: od;
23: (∗ zi ≤ (1 + (∆ + 1)1/k)/γ(1)(vi)�/(�+1) ∗)
24: send δ̃(vi) to all neighbors;
25: γ(1)(vi) := maxj∈Ni{δ̃(vj)};
26: send γ(1)(vi) to all neighbors;
27: γ(2)(vi) := maxj∈Ni{γ(1)(vj)}
28: od

iteration of the inner loop. In each inner-loop iteration, all
nodes which assign a new x-value in line 16 of Algorithm 3
are called active.As before, a(vi) denotes the number of active
nodes in the direct neighborhood Ni of a white node vi; for
gray nodes a(vi) := 0. a(1)(vi) is the maximum a(vj) among
all j ∈ Ni. δ̃(vi) and zi are used as in the previous algorithm.
We now show that Lemma 2 and Lemma 3 (cf. Lemma 5 and
6) also hold for Algorithm 3.

Lemma 5. At the beginning of each iteration � of the outer
loop of Algorithm 3, i.e., at line 5, the dynamic degree δ̃(vi)
of each node vi is

δ̃(vi) ≤ (∆ + 1)(�+1)/k.

Proof. We use induction to prove the lemma. Analogously
to Lemma 2, for the first iteration (� = k − 1), the lemma
follows from the definition of ∆. To prove the lemma for
subsequent iterations (iteration step), we show that as for Al-
gorithm 2, all nodes with δ̃(vi) ≥ (∆ + 1)�/k set xi := 1
in the last iteration (m = 0) of the inner loop. According
to lines 15-17 of the algorithm, we see that all nodes with
δ̃(vi) ≥ γ(2)(vi)�/(�+1) set xi := 1 for m = 0. Hence we
have to show that ∀i :γ(2)(vi)�/(�+1) ≤ (∆+1)�/k. By the in-
duction hypothesis, we know that ∀i :δ̃(vi) ≤ (∆+1)(�+1)/k

at the beginning of the outer-loop iteration. Because γ(2)(vi)
represents δ̃(vj) of some node vj in the two-hop neighbor-
hood of vi, we also have ∀i : γ(2)(vi) ≤ (∆ + 1)(�+1)/k and
therefore

γ(2)(vi)
�

�+1 ≤ (∆+1)
�+1

k · �
�+1 = (∆+1)

�
k . �	

F. Kuhn, R. Wattenhofer: Constant-time distributed dominating set approximation 309

Lemma 6. Before assigning a new value xi to vi in lines 15-17
of Algorithm 3, a(vi) ≤ (∆+1)(m+1)/k for all nodes vi ∈ V .

Proof. As for Lemma 3 (see also Fig. 1), we prove that all
nodes vi for which a(vi) > (∆+1)m/k at line 14 are colored
gray at the end of the inner-loop iteration (i.e., after line 21).
We use induction over the iterations of the inner loop. By
the definition of ∆ for every first iteration of the inner loop
(a(vi) ≤ ∆ + 1) and by the induction hypothesis for all other
iterations, we have ∀i : a(vi) ≤ (∆ + 1)(m+1)/k at line 14.
Therefore the weight each active node vj assigns in line 16 is

xj ≥ 1
a(1)(vj)

m
m+1

≥ 1

(∆ + 1)
m+1

k · m
m+1

=
1

(∆ + 1)
m
k

.

Because nodes vi with a(vi) ≥ (∆ + 1)m/k have at least
(∆ + 1)m/k active nodes in the direct neighborhood, they are
covered after each of their a(vi) neighbor nodes vj assigns a
weight xj ≥ 1/(∆ + 1)m/k. �	
Lemma 7 is the analogue to Lemma 4.

Lemma 7. At line 23 of Algorithm 3,

zi ≤ 1 + (∆ + 1)
1
k

γ(1)(vi)
�

�+1
(4)

for all nodes vi ∈ V .

Proof. As in Algorithm 2, zi is set to 0 at line 5. Therefore, we
only have to consider a single iteration of the outer loop.Again
we consider two phases. In the iterations of the first phase
vi remains white, the second phase consists of the iterations
where vi becomes or is gray. While the algorithm is in the first
phase

∑
j∈Ni

xj < 1. Further, all increases of values xj are

distributed among at least γ(2)(vj)�/(�+1) ≥ γ(1)(vi)�/(�+1)

z-values. Therefore, in analogy to (2), we have

zi ≤
∑
j∈Ni

xj

γ(2)(vj)
�

�+1
<

1

γ(1)(vi)
�

�+1
(5)

for phase 1. In line 16 of the first inner-loop iteration of the sec-
ond phase, zi is changed for the last time because only z-values
of white nodes are increased. There each active neighbor xj

contributes at most

1
a(1)(vj)

m
m+1

· 1

γ(1)(vi)
�

�+1

to the values zi. Because a(vi) ≤ a(1)(vj) and because vi has
a(vi) active nodes in the closed neighborhood Ni the total
increase of zi is at most

1
a(vi)

m
m+1

· 1

γ(1)(vi)
�

�+1
· a(vi) =

a(vi)
1

m+1

γ(1)(vi)
�

�+1
. (6)

By Lemma 6, we have a(vi) ≤ (∆ + 1)(m+1)/k during an
iteration of the inner loop. Plugging this into (6) and adding
the value of zi from the preceding iterations (5) concludes the
proof:

zi ≤
(
(∆ + 1)

m+1
k

) 1
m+1

+ 1

γ(1)(vi)
�

�+1
=

(∆ + 1)
1
k + 1

γ(1)(vi)
�

�+1
. �	

Theorem 5. For all network graphs G, Algorithm 3 computes
a feasible solution x with approximation ratio

k
(
(∆ + 1)1/k + (∆ + 1)2/k

)
for the linear program LPMDS. Further Algorithm 3 termi-
nates after 4k2 + O(k) rounds.

Proof. The running time (i.e. number of rounds) can be deter-
mined as for Algorithm 2. In each iteration of the inner loop,
4 messages have to be sent. This yields 4k2 rounds for the
totally k2 inner-loop iterations. There is a constant number
of additional rounds in each outer-loop iteration as well as at
the beginning of the algorithm. Together, we get the claimed
4k2 + O(k) rounds.

Analogously to Algorithm 2 x is feasible because in the
very last iteration of the inner loop (� = 0, m = 0), all white
nodes vi set xi := 1.

As for the other algorithm, we analyze each outer-loop
iteration separately to determine the approximation ratio of
Algorithm 3. By the definition of z, the sum of the x-values of
an outer-loop iteration is equal to the sum of the corresponding
z-values. By Lemma 7 the sum of the z-values in the closed
neighborhood of a node vi in a single iteration of the outer
loop is

∑
j∈Ni

zj ≤ 1 + (∆ + 1)
1
k

γ(1)(vi)
�

�+1
· δ̃(vi). (7)

Because γ(1)(vi) is the maximum dynamic degree in Ni,
δ̃(vi) ≤ γ(1)(vi). Equation (7) can thus be formulated as∑

j∈Ni

zj ≤
(
1 + (∆ + 1)

1
k

)
γ(1)(vi)

1
�+1 . (8)

By Lemma 5 we know that γ(1)(vi) ≤ (∆+1)(�+1)/k and
therefore

γ(1)(vi)
1

�+1 ≤ (∆ + 1)1/k.

Plugging this into Eq. (8) yields∑
j∈Ni

zj ≤ (∆ + 1)1/k + (∆ + 1)2/k.

By dividing all zi by the right hand side of the above inequality,
we obtain a feasible solution for DLPMDS:

yi :=
zi

(∆ + 1)
1
k + (∆ + 1)

2
k

=⇒
∑
j∈Ni

yi ≤ 1.

The sum of the z-values of an outer-loop iteration is there-
fore larger than the size of an optimal dominating set by a
factor of at most (∆ + 1)1/k + (∆ + 1)2/k. At the end of the
algorithm the sum over all xi (objective function of LPMDS)
is equal to the sum over the sums of the zi for each outer loop
iteration. Therefore

n∑
i=1

xi ≤ k
(
(∆ + 1)1/k + (∆ + 1)2/k

)
· |DSOPT|

where |DSOPT| denotes the size of an optimal dominating set.
�	

310 F. Kuhn, R. Wattenhofer: Constant-time distributed dominating set approximation

Combining Algorithms 3 and 1 we obtain a distributed domi-
nating set algorithm.

Theorem 6. Applying Algorithm 3 to obtain an approximation
for LPMDS and Algorithm 1 to convert this approximation into
a dominating set yields a dominating set whose expected size
is within O

(
k∆2/k log ∆

)
of the size of an optimal dominating

set in O
(
k2
)

rounds.

Proof. Theorem 6 directly follows from Theorems 3 and 5. �	

Remark: By setting k = Θ(log ∆), we achieve a dominating
set algorithm which computes a O

(
log2 ∆

)
approximation in

O
(
log2 ∆

)
rounds.

6 Conclusions

In this paper, we presented a distributed approximation algo-
rithm for the minimum dominating set problem. The algorithm
can be seen as a distributed implementation of the greedy dom-
inating set algorithm. In order to parallelize the computation
of the greedy algorithm, different nodes must be able to be-
come dominator simultaneously. We avoid the problem that
too many nearby nodes join the dominating set at the same time
by first solving the fractional version of the problem and then
applying randomized rounding. The increase of the weight of
a node v is at most indirectly proportional to the number of
active neighbors of the white neighbors of v. Jia et. al. [11]
present another distributed variant of the greedy dominating
set algorithm. Active nodes are chosen in a similar way as in
our algorithm. The algorithm of [11] directly computes an in-
teger solution for the problem. Symmetries are broken by ran-
domly choosing a set of dominators among the active nodes.
The probability for an active node v to become dominator is
indirectly proportional to the median number of active neigh-
bors of the white neighbors. We believe that LP relaxation is
a promising technique for the design of distributed approxi-
mation algorithms. It allows to postpone symmetry breaking
to the end of the algorithm where the fractional solution is
converted to an integer one.

Acknowledgements. We would like to thank Maurice Cochand, Juraj
Hromkovič, David Peleg, Peter Widmayer, and Aaron Zollinger for
fruitful discussions about the subject. We would further like to thank
the anonymous reviewers for valuable comments and corrections.

References

1. Alzoubi K, Wan P-J, Frieder O: Message-Optimal Connected
Dominating Sets in Mobile Ad Hoc Networks. In: Proc. of the
3rd ACM Int. Symposium on Mobile Ad Hoc Networking and
Computing (MobiHOC), EPFL Lausanne, Switzerland, 2002,
pp 157–164

2. Bartal Y, Byers JW, Raz D: Global Optimization Using Local
Information with Applications to Flow Control. In: Proc. of the
38th IEEE Symposium on the Foundations of Computer Science
(FOCS), 1997, pp 303–312

3. Berger B, Rompel J, Shor P: Efficient NC Algorithms for Set
Cover with Applications to Learning and Geometry. J Comput
Syst Sci 49:454–477 (1994)

4. Chvátal V: A Greedy Heuristic for the Set-Covering Problem.
Math Oper Res 4(3):233–235 (1979)

5. Chvátal V: Linear Programming. W.H. Freeman and Company,
1983

6. Dubhashi D, Mei A, Panconesi A, Radhakrishnan J, Srinivasan
A: Fast Distributed Algorithms for (Weakly) Connected Dom-
inating Sets and Linear-Size Skeletons. In: Proc. of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2003,
pp 717–724

7. Feige U: A Threshold of ln n for Approximating Set Cover. J.
ACM (JACM) 45(4):634–652 (1998)

8. Gao J, Guibas L, Hershberger J, Zhang L, Zhu A: Discrete
Mobile Centers. In: Proc. of the 17th annual symposium on
Computational geometry (SCG), ACM Press, 2001, pp 188–196

9. Garey MR, Johnson DS: Computers and Intractability, A Guide
to the Theory of NP-Completeness. W.H. Freeman and Com-
pany, 1979

10. Guha S, Khuller S: Approximation Algorithms for Connected
Dominating Sets. In: Proc. of the 4th Annual European Sympo-
sium on Algorithms (ESA). Lecture Notes in Computer Science,
vol 1136, 1996, pp 179–193

11. Jia L, Rajaraman R, Suel R: An Efficient Distributed Algo-
rithm for Constructing Small Dominating Sets. In: Proc. of the
20th ACM Symposium on Principles of Distributed Computing
(PODC), 2001, pp 33–42

12. Johnson DS: Approximation Algorithms for Combinatorial
Problems. J Comput Syst Sci 9:256–278 (1974)

13. Karp RM: Reducibility Among Combinatorial Problems. In:
Proc. of a Symposium on the Complexity of Computer Compu-
tations, 1972, pp 85–103

14. Kuhn F, Moscibroda T, Wattenhofer R: What Cannot Be Com-
puted Locally! In: Proc. of the 23rd ACM Symposium on Prin-
ciples of Distributed Computing (PODC), 2004, pp 300–309

15. Kutten S, Peleg D: Fast Distributed Construction of Small
k-Dominating Sets and Applications. J Algorithms 28:40–66
(1998)

16. Lovasz L: On the Ratio of Optimal Integral and Fractional Cov-
ers. Discrete Math 13:383–390 (1975)

17. Luby M, Nisan N: A ParallelApproximationAlgorithm for Posi-
tive Linear Programming. In: Proc. of the 25thACM Symposium
on Theory of Computing (STOC), 1993, pp 448–457

18. Raghavan P, Thompson CD: Randomized Rounding: A Tech-
nique for Provably Good Algorithms and Algorithmic Proofs.
Combinatorica 7(4):365–374 (1987)

19. Rajagopalan S, Vazirani V: Primal-Dual RNC Approximation
Algorithms for Set Cover and Covering Integer Programs. SIAM
J Comput 28:525–540 (1998)

20. Rajaraman R: Topology Control and Routing in Ad hoc Net-
works: A Survey. SIGACT News 33:60–73 (2002)

21. Slavı́k P: A Tight Analysis of the Greedy Algorithm for Set
Cover. In: Proc. of the 28th ACM Symposium on Theory of
Computing (STOC), 1996, pp 435–441

22. Wu J, Li H: On Calculating Connected Dominating Set for Effi-
cient Routing in Ad Hoc Wireless Networks. In: Proc. of the 3rd
Int. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DialM), 1999, pp 7–14

