
Efficient Gossip-Based Aggregate Computation

Srinivas Kashyap∗

University of Maryland

raaghav@cs.umd.edu

Supratim Deb, K. V. M. Naidu,
Rajeev Rastogi, Anand Srinivasan

Bell Labs Research India, Bangalore

{supratim, naidukvm,
rastogi, anands}@lucent.com

ABSTRACT
Recently, there has been a growing interest in gossip-based
protocols that employ randomized communication to ensure
robust information dissemination. In this paper, we present
a novel gossip-based scheme using which all the nodes in
an n-node overlay network can compute the common aggre-
gates of MIN, MAX, SUM, AVERAGE, and RANK of their
values using O(n log log n) messages within O(log n log log n)
rounds of communication. To the best of our knowledge,
ours is the first result that shows how to compute these ag-
gregates with high probability using only O(n log log n) mes-
sages. In contrast, the best known gossip-based algorithm
for computing these aggregates requires O(n log n) messages
and O(log n) rounds. Thus, our algorithm allows system
designers to trade off a small increase in round complexity
with a significant reduction in message complexity. This can
lead to dramatically lower network congestion and longer
node lifetimes in wireless and sensor networks, where chan-
nel bandwidth and battery life are severely constrained.

1. INTRODUCTION
Many large-scale distributed applications require aggre-

gate statistics (e.g., MIN, MAX, SUM, AVERAGE) to be
computed over data stored at individual nodes. For exam-
ple, in peer-to-peer systems [18, 20], the average number of
files stored at each peer node or the maximum size of files
exchanged between nodes is an important input to system
designers for optimizing overall performance. Similarly, in
sensor networks [17, 12], disseminating individual readings
of temperature or humidity among all the sensor nodes, be-
sides being too expensive, may also be unnecessary, and ag-
gregates like MAX or AVERAGE may suffice in most cases.
And finally, in a wireless network monitoring application
using software probes deployed on mobile handsets to mon-
itor performance, a service provider may be more interested

∗This work was done while the author was visiting Bell Labs
Research India, Bangalore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0006 ...$5.00.

in the abnormal measurements recorded by the probes like
unusually low signal strength or atypically high application
response times.

Depending on the application, the aggregate computation
procedure must satisfy some of the following requirements.

• Scale to a large number of nodes. P2P systems and sen-
sor networks can have millions of participating nodes.
The procedure should be able to handle such mas-
sively distributed applications, and overall computa-
tion times should increase gradually and smoothly as
new nodes join.

• Be robust in the presence of failures. Link and node
reliability can be expected to be poor in wireless and
sensor networks. Thus, the procedure must be resilient
to node failures and message loss.

• Incur low communication overhead. Wireless links typ-
ically have low bandwidths, and in sensor networks,
nodes have limited battery lives. As a result, the com-
putation process should involve only a small number
of message transmissions.

While the exact trade-off between the aforementioned re-
quirements is not completely understood, an important ques-
tion is whether it is possible to design efficient algorithms
satisfying a sizable subset of the above-mentioned require-
ments.

For example, consider a centralized approach in which
each node transmits its value to a central coordinator that
then computes the aggregate. Clearly, this is extremely effi-
cient in terms of message overhead. However, it is lacking in
terms of scalability and reliability since the coordinator can
quickly become a bottleneck and is a single point of failure.
Similarly, though alternate approaches based on propagat-
ing aggregate computation up the nodes of a deterministic
tree solve the scalability issue [8, 21], they are still suscep-
tible to node and link failures.

To overcome the above-mentioned scalability and reliabil-
ity problems, several researchers have proposed decentral-
ized gossip-based schemes for computing various aggregates
in overlay networks [11, 15, 9, 5, 4]. In gossip-based pro-
tocols, each node exchanges information with a randomly-
chosen communication partner in each round. By their very
nature, gossip-based schemes are robust; they are resilient
to message failures as well as node failures, thus making
them ideally suited for P2P, wireless and sensor networks
with potentially poor link-reliability.

308

Much of the early gossip work focused on using random-
ized communication to propagate a single message through-
out a network of n nodes [7, 16, 10]. More recently, Kempe et
al. [11] presented the first set of analytical results on compu-
tation of aggregate functions using randomized gossip. They
analyzed a simple gossip-based protocol for computing sums,
averages, quantiles and other aggregate functions. In their
scheme for estimating averages, each node selects another
random node to which it sends half of its value; a node on
receiving a set of values just adds them to its own halved
value. Kempe et al. showed that these values converge to
the true average in O(log n) rounds resulting in O(n log n)
messages.

In this paper, we address the following question: is it pos-
sible to reduce the message complexity of aggregate (max,
sum, average, rank of an element) computation schemes
from O(n log n) while relaxing the number of rounds to slightly
exceed log n? We present a novel scheme to compute MIN,
MAX, SUM, AVERAGE and RANK using O(log n log log n)
rounds of communication and O(n log log n) messages. To
the best of our knowledge, ours is the first result that com-
putes these various aggregates in a network with probabilis-
tic link and node failures using only O(n log log n) messages.
Thus, compared to previous work [11], our scheme achieves a
significant reduction in communication overhead at the cost
of only a modest increase in the number of rounds. This
can yield significant benefits in terms of lowering congestion
and lengthening node lifetimes in bandwidth and energy-
constrained environments like wireless and sensor networks.

Our algorithms achieve this O(log n/ log log n) factor re-
duction in the number of messages by randomly cluster-
ing nodes into groups of size O(log n), selecting represen-
tatives for each group, and then having the group repre-
sentatives gossip among themselves. It is interesting to
note that Karp et al. [10] proved that a single message
cannot be spread in a network using less than n log log n
message exchanges for a class of algorithms referred to as
address-oblivious algorithms. Although our algorithm is not
“strictly” address-oblivious, this lower-bound result indi-
cates that it might be hard to reduce the message complex-
ity further without substantially increasing the number of
rounds.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the underlying assumptions of our gossip
framework. Section 3 describes prior related work. In Sec-
tion 4, we describe our schemes for computing the various
aggregates. Finally, we conclude in Section 5.

2. MODEL
The network consists of a set V of n nodes; each node

u ∈ V has a value denoted by val(u). We are interested
in computing aggregate functions like MIN, MAX, SUM,
AVERAGE, RANK etc. of the node values.

The nodes communicate in discrete time-steps referred to
as rounds. As in prior work on this problem [11, 10, 4], we
assume that communication rounds are synchronized, and
that all nodes can communicate simultaneously during a
given round. The communication graph can be either push-
based or pull-based. In the push-based model, a node selects
a communication partner at random, and transmits infor-
mation. A node can transmit to only one node in a round.
In the pull-based model, a node chooses a communication
partner at random and requests information. Thus, in this

model, a node can receive from only one node in a round.
We assume that each node can communicate with every

other node; each node chooses a communication partner in-
dependently and uniformly at random. A node u is said to
call a node v if u chooses v as a communication partner.
Once a call is established, we assume that information can
be exchanged in both directions along the link.

Message sizes are bounded by O(log n + log q) bits, where
{1 . . . q} is the range of values at the nodes. The values at
the nodes do not change during the execution of a query.
When multiple nodes attempt to communicate with a node,
then a connection is either queued up or rejected (if the
queue size is already sufficiently large).

We assume the failure model of [11]. In particular, we
assume two types of failures: (i) some fraction of the nodes
may crash initially, and (ii) links are lossy and messages
may get lost. Thus, while nodes cannot crash during the
execution of the algorithm, communication can fail (either
due to lossy links or due to initial node crashes) with a
certain probability δ. W.l.o.g., we assume that δ is some
constant such that 1

log n
< δ < 1

8
. Our results can also be

proved without this assumption. In particular, for larger
values of δ, we can make O(1/ log(1/δ)) repeated calls to
bring down the call failure probability below 1

8
. On the

other hand, call failure probabilities lower than 1
log n

only
make it easier to prove our claims.

We consider two query models: one in which only a single
node that initiates the query is interested in knowing the
result, and another in which all nodes need to know the
query answer.

3. RELATED WORK
Randomized gossip-based schemes for spreading a single

message update in a network date back to the work on
epidemic algorithms by Demers et al. [7]. Initial work on
spreading a single message using randomized gossip [7, 16]
essentially show that a single message can be spread in a net-
work of n nodes in O(log n) rounds and O(n log n) message
transfers. Karp et al. [10] presented an improved algorithm
and showed that even when a δ fraction of the nodes and
messages can fail adversarially, all but a O(δ) fraction of the
nodes in the network will have the message within O(log n)
rounds and using only O(n log log n) messages. They also
gave lower bounds for the problem of single message dis-
semination.

Several works have considered the problem of determin-
istic in-network aggregation using trees [8, 21]. As shown
in [11] and [4], such approaches are not resilient to node and
message failures.

Kempe et al. [11] used gossip to compute aggregates of
a distributed collection of values. They presented schemes
that compute the sum and average of a distributed collection
of values in O(log n) rounds and O(n log n) messages. They
also extended the scheme to compute rank, select random
samples, quantiles (using O(log2 n) rounds and O(n log2 n)
messages) and several other aggregate functions. Our work
aims to save an O(log n/ log log n) factor in the number of
messages used to compute these aggregates while giving up
a O(log log n) factor in the number of rounds.

Boyd et al. [4] considered non-uniform gossip where the
probability of node i communicating with its neighbor j is
Pij . Their proposed algorithm is different from the standard
uniform gossip model in that it considers an asynchronous

309

setting and in each asynchronous clock tick, it finds a ran-
dom matching between the vertices. These vertices then
average and update their values. They also presented a dis-
tributed scheme to find the optimal communication prob-
abilities for each pair of vertices to ensure that the gossip
algorithm converges at the fastest rate.

Finally, in [5], the authors employ a gossip-based approach
to compute aggregates in a wireless sensor network setting.
They present an algorithm with better performance based on
a property of wireless transmissions where all nodes within
the radio range can hear a broadcast.

4. OUR SCHEME
In this section, we describe our various schemes; the scheme

for computing MAX is detailed in Section 4.2, and the schemes
for computation of SUM, AVERAGE and RANK are de-
scribed in Section 4.3. However, before delving into the de-
tails of our approach, we discuss some of our initial attempts
that did not work.

4.1 Simple Approaches (that do not work)
In this subsection, we discuss two approaches that are sim-

ple, but have high message complexity. These will motivate
the need for a more sophisticated solution.

Repeated rumor-spreading. Computation of MAX is in
some sense similar to the rumor-spreading problem consid-
ered in [10]; however, we cannot simply invoke their results
to spread the MAX value throughout the network because
each node in the network holds a potentially important piece
of information. Thus, naively running the rumor-spreading
algorithm of [10] by considering each node’s information as
a rumor imposes a communication cost of O(n2 log log n).

Random query trees. Another attempt to compute MAX
is to gossip for O(log log n) rounds, which will result in the
MAX spreading to O(logp n) nodes (for some constant p)
with only O(n log log n) work. Then, the query node selects
two nodes at random from the set of all nodes, and each
selected node then repeats this process. A selected node
marks itself to ensure it is not picked again. This construc-
tion goes on until the tree has O(n/ logp−1 n) nodes. Once
this happens the nodes will aggregate values up the tree and
the query node will have the MAX w.h.p. 1 after O(log n)
rounds. This is because the probability that the tree does

not contain the MAX is at most (1− logp n
n

)n/ logp−1 n ≤ 1/n.
However, consider the communication complexity of this

scheme. Consider the penultimate level of the tree. We
have about n/c logp−1 n nodes at this level. Each of them
needs to contact two new neighbors in the current round.
The probability of a failed call for a node at this level is

1
c logp−1 n

. To ensure this is O(n−α), each node has to draw

O(logp n/ log log n) random samples. This means that, at
the last level alone, the scheme has communication com-
plexity O(n

logp−1 n
∗ logp n

log log n
) = O(n log n/ log log n). Note

that we are ignoring the fact that there might be collisions
between the samples chosen at the same level. This how-
ever only makes the tree smaller and our argument stronger.
Further, if we consider message failures as well, the commu-
nication overhead will be even higher.
1w.h.p. = with probability at least 1 − O(n−α) for some
constant α > 0.

4.2 Computation of MAX
We first describe the idealized version of our scheme to

give the key intuition, and subsequently present the more
practical version.

Intuition
Suppose that, incurring zero cost, we can divide all the nodes
into n

log n
groups, each of size log n, and each group having

a fixed root (let us call the roots red nodes and the others
blue nodes). Now each red node can determine the MAX in
its group, for example, by sequentially getting values from
all nodes in the group and computing MAX. Note that this
will need O(log n) rounds and O(log n) messages per group.
Let us call this phase as Grouping.

Next, the red nodes gossip among themselves to compute
MAX. For this, one can use the scheme in [11] to compute
MAX for m nodes in O(log m) rounds and O(m log m) mes-
sages. Since, there are n

log n
red nodes involved in gossiping,

we get a complexity of O(log n) rounds and O(n) messages.
We refer to this phase as Gossip.

Finally, the red nodes propagate the MAX in their own
groups, which has complexity similar to the Grouping phase.
We call this phase as Sampling/Propagation. Essentially, if
any node wishes to know MAX, it can do sampling, but, if
all the nodes wish to know MAX, then few nodes can do
sampling followed by propagation to the other nodes.

Note that this gives us an ideal scheme with O(log n)
rounds and O(n) messages. However, in order to achieve it
in the presence of node and message failures, the Grouping
phase must be performed in a distributed manner . Deter-
ministic grouping is not possible due to initial node failures,
which can potentially result in a red node failure if cho-
sen deterministically. Therefore, we propose a randomized
strategy to form the groups. Each node decides to be a
red node independently with probability 1

log n
. This gives

roughly O(n
log n

) red nodes to start with. Now, the red

nodes start forming groups by randomly contacting/being
contacted by other nodes. This group formation happens in
two phases: first Push and then Pull. Essentially, the Push
and Pull phases simulate the ideal case, but in a distributed
manner. Below, we describe these further in the context of
our overall algorithm, and also argue that it is necessary to
do both push and pull for making every node part of some
group.

Overview of the Algorithm
With the above intuition in place, we are now ready to pro-
vide an overview of our scheme. The scheme consists of four
phases: Push, Pull, Gossip and Sampling/Propagating.

1. Push: Initially all nodes are unmarked (no color as-
signed). Roughly n

log n
decide to be red nodes. Each

red node makes O(log n log log n) requests for other
nodes to join. Each non-red node accepts one of the
join requests randomly and marks itself blue. Also,
each successful join updates the value at the red node
to the max of the two values. At the end of this phase,
at most O(n

log n
) nodes remain unmarked and each red

node knows the MAX of its current group. The com-
plexity of this phase is O(log n log log n) rounds and
O(n log log n) messages. Clearly, at the end of this
phase, group size is at most O(log n log log n).

310

2. Pull: Each remaining unmarked node makes O(log n)
calls and joins the first group it successfully calls (i.e.,
the call is not rejected by the red node of the group).
In each round, a red node accepts at most O(log log n)
calls and drops the remaining calls, so that its group
size is at most O(log n log log n) (we will see in a mo-
ment why this is needed). At the end of this phase, all
nodes are marked with some color w.h.p., and thus,
part of some group. Also, each red node knows the
MAX of its current group. The complexity of this
phase is O(log n) rounds and O(n) messages.

3. Gossip: Once grouping is done, the red nodes start
the Gossip phase where they gossip among themselves.
Since calls are made uniformly and randomly, a red
node might end up calling a blue node. We can eas-
ily fix this by having the blue node return its parent
red node to the caller so that it can be called in the
subsequent round. Note that this does not make much
difference to the protocol except for increasing the call
failure probability. Also, since groups are not of the
same size and the probability of a red node receiving
a call is directly proportional to its group size, this is
no longer uniform gossip, as considered in [11]. Using
the fact that the group sizes are O(log n log log n), we
show that at the end of this Gossip phase (after each
red node has made O(log n) calls), the number of nodes
with the MAX is Ω(n/(log n log log n)). The complex-
ity of this phase is O(log n log log n) rounds and O(n)
messages.

4. Sampling/Propagation: Any node that wishes to
compute MAX requests log n other nodes to “sample”
O(log n log log n) nodes for the MAX. The maximum
of these O(log2 n log log n) samples is then reported as
the MAX. We show that this is just the right number
of samples for a node to get the MAX w.h.p. The
message complexity of this phase is poly(log n).

The preceding shows how any node interested in MAX
can do sampling to obtain the MAX. If the MAX needs
to be propagated to all the nodes, roughly Θ(log n)
nodes (this can be achieved by each node tossing a
coin with probability c log n/n) decide to be propaga-
tors and sample the max values. The result is then
propagated to all the nodes using a modified version
of the rumor spreading algorithm of [10]. This requires
O(log n) rounds and O(n log log n) messages.

Note that we have two phases (a Push phase followed by a
Pull phase) during the group construction. This is necessary
to keep the message complexity low; as observed in [10], push
or pull applied alone to contact the unmarked nodes can re-
sult in excessive message transmissions. Basically, push is
more efficient initially when a large number of unmarked
nodes need to be contacted, while pull works better towards
the end when fewer unmarked nodes remain. It is also im-
portant that the scheme for the group construction ensures
that none of the constructed groups are too large. Other-
wise, a single red node can receive a large number of simulta-
neous calls during the Gossip phase resulting in an increased
number of rounds.

Description of the Algorithm
We now describe each of the four phases in greater detail.
In each phase, communication between nodes takes place in
rounds. Although, strictly speaking, each node is allowed
to exchange information with only one partner in a given
round, for convenience, in certain phases, we allow nodes
to communicate with multiple nodes in a round. However,
while calculating the total number of rounds for a phase, we
count the multiple communications involving a single node
as separate rounds. For instance, in Phase 2, a node can ex-
change information with O(log log n) nodes (while dropping
any extra requests) in a single round. Thus, even though
Phase 2 has only O(log n) rounds, we compute the time
complexity of Phase 2 as O(log n log log n) rounds.

In our analysis, we use several well-known results to bound
the tail probability of a random variable (e.g., Chernoff
bounds, Azuma’s inequality). These are included in the Ap-
pendix for easy reference.

Phase 1 Push
1: Each node independently decides to remain active with

probability 1/ log n or else becomes inactive.
2: Let A be the set of all nodes that decide to remain active.
3: Each u ∈ A marks itself red.
4: for log n log log n

1−δ
rounds do

5: Each u ∈ A selects a node v independently and uni-
formly at random from the set of all nodes.

6: for all v that are unmarked do
7: v selects a node u at random from the red nodes

that contacted v.
8: u and v exchange values and each stores the value

max(val(u), val(v)).
9: v points to u and marks itself blue.

10: end for
11: end for
12: All marked (red and blue) nodes become inactive.

Lemma 1. The number of unmarked nodes at the end of
Phase 1 is Θ(n/ log n) w.h.p.

Proof. After step 1 of Phase 1, using standard Chernoff-
bound type arguments, we have n/ log n ± √

n red nodes
w.h.p. Each of these red nodes tries to contact log n log log n

1−δ

nodes independently and uniformly at random (one connec-
tion attempt per round). Hence, the total number of con-

nection attempts is n log log n
1−δ

(
1 ± log n√

n

)
w.h.p. Fix an un-

marked node u. We now determine the probability that u
receives none of these messages.

At each step, this can happen because of two reasons:
either the connection failed, or the connection succeeded,
but went to a different node. Let Xi be an indicator random
variable (r.v.) such that Xi is 1 if node i was not contacted
in Phase 1 by a red node and 0 otherwise. Then, the number
of unmarked nodes at the end of Phase 1 is given by X =∑n

i=1 Xi.
Let c denote the total number of connection requests. As

shown above, w.h.p., we have the following.

n log log n

1 − δ

(
1 − log n√

n

)
≤ c ≤ n log log n

1 − δ

(
1 +

log n√
n

)

Now, the probability that u is not contacted in any of the c

311

Phase 2 Pull
1: Let B ⊂ V denote the set of all unmarked nodes.
2: for 2 log n

log(1/8δ)
rounds do

3: Each u ∈ B selects a node v independently and uni-
formly at random from the set of all nodes.

4: for all v that are unmarked do
5: Drop all requests.
6: end for
7: for all v that are marked blue do
8: Drop all but 4

δ(1−δ)
log log n requests from nodes in

B.
9: for all u ∈ B that contacted v, and are not dropped

do
10: v sends u a pointer to its red parent w.
11: u contacts w.
12: end for
13: end for
14: for all v that are marked red do
15: Drop all but 4

δ(1−δ)
log log n requests from nodes

in B (including the requests forwarded by the blue
nodes in the group).

16: for all u ∈ B that contacted v, and are not dropped
do

17: u points to v and marks itself blue.
18: u and v exchange values.
19: end for
20: end for
21: end for

connection requests is given by the following.

Pr[Xi = 1] = (δ + (1 − δ)(1 − 1/n))c

≤
(

1 − 1 − δ

n

) n
1−δ

log log n
(
1− log n√

n

)

≤ e
− log log n

(
1− log n√

n

)

= (log n)
−

(
1− log n√

n

)

≤ 2/ log n

Similarly, we obtain that

Pr[Xi = 1] ≥
(

1 − 1 − δ

n

) n
1−δ

log log n
(
1+ log n√

n

)

Since et(1 − t2/n) ≤ (1 + t/n)n, we have

Pr[Xi = 1] ≥ e
− log log n

(
1+ log n√

n

) (
1 − 2(1 − δ) log log n

n

)

= log n
−

(
1+ log n√

n

) (
1 − 2(1 − δ) log log n

n

)

≥ 1

4 log n

Hence, it follows that E[X] ∈ Θ(n/ log n) and applying
Azuma’s inequality, we have

Pr[|X − E[X]| > εE[X]] ≤ 2e
− ε2n2

2n log2 n

Finally, using Lemma 4 (in Appendix) and setting ε = log3/2 n√
n

,

it follows that Pr[X > (1 + ε)2n/ log n] ≤ 1/nΩ(1) and

Phase 3 Gossip

1: Let A be the set of all red nodes.
2: for

(
3 log n
(1−δ)2

+ log 17
16

n
)

rounds do

3: Each node in A selects a node independently and uni-
formly at random from the set of all nodes.

4: for all blue nodes (v) that are contacted do
5: Drop all but 2

δ(1−δ)
log log n requests from nodes.

6: for all red nodes (u) whose requests have not been
dropped do

7: v passes on its parent w’s address to u.
8: u then contacts v’s red parent w.
9: end for

10: end for
11: for all red nodes (v) that are contacted do
12: Drop all but 2

δ(1−δ)
log log n requests from nodes.

13: for all red nodes (u) whose requests have not been
dropped do

14: u and v compare values. The node with the
smaller value replaces its value with the higher
one.

15: end for
16: end for
17: end for

Pr[X < (1 − ε)n/4 log n] ≤ 1/nΩ(1). Because 0 < ε < 1
2
,

it follows that n
8 log n

< X < 4n
log n

w.h.p.

Corollary 1. The number of blue nodes at the end of
Phase 1 is Θ(n − n/ log n) w.h.p.

Proof. Follows directly from Lemma 1 by noting that
the number of red nodes is Θ(n/ log n) w.h.p.

Lemma 2. Every node that was unmarked at the end of
Phase 1 attaches itself to a red node by the end of Phase 2
w.h.p.

Proof. Consider the event that an unmarked node fails
to attach to a red node at the end of its 2 log n/ log(1/8δ)
calls. An unmarked node’s call fails to attach it to a red
node iff one of the following five bad events happen.

1. The call fails. This event occurs with probability δ.

2. The call succeeds but lands in another unmarked node.
By Lemma 1, the number of unmarked nodes is at most
4n/ log n. Therefore, the probability of this event is at
most 4(1 − δ)/ log n.

3. The call succeeds and lands in a blue node v. However,
the subsequent call to attach to v’s red parent fails.
By Corollary 1, the number of blue nodes is at most
n−n/8 log n. Hence, the probability of this bad event

is at most δ (1 − δ)
(
1 − 1

8 log n

)
.

4. The call lands in a red node that has already received
4

δ(1−δ)
log log n connections, and is dropped as a result.

The probability of this event is at most the probabil-
ity that a red node receives more than 4

δ(1−δ)
log log n

connections. The latter can be bounded from above as
follows. Consider any red node r, and let g denote its
group size. Then, for every round of the pull phase,
because at most 4n

log n
unmarked nodes participate, the

312

probability that r receives more than 4
δ(1−δ)

log log n is

equivalent to the probability of getting 4
δ(1−δ)

log log n

successes in 4n
log n

binomial trials, each with success

probability at most g(1−δ)2

n
. The expected number of

successes is at most 4g(1−δ)2

log n
< 4(1−δ) log log n. From

Markov’s inequality, the probability that the number
of connections Y is greater than 4

δ(1−δ)
log log n equals

Pr[Y > 4
δ(1−δ)

log log n] ≤ δ(1 − δ)2 ≤ δ.

5. The call lands in a blue node that has already received
4

δ(1−δ)
log log n connections, and is dropped as a result.

This is similar to the previous case (for red nodes)
but with success probability at most 1−δ

n
. Thus, the

probability of this bad event is at most δ(1 − δ)2 ≤ δ.

Putting all this together and observing that we have δ as
some constant greater than 1/ log n and less than 1/8, we
obtain the following:

Pr[Node fails to attach]

≤
(
δ + 4(1−δ)

log n
+ δ (1 − δ)

(
1 − 1

8 log n

)
+ 2δ

) 2 log n
log(1/8δ)

≤ (δ + 4δ(1 − δ) + δ(1 − δ) + 2δ)2 log n/ log(1/8δ)

≤ (8δ)2 log n/ log(1/8δ)

=
1

n2

Applying a union bound over all the unmarked nodes, it
follows that the probability of a node remaining unmarked
is at most 1

n log n
. In other words, every node that was un-

marked at the end of Phase 1 attaches itself to a red node
by the end of Phase 2 w.h.p.

Remark. At the end of Phase 2, all the group sizes are
O(log n log log n). This follows because the first phase runs
for O(log n log log n) rounds, and in each round, a red node
contacts at most one node. Further, the second phase runs
for O(log n) rounds, and in each round, a red node contacts
at most O(log log n) nodes.

Lemma 3. At the end of Phase 3, at least Ω
(

(1−δ)n
log n log log n

)
nodes have the max value w.h.p.

Proof. A call is now equivalent to at most two successive
calls (if the call lands in a blue node, then we have to make
another call to connect to its red parent). Define the new

call failure probability as δ
′

= 1 − (1 − δ)2. Let φt be the
number of red nodes with the max value at the end of round
t of Phase 3. Let φ0 denote the number of red nodes with
the MAX before the start of Phase 3.

We first prove that φτ > (1−√
2/3) log n after τ = 3 log n

1−δ
′

rounds. If φ0 > log n, we are done. Consider the case when
φ0 < log n. Since φ0 < log n, if a call does not fail, then it
will contact a new node w.h.p. Therefore we are only inter-
ested in finding the number of rounds before log n successful
calls are made. Define Xi = 1 as the probability that call

i from the max node succeeds. Let X =
∑(3 log n)/1−δ

′

i=1 Xi

be the total number of successful calls in 3 log n

1−δ
′ rounds. The

probability that a call succeeds is Pr[Xi = 1] = 1 − δ
′
.

Hence, E[X] = 3 log n.

Applying Azuma’s inequality and setting ε =
√

2/3:

Pr[|X − E[X]| > εE[X]] < 2exp

(
− ε2E[X]2

2 log n

)

= 2exp

(
−9ε2 log n

6

)
= 2exp (− log n)

= 2/n

Thus, w.h.p., at the end of τ = 3 log n
1−δ′ rounds, we have φτ >(

1 − √
2/3

)
log n. Once this happens, as we show below, we

enter an exponential growth phase and in the next O(log n)
rounds, about O(n

log n log log n
) red nodes will have the MAX.

Let us re-number the rounds to simplify the expressions.
Let us number the first round with at least (1−√

2/3) log n
red nodes having the MAX as round 0 (note that such a
round exists based on previous arguments). Now let us com-
pute the value of φt+1 given that in the current round φt

red nodes have the MAX. We have φ0 >
(
1 − √

2/3
)

log n.

Since we have φt red nodes with MAX, there will be at least
φt messages containing MAX in the current round (ignor-
ing pull transmissions). In the rest of this proof, we only
consider these messages containing MAX.

Let Xi be the indicator r.v. that denotes whether mes-
sage i (containing MAX) is successful or not: a message is
successful if the call succeeds and the MAX reaches a node
that has not already been informed about the MAX. Then,
X =

∑φt
i=1 Xi is the number of successful messages. We also

have 1 − δ′ = (1 − δ)2.
A message can fail iff one of the following happens.

1. Either the first or the second call fails. This event
occurs with probability δ′.

2. Recall that some connections are dropped if a node
receives more than 2

δ(1−δ)
log log n connections. The

probability of this event at the first node (a blue node)
is at most δ(1−δ) (the proof is very similar to the proof
in Lemma 2 for the case where a blue node receives
more than Ω(log log n) calls), while the probability of
this event at the second contacted node (red node that
is the parent of the blue node in the first call) is at most
δ(1 − δ′) < δ(1 − δ). Thus, the total probability is at
most 2δ(1 − δ).

3. Both calls succeed, but the group contacted already
contains the MAX. The probability of this event occur-

ring is at most (1−δ′)φt log n log log n
n

, because the maxi-

mum group size of a red node is log n log log n
1−δ

(by con-

struction) and there are at most φt red nodes with
MAX.

4. Both calls succeed, but the group contacted is simul-
taneously contacted by another node with the MAX.
In this case, we conservatively assume that this mes-
sage is wasted; in other words, if two messages reach
the same node, then both messages are considered un-
successful. This event occurs with probability at most
(1−δ′)φt log n log log n

n
.

Thus, the probability that a message is wasted can be upper-
bounded as follows.

313

Pr[Xi = 0] ≤ δ′ + 2δ(1 − δ) + 2(1−δ′)φt log n log log n
n

Since we have φt < n
16 log n log log n

,

Pr[Xi = 0] ≤ 1 − (1 − δ)2 + 2δ(1 − δ) + (1−δ)2

8

= 1 − 7
8
(1 − δ)2 + 2δ(1 − δ)

≤ 1
8

+ 15δ
4

Pr[Xi = 1] ≥ 1 − (1
8

+ 15δ
4

)

= 7
8
− 15δ

4

E[X] ≥ (
7
8
− 15δ

4

)
φt

Since δ < 1/8, the above expression implies that, in expec-
tation, the number of nodes with MAX grows exponentially
from one round to the next. To make this claim w.h.p.,
we apply Azuma’s inequality to show a sharp concentration
result for the expected number of successful messages.

Pr[|X − E[X]| > εE[X]] < 2exp

(
− ε2(E[X])2

2φt

)

Since E[X] ≥ (
7
8
− 15δ

4

)
φt, we have

Pr[|X − E[X]| > εE[X]] < 2exp
(
− ε2

2

(
7
8
− 15δ

4

)2
φt

)
Since φt >

(
1 − √

2/3
)

log n and
(

7
8
− 15δ

4

)2
> 0, setting

ε = 1/2, we obtain

Pr
[
X < 1

2

(
7
8
− 15δ

4

)
φt

]
<

2

nO(1)

Hence, w.h.p., the number of red nodes with MAX in round
t + 1 is

φt+1 > φt + 1
2

(
7
8
− 15δ

4

)
φt

=
23 − 30δ

16
φt

> 17
16

φt

The last step above follows since δ < 1/8. Thus, w.h.p.,

after
(

3 log n
1−δ′ + log 17

16
n
)

rounds, at least Ω
(

(1−δ)n
log n log log n

)
red

nodes will have the MAX.

Theorem 1. Any node can compute the value of MAX
using O (n log log n) messages and O (log n log log n) rounds
of communication.

Proof. From Lemma 3, it follows that at least cn
log n log log n

red nodes (for some c > 0) have the MAX. Once Phases 1, 2
and 3 are complete, any node that is interested in MAX re-
quests log n other nodes to “sample” the MAX. Each of these
log n nodes then successfully samples 2

c
log n log log n nodes,

and returns the maximum observed value to the querying
node. The probability that none of the nodes with the MAX

is sampled is at most (1 − c
log n log log n

)
2
c

log2 n log log n < 1
n2 .

Thus, the maximum of all the values obtained from the del-
egated nodes is the actual maximum w.h.p.

To bound the total number of communication rounds, ob-
serve that the number of communication rounds in each
phase is O(log n log log n). This can be easily seen from the
description of each phase.

To bound the total number of messages, we note that
the number of messages in Phase 1 is O (n log log n). By

Lemma 1, the number of unmarked nodes that take part in
Phase 2 is Θ(n/ log n), and hence the message complexity of
Phase 2 is O(n). The message complexity of Phase 3 is O (n)
because the number of red nodes is Θ(n/ log n), and each
red node makes O (log n) calls. The message complexity of
sampling is simply the number of samples that need to be
drawn and is therefore O

(
log2 n log log n

)
. Thus, the overall

message complexity is O (n log log n).

Corollary 1. All nodes can compute the value of MAX
using O (n log log n) messages and O (log n log log n) rounds
of communication.

Proof. If all nodes want MAX, then we first perform
Phases 1, 2 and 3 as before. At the end of Phase 3, each
node decides to be a propagator of MAX with probability
2 log n/n. It can be shown that there will be Θ(log n) propa-
gators w.h.p. Next, each propagator gets MAX by sampling
log n other nodes as described in the first paragraph of the
proof of Theorem 1. After this, applying the result from [10],
the propagator nodes can disseminate MAX to Ω((1 − δ)n)
nodes using O(n log log n) messages and O(log n) rounds.

After this, we can form groups as in Phases 1, 2, but
with red nodes chosen from the nodes that already have
MAX. As every node belongs to some group, every node also
has MAX. Essentially, Phase 1 is performed with a minor
modification. Only nodes who have MAX perform step 1
of Phase 1. Since δ is a constant and at least Ω((1 − δ)n)
nodes have MAX, we still have Θ(n/ log n) red nodes at
the end of this step. The rest of the Phase 1 proceeds as
before. Phase 2 is unchanged. Since at the end of these
two phases, each node has successfully communicated with
a red node, all nodes have MAX. Phases 1 and 2 together
take O(log n log log n) rounds and O(n log log n) messages as
seen above.

4.3 Computation of SUM, AVERAGE, RANK
We now extend our MAX computation scheme to estimate

the sum and average of node values. The key idea behind our
algorithm is the following. First, groups of nodes are formed
using Phases 1, 2 of the MAX computation algorithm. As
before, the group heads will be referred to as the red nodes
and the other nodes will be referred to as the blue nodes.
During group formation, every red node maintains the size
of its group, and the sum of the values within its group.
Next, the group heads use the MAX computation algorithm
to compute the maximum group size (for reasons that will
become clear soon). Finally, the red nodes use the gossip-
based Push-Sum algorithm in [11] to compute the average
of node values. As we will show later, owing to the distinct
group sizes, one can only ensure that the true-average resides
in the red node with the largest group size. As the nodes
already compute the largest group size, the red node with
the largest group knows its identity and hence also knows
that the value it has at the end of the protocol is the true-
average (with a small relative error).

Algorithm 4 is a modified version of the Push-Sum pro-
tocol in [11]. Let A = {r1 . . . rm} be the set of red nodes
after Phases 1, 2 of MAX computation. In our version, the
Push-Sum protocol computes the average of the set of val-
ues xr1 , . . . , xrm for only the red nodes. Note that every
other node will be child of one of the red nodes, and in the
modified protocol, any call to these nodes will be forwarded
to its parent in A.

314

Algorithm 4 Modified-Push-Sum(xr1 . . . xrm)

1: su,t is node u’s value in round t. su,0 = xu for each
u ∈ A.

2: wu,t is node u’s weight in round t. wu,0 = 1 for each
u ∈ A.

3: for O(log m + log(1/ε)) rounds do
4: Each node u ∈ A independently and uniformly at ran-

dom calls a node v ∈ {1 . . . n}. If v is a blue node, u
is directed to the group head of v in the subsequent
round. Note that the group head is a red node from
A.

5: Let Yv,t be the set of nodes that called v in round t.
6: sv,t = sv,t−1/2 +

∑
u∈Yv,t

su,t−1/2.

7: wv,t = wv,t−1/2 +
∑

u∈Yv,t
wu,t−1/2.

8: The current estimate of the average at node v is
sv,t/wv,t.

9: end for

Algorithm 5 Compute-Average

1: Form groups as in Phases 1, 2 of MAX computation.
Let A = {r1, . . . , rm} be the set of red nodes, and for
each red node u ∈ A, let gu denote its group size (that
is, the size of red node u and all the blue nodes attached
to it).

2: Use the MAX finding scheme presented earlier to find
the maximum size group for all the red nodes. Since all
red nodes can find MAX, red node r can determine that
it has the maximum sized group (break ties using node
ids in the messages used for MAX computation).

3: Let yu =
∑

v∈group(u) val(v).

4: All the red nodes compute gavg using Modified-Push-
Sum(gr1 , . . . , grm).

5: All the red nodes compute yavg using Modified-Push-
Sum(yr1 , . . . , yrm).

6: Node r computes the average μ̂ = yavg/gavg, and com-
municates it to all nodes using the rumor-spreading
scheme in [10].

Let α denote the true average of the xri ’s. Further, let
r be the red node with the maximum group size and xavg

denote the average computed at node r.

Theorem 2. At the end of Algorithm 4, |xavg −α|/α ≤ ε
for any ε > 0. Furthermore, the total number of messages is
O(m(log m+log 1

ε
)) and the number of rounds is O(log m+

log 1
ε
).

The proof of Theorem 2 is along similar lines as the proof
in [11]. We will need some definitions as in [11] followed
by a couple of key lemmas. Let �vu,t be a vector for node
u in round t, of which the zth component vu,z,t denotes the
fraction of node z’s value that is currently part of u’s sum
su,t in round t. Thus, the sum at node u in round t, su,t =∑

z vu,z,txz. As shown in [11], the invariant
∑

u vu,z,t = 1 ∀z
holds for Algorithm 4 as well. Similar to [11], define the
following potential function for round t.

Φt =
∑
u,z

(vu,z,t − wu,t

m
)2

Above, m = Θ(n/ log(n)) is the number of red nodes, and
wu,t =

∑
z vu,z,t. We now state the following lemma which

is a variant of a similar result proved in [11].

Lemma 4.1. The following holds:

E[Φt+1|Φt = φ] = 1
2
(1 − ∑

u∈A p2
u)φ , (1)

where pu = (1 − δ)2gu/
∑

v∈A gv.

Proof. This proof is very similar to the proof in [11].
The only difference is that pu, the probability with which
a node u is called in a round, is no longer uniform, but is
skewed based on the group size gu.

We also need the following lemma which is somewhat dif-
ferent from [11].

Lemma 4.2. There exists a τ ∈ O(log m) such that after

τ
′

> τ rounds of execution of Modified-Push-Sum, wr,τ
′ ≥

2−τ w.h.p.

Proof. In [11], the above result is proved for all nodes
and not just the node r with the maximum group size. The
proof in [11] relies on the fact that when every node is con-
tacted with uniform probability, each node receives a frac-
tion of every other node’s value after τ rounds. In our case,
since the distribution is skewed, we cannot guarantee the
lower bound on weight for each and every node. However,
it is easy to see that the red node with the largest group
size has a higher probability of being contacted. Thus, we
can show that it receives a fraction of every other node’s
value after τ rounds, and thus its weight satisfies the lower
bound.

Proof of Theorem 2. The proof is along the lines of [11],
and employs the results of Lemmas 4.1 and 4.2. Due to
Lemma 4.1, we get Φt ≤ m2−t (intuitively, Φt decreases
by a constant factor in each round and is m when t = 0).
By choosing t = log m + 2 log 1

ε
+ 2τ (τ as in lemma 4.2),

we can show that Φt ≤ ε22−2τ for any ε > 0. This im-
plies that |vr,z,t − wr,t

m
| ≤ ε2−τ for all z, or in other words

| vr,z,t

wr,t
− 1

m
| ≤ ε2−τ

wr,t
. Lemma 4.2 gives us the required lower

bound of wr,t ≥ 2−τ to have | vr,z,t

wr,t
− 1

m
| ≤ ε. Note that

vr,z,t

wr,t

represents the contribution of z’s value at r and w.h.p. this
is approximately 1

m
for all nodes. This implies that after

t ∈ O(log m + log 1
ε
) rounds, the average xavg computed at

r has relative error at most ε.

Algorithm 5 uses our Modified-Push-Sum procedure to
compute yavg and gavg, the average group value and average
group size, respectively. Let μ̂ =

yavg

gavg
be the estimate of

average as computed by the red node r with the largest
group, and let μ be the actual average of all the values val(u)
across nodes that did not fail at the beginning.

Our main result of this subsection is the following.

Theorem 3. At the end of Algorithm 5, |μ̂ − μ|/μ ≤ 3ε
for any ε > 0. Furthermore, the total number of mes-
sages is O(n(log log n + log 1

ε
)) and the number of rounds

is O(log n log log n + log 1
ε
).

Proof. It is easy to see that yavg and gavg are computed
with relative error at most ε at node r (follows from Theorem
2). This implies that the relative error in the computation
of μ̂ = yavg/gavg is at most 3ε. The message complexity
of Modified-Push-Sum among m = Θ(n/ log n) red nodes is
simply O(m(log m + log 1

ε
)) = O(n + n log 1

ε
) and the time

complexity is O(log m + log 1
ε
) = O(log n + log 1

ε
). Thus the

315

message and time complexity are dominated by the forma-
tion of groups, and are O(n log log n) and O(log n log log n),
respectively.

Corollary 2. All nodes can find the true average of node
values using O (log n log log n) rounds of communication and
O (n log log n) total messages.

Given the average, the sum can be computed by just
multiplying the average group value yavg by the number of
groups (which can be estimated using Modified-Push-Sum
with only xr = 1 and the remaining xis equal to 0). Using
this algorithm for computing the sum, computing the rank
of a given value is also straightforward. The value x whose
rank needs to be computed can be disseminated to all the
nodes, and every node now keeps a new value which is 1 if its
original value is less than x and 0 otherwise. Computing the
sum of these new values gives the rank of x. Since dissemina-
tion and sum computation can be done in O(log n log log n)
rounds and O(n log log n) messages, we have the following
corollary.

Corollary 3. The rank of any value (the value is ranked
among the values for nodes that did not fail) can be com-
puted using O(log n log log n) rounds of communication and
O(n log log n) total messages.

5. CONCLUSION
In this paper, we presented a novel gossip-based scheme

for computing common aggregates like MIN, MAX, SUM,
AVERAGE and RANK of node values using O(n log log n)
messages and in O(log n log log n) rounds of communication.
To the best of our knowledge, this is the first result to show
that these aggregates can be computed with high probability
using only O(n log log n) messages. Thus, compared to the
previously best known results for distributed aggregate com-
putation by Kempe et al., our scheme significantly reduces
the communication overhead (a factor of O(log n/ log log n))
while causing only a modest increase (a factor of O(log log n))
in the number of rounds.

We conjecture that our results achieve the lower bound
for message complexity in the gossip model since previous
work by Karp et al. showed that even simpler problems
like rumor dissemination require at least Ω(n log log n) mes-
sages regardless of the number of rounds. Formally deriving
the lower bounds for message and time complexity for aggre-
gate computation using gossip-style communication remains
a topic for future work.

6. REFERENCES
[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and

L. Rasmussen. Parallel randomized load balancing. In
Proc. 27th ACM STOC, pages 238–247, 1995.

[2] B. Babcock and C. Olston. Distributed top-k
monitoring. In Proc. ACM SIGMOD, 2003.

[3] M. Bawa, H. Garcia-Molina, A. Gionis, and
R. Motwani. Estimating aggregates on a peer-to-peer
network. In Technical report, Computer Science Dept.,
Stanford University, 2003.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Gossip algorithms: Design, analysis and applications.
In Proc. IEEE INFOCOM, 2005.

[5] J. Chen, G. Pandurangan, and D. Xu. Robust
computation of aggregates in wireless sensor networks:
Distributed randomized algorithms and analysis. In
Proc. 4th IPSN, 2005.

[6] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. In
Proc. ACM SIGMOD, pages 25–36, 2005.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proc. 6th ACM PODC, pages 1–12,
1987.

[8] I. Gupta, R. van Renesse, and K. Birman. Scalable
fault-tolerant aggregation in large process groups. In
Proc. Conf. on Dependable Systems and Networks,
pages 433–442, 2001.

[9] M. Jelasity and A. Montresor. Epidemic-style
proactive aggregation in large overlay networks. In
Proc. 24th ICDCS, pages 102–109, 2004.

[10] R. Karp, C. Schindelhauer, S. Shenker, and
B. Vocking. Randomized rumor spreading. In Proc.
41st IEEE FOCS, pages 565–574, 2000.

[11] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proc. 44th
IEEE FOCS, pages 482–491, 2003.

[12] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TAG: a tiny aggregation service for ad-hoc networks.
In Proc. 5th OSDI, 2002.

[13] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
The design of an acquisitional query processor for
sensor networks. In Proc. ACM SIGMOD, 2003.

[14] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, USA, 1995.

[15] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson.
Synopsis diffusion for robust aggregation in sensor
networks. In Proc. 2nd ACM SenSys, pages 250–262,
2004.

[16] B. Pittel. On spreading a rumor. SIAM J. Applied
Math., 47(1):213–223, February 1987.

[17] G. Pottie and W. Kaiser. Wireless integrated network
sensors. CACM, 43:51–58, 2000.

[18] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. of the 18th IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware 2001), pages 329–350, 2001.

[19] V. Stemann. Parallel balanced allocations. In Proc.
ACM SPAA, pages 261–269, 1996.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. ACM
SIGCOMM, pages 149–160, 2001.

[21] R. van Renesse, K. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed
system monitoring, management, and data mining.
ACM TOCS, May 2003.

[22] Y. Yao and J. Gehrke. Query processing in sensor
networks. In Proc. 1st CIDR, 2003.

316

APPENDIX

A. TECHNICAL DESIDERATA
We present some of the existing results in probability that

we use extensively in our proofs. We use the following in-
equality to apply the method of bounded differences.

Theorem 4 (Azuma’s Inequality [14]). Let Y0, Y1, . . .
be a martingale sequence such that for each k,

|Yk − Yk−1| ≤ ck

where ck may depend on k. Then for all t ≥ 0 and any
λ > 0,

Pr[|Yt − Y0| ≥ λ] ≤ 2exp

(
− λ2

2
∑t

k=1 c2
k

)

Since the method of bounded differences is applied frequently,
we briefly revisit it here. The following content is from [14].
Let X1, . . . , Xn be any sequence of random variables. Let
f(X1, . . . , Xn) be some function defined over these random
variables. The function f is said to satisfy the Lipschitz
condition if an arbitrary change in the value of any one ar-
gument of the function does not change the value of the
function by more than 1. The sequence of random variables
Y0 = E[f(X1, . . . , Xn)], Yi = E[f(X1, . . . , Xn)|X1, . . . , Xi]
and Yn = f(X1, . . . , Xn) forms a martingale sequence. If f
is Lipschitz, then for 1 ≤ i ≤ n, |Yi − Yi+1| ≤ 1. This con-
dition is clearly satisfied for the sum of indicator random
variables. We can then use Azuma’s inequality to bound
the probability that a sum of indicator random variables
deviates from the expected value of that sum.

Theorem 5 (Chernoff bounds [14]). Let X be a sum
of independent and identically distributed 0/1 random vari-
ables. Let μ denote the expected value of X. Then we have:

1. Pr[X ≤ (1 − ε)μ] ≤ exp
(
−με2

2

)
for all 0 < ε < 1.

2. Pr[X ≥ (1 + ε)μ] ≤ exp
(
−με2

3

)
for all 0 < ε < 1.

3. Pr[X ≥ (1 + ε)μ] ≤ exp
(
− με2

2+ε

)
for all ε > 1.

From the statement above, we can infer that Pr[X ≥ (1 +
ε)μ] ≤ exp

(−με
2

)
for all ε ≥ 2.

We also use the following simple fact frequently in the
proofs.

Lemma 4. If μ1 ≤ μ ≤ μ2, then:

1. Pr[X > (1 + ε)μ2] ≤ Pr[X > (1 + ε)μ] ≤ Pr[X >
(1 + ε)μ1].

2. Pr[X < (1 − ε)μ1] ≤ Pr[X < (1 − ε)μ] ≤ Pr[X <
(1 − ε)μ2].

Proof. For any two events A and B if A ⇒ B, we have
Pr[A] ≤ Pr[B]:

Pr[A and B] = Pr[B|A] Pr[A] = Pr[A|B] Pr[B]

Pr[A] = Pr[A|B] Pr[B]

Pr[A] ≤ Pr[B]

The lemma follows since (X > (1 + ε)μ2) ⇒ (X > (1 + ε)μ)
and (X > (1 + ε)μ) ⇒ (X > (1 + ε)μ1). Similarly, we have
(X < (1 − ε)μ1) ⇒ (X < (1 − ε)μ) and (X < (1 − ε)μ) ⇒
(X < (1 − ε)μ2).

317

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

