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Abstract— We investigate the spatial distribution of wireless
nodes that can transport a given volume of traffic in a sensor
network, while requiring the minimum number of wireless nodes.
The traffic is created at a spatially distributed set of sources,
and must arrive at a spatially distributed set of sinks. Under a
general assumption on the physical and medium access control
(MAC) layers, the optimal distribution of nodes induces a traffic
flow identical to the electrostatic field that would exist if the
sources and sinks of traffic were substituted with an appropriate
distribution of electric charge.

This analogy between Electrostatics and wireless sensor net-
works can be extended in a number of different ways. For ex-
ample, Thomson’s theorem on the distribution of electric charge
on conductors gives the optimal distribution of traffic sources
and sinks (that minimizes the number of nodes needed) when
we have a limited degree of freedom on their initial placement.
Electrostatics problems with Neumann boundary conditions and
topologies with different types of dielectric materials can also be
interpreted in the context of wireless sensor networks.

The analogy also has important limitations. For example, if
we move to a three dimensional topology, adapting our general
assumption on the physical and MAC layers accordingly, or we
stay in the two dimensional plane but use an alternative assump-
tion, that is more suited to Ultra WideBand communication, the
optimal traffic distribution is not in general irrotational, and
so can not be interpreted as an electrostatic field. Finally, the
analogy can not be extended to include networks that support
more than one type of traffic.

Keywords: Electrostatics, Neumann’s boundary conditions,
node placement, sensor networks, potential fields, sensor de-
ployment, sensor networks, Thomson’s theorem, wireless ad hoc
networks.

I. INTRODUCTION

A. Wireless Sensor Networks

Wireless sensor networks appear at the intersection of
three different technological areas: wireless communications,
sensing technology, and networking. They consist of sensors
that are equipped with wireless transceivers, and so are able
to form a network. The sensors use this network in order
to coordinate their sensing activities, and thus enhance their
sensing capabilities, but also in order to send the information
they collect to a central location [1].

The commercial deployment of wireless sensor networks
is only now being made feasible, by continuous advances
in hardware design, and there are still significant design
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issues that remain unresolved. This fact, coupled with the
enormous commercial interest for sensor networks, make
the area very attractive to researchers. Indeed, the research
community is active on many different fronts, for example on
the development of appropriate physical layer protocols [2],
the calculation of their information theoretic capacity [3], the
design of Medium Access Control (MAC) protocols [4], [5]
and routing protocols [6], and the application layer [7].

Certain critical aspects of sensor networks are not shared
by other types of wireless networks, therefore this setting is in
many ways unique. As an example, the vast majority of sensor
networks under design will be required to stay operational
for large periods of time, on the order of many years, with
batteries as their only energy source. Consequently, there has
been significant research interest in the design of protocols
that are extremely energy efficient [1], [8].

As another example, in most envisioned applications, it is
expected that many more sensors than the necessary amount
will be scattered in the covered area. Network designers can
take advantage of this fact in order to maximize the lifetime
of the network, for example by having some of the nodes stay
in an energy conserving sleep mode [9].

Finally, in many applications the data collected by neigh-
boring sensors are correlated. (This is the case, for example,
in network designed to measure temperatures.) The designers
can take advantage of this correlation to perform joint signal
processing and compression, and therefore drastically reduce
the volume of data that must be transported to the central data
collector [10], [11].

B. Overview of contributions

In this work we investigate a setting that, to the best of
our knowledge, has not attracted significant research interest
until now. As shown in Fig. 1, we consider an environment in
which there are a spatially distributed set of traffic sources and
a spatially distributed set of traffic sinks, and a large number
of wireless nodes, to be used for the transport of data from the
sources to the sinks. The spatial distribution of the sources and
the sinks is fixed, but we are free to place the wireless nodes as
we like. We are interested in calculating the minimum number
of nodes needed to support the traffic, and the associated
placement of nodes that achieves this minimum. In other
words, we are given a task (the transport of information from
the sources to the sinks) and a set of resources (the wireless
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Fig. 1. Our setting: A set of wireless nodes are deployed in an area to support
the transfer of information from a distributed traffic source to a distributed
traffic sink.

nodes), and we would like to determine what is the minimum
of resources needed, and how this minimum of resources
should be deployed to achieve the task at hand.

We make a number of important assumptions, that we now
list. First, we assume that we have so many nodes, that it does
not make sense to describe their deployment in terms of the
placement of individual nodes, but rather in terms of the node
density at each location, measured in nodes per square meter.
Following [12], we describe such networks as massively dense.
As many sensor networks that are currently on the design
phase are expected to consist of tens of thousands of nodes [1],
this assumption is very reasonable. Therefore, sensor networks
consisting of only a few nodes are out of this work’s scope.

Secondly, we are not interested in finding the distribution
of nodes that leads to an efficient harvest of the information
from the traffic sources (this important problem is addressed,
for example, in [13]). Rather, we assume the existence of a
primary set of sensors, collocated with the traffic sources,
whose only responsibility is the efficient collection of the
created information, and we are interested in finding the
distribution of a secondary set of wireless nodes, whose sole
responsibility is the transport of information from the primary
set of sensors to the traffic sinks. The problem of optimally
placing a set of nodes that perform both the harvesting and
the transport of the data goes beyond the scope of this work.

In this setting, and under a general assumption on the
physical and medium access control (MAC) layers, which we
outline in Section II, we show in Section III that the optimal
spatial distribution of wireless nodes induces a traffic pattern
that is identical to the electrostatic field that would be induced
if we substituted the traffic sources with a distribution of
positive electric charge and the traffic sinks by a distribution
of negative charge. We prove this analogy by showing that
both fields (the electrostatic field and the traffic flow) must
satisfy the same set of equations. Our general assumption on
the physical and MAC layers comes naturally in many cases
where the bandwidth available to the network is limited.

The analogy between Electrostatics and wireless sensor
networks can be extended in various ways, some of which
are explored in Section IV. For example, a well known fact in
Electrostatics is Thomson’s theorem, which states that when
electric charges are infused in a set of conductors, the charges
will be distributed on the surfaces of the conductors (by

virtue of the electrostatic forces between them), so as to
minimize the energy of the induced electric field. This theorem
readily translates to our setting. As shown in Section IV-A, it
implies that when the initial distribution of traffic sources and
sinks is not given, but rather we are free to place sources
and sinks within certain areas in space, then the placement
that minimizes the number of nodes needed to support the
flow of information induces a traffic pattern identical to the
electrostatic field created in a corresponding Electrostatics
topology, in which the areas where the traffic sources and sinks
can be placed are replaced with conductors, infused with the
appropriate amounts of electric charge.

As another example, many sensor networks are required
to operate in environments that impose hard constraints on
where nodes may be placed. As we show in Section IV-B, the
optimal placement of nodes under these constraints induces
a traffic flow identical to the electrostatic field in a topology
that contains regions on which we impose Neumann boundary
conditions.

It is often the case that the communication capabilities of
the nodes depend on their placement on their environment.
As an example, certain areas may be experiencing particularly
high levels of interference, or may have heavy vegetation
that absorbs the power of transmitted signals more than other
areas. In Section IV-C we show that the problem of finding
the optimal distribution of nodes in such an environment can
be cast as the problem of finding the electric field in an
Electrostatics topology that is comprised of different types of
dielectrics.

On the other hand, our analogy between Electrostatics
and wireless sensor networks has important limitations. For
example, as we discuss in Section V-A, if we move to a three
dimensional topology, and adapt our general assumption on the
physical and MAC layers accordingly, the optimal placement
of nodes induces a traffic pattern that is no longer irrotational,
and hence is not related to an electrostatic field.

In Section V-B we show that if we use another assumption
on the physical and MAC layers, that is more appropriate
when the communication is power limited, or equivalently
the available bandwidth is very large [14], the optimal node
distribution induces a traffic pattern that in general is not
irrotational.

Finally, as we elaborate on Section V-C, the analogy hinges
on the assumption that there is only one type of traffic,
allowing us to map the sources of this traffic to positive
charges, and the sinks of the traffic to negative charges.
To handle two or more distinct types of traffic, we would
require the existence of two or more distinct types of charges.
Unfortunately, nature is not prepared to grant us this extra
favor.

C. Related Work

The use of Electromagnetics in sensor network research
has already appeared in the past. For example, in [15], the
deployment of a network of wireless sensors with locomotion



capabilities is considered. The authors propose a totally scal-
able and distributed protocol that leads to the maximization of
the area that the sensor network covers. The protocol is based
on the use of a virtual potential field, similar to an electrostatic
potential field, which is constructed so that each node is
repelled by both obstacles and other nodes, thereby forcing
the network to spreads itself throughout the environment.

More recently, the author of [12] studied massively dense
networks, that consist of so many nodes, that it is best to
describe the network in terms of macroscopic quantities such
as the node density and the volume of traffic at each point
in space. In such a setting, and assuming that the volume of
traffic varies in space, it is shown that the minimum-hop route
between two locations in the network satisfies the same laws
that govern the shape of rays of light in media with a spatially
varying index of refraction.

After the bulk of our work was completed, we discovered
that an application of Electrostatics somehow similar to ours
has recently been reported in [16], [17]. In that work, a form
of routing for wireless ad hoc networks is proposed that routes
traffic along the lines of an appropriate electrostatic field. The
justification for this type of routing is intuitive, whereas in
our setting, which is not identical but somehow similar, we
show that routing traffic along the line of an electrostatic field
is optimal in some cases, in the sense that it minimizes the
volume of resources needed, and suboptimal in other cases.

Finally, in [18], a multipath routing protocol is proposed,
that routes the packets from their source to their destination
along different lines of the electrostatic field that is created if
we place a positive singular charge at the source and a negative
singular charge at the destination. Contrary to our work, this
work places the emphasis on the development of a practical
and efficient routing protocol, and not on the identification of
any theoretical analogy between electrostatics and networking.

II. NETWORK MODEL

In this section we first introduce three macroscopic quanti-
ties: the information density function ρ(x, y), the node density
function d(x, y), and the traffic flow function T(x, y)1. We
conclude by providing an equation linking the node density
function and the maximum magnitude of the traffic flow
function.

A. Macroscopic Quantities

We consider the unbounded two dimensional xy plane, on
which are placed distributed sources and sinks of information.
We model the sources and sinks jointly, by the information
density function ρ(x, y), which is measured in bps/m2. At
locations (x, y) where ρ(x, y) > 0, there is a distributed traffic
source, such that the rate with which information is generated
within a surface of infinitesimal area ε, centered at (x, y), is
ερ(x, y). At locations where ρ(x, y) < 0, there is a distributed
traffic sink, such that the required absorption rate within a
surface of infinitesimal area ε, centered at (x, y), is −ερ(x, y).

1We denote scalars by lower case letters, and vectors by bold capitals.

We require that the total rate with which traffic sinks must
absorb data is the same as the total rate with which the data
is created. This requirement translates into the equation∫

ρ(x, y) dS = 0, (1)

where the surface integral is taken over the whole plane.
To facilitate the transfer of information from the sources to

the sinks, we are given a large number of wireless nodes, that
we are free to place anywhere on the two dimensional area.
Because we assume the number of nodes to be very large, we
will describe their placement not in terms of their individual
positions which are microscopic quantities, but rather in terms
of a macroscopic quantity, the node density d(x, y), measured
in nodes/m2. The total number of nodes, N , is given by

N =
∫

d(x, y) dS, (2)

where, again, the surface integral is taken over the whole plane.
In networks, the flow of information is typically described in

terms of the rate with which information arrives in individual
nodes. However, in our setting, we have a massively dense
network, in which the rate of arrival of information in a
particular node is a microscopic quantity. In this setting, we
can best model the flow of traffic in the network in terms
of the traffic flow function T(x, y), which is a macroscopic
quantity.

T(x, y) is a vector function (with an x-component and a
y-component), whose magnitude is measured in bps/m. It is
defined so that (i) its direction coincides with the direction
of the flow of information at point (x, y), and (ii) ε|T(x, y)|
equals2 the rate with which information crosses a linear
segment of incremental length ε, that is centered on (x, y),
and is perpendicular to T(x, y).

When viewing a microscopic part of the network, one
may observe many distinct streams of traffic, possibly along
different directions. However, the fact that the traffic streams
all carry the same type of packets, allows us to combine them
by performing vector addition, and thus abstract the movement
of data at the microscopic level by a macroscopic quantity, the
traffic flow function.

B. Relation between the node density and the traffic flow

Since the nodes are placed on the network to facilitate
the transfer of information, it is important to identify how
much traffic can be carried through a location (x, y) with
a node density d(x, y). We make the following fundamental
assumption (which was first used, in a different context,
in [12]):

Assumption 1: A location (x, y), where the node density is
d(x, y), can support any traffic flow vector with a magnitude
less or equal to a bound |T(x, y)|max which is proportional
to the square root of the density:

|T(x, y)| ≤ |T(x, y)|max = K
√

d(x, y), (3)

2By |x| we denote the magnitude, or length of a vector x.
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Fig. 2. A wireless network of m2 nodes placed on a regular grid. Nodes
connected by edges can interfere with each other. A time division scheme
exists that allows each node to transmit a packet to the node directly on the
right, in one out of every three slots.

where K is a normalizing coefficient measured in bps.
The validity of Assumption 1 depends on the physical layer

and the medium access control protocol used by the network.
Although it is not generally true, it nonetheless holds in many
different settings of interest.

As an example, let us consider the network of Fig. 2,
in which m2 nodes are placed in a perfect square grid of
m × m nodes. Regarding the channel model, it is assumed
that each node can listen to transmissions from its four nearest
neighbors (those at the edges only have two or three nearest
neighbors), and the rest of the nodes can not be heard at all. We
can model this channel by a graph, in which communicating
nodes are connected by edges. This model is rather simplistic,
however it retains certain critical aspects of the wireless
channel, and therefore it is still widely used by the research
community. Regarding the transceiver model, we assume that
nodes transmit data with a fixed, global rate of W bps, and
transmissions are successful as long as no two data packets
arrive at the same receiver at the same time.

In this network, it is possible for the nodes to use a simple
time division that consists of only three slots, such that each
node can transmit during exactly one of the three slots, to the
node directly on the right. The slot that corresponds to each
of the nodes appears in Fig. 2, next to the nodes.

Using this time division, the m2 nodes can be organized
according to a scheme that will allow a traffic stream of size
Tlocal = mW

3 bps to transverse the network from the left to
the right. Indeed, we assume that the traffic enters the network
in m streams, each of size W

3 , which are inserted in each of
the m nodes of the left-most column. As shown in Figure 3,
the streams will be transmitted along straight lines, from left
to right, each along m nodes, and will terminate in the m
nodes of the right-most column. Since transmissions are with
a rate W , and each node is transmitting during 1 out of every
3 slots, each stream of data will be of size W

3 , bringing the
total traffic transversing the network to Tlocal = mW

3 bps.
If we take the total area of the network to be ε2, the total

number of nodes m2 and the network density d will satisfy the
equation m2 = ε2d. Therefore, in terms of the node density d,
the traffic crossing a line segment of length ε equals Tlocal =
εW

3

√
d. Clearly, no scheme exists that can achieve a larger

traffic. As a result, Assumption 1 will hold for networks that
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Fig. 3. A routing scheme under which the m2 nodes of the network of
Fig. 2 can support the transport of Tlocal = mW

3
bps through the network.

appear locally as the network of Fig. 2, with K = W
3 .

The above setting could be described as simplistic, however
the fact that a network of m2 nodes can support a traffic
on the order of m also holds in more realistic settings. As
another example, in [19] it was shown that the traffic that
can be supported in the above network, if nodes access the
channel by use of slotted Aloha instead of time division, is
Tlocal = k × W × m, where k is a constant, smaller than 1

3 ,
that captures the efficiency of Aloha.

As a final example, in [20] it was shown that a network of
n randomly placed nodes can support an aggregate traffic on
the order of

√
n

log n , even under a more realistic interference

model that accounts for interferences coming from arbitrarily
distant nodes. The logarithm in the denominator appears due
to the proving methodology of [20], and it has been recently
shown [21] that it can be dispensed off, by use of percolation
theory in the proofs.

The results of [19], [20] assume traffic between nodes in
the network, and not traffic transversing the network, as in
our setting. However, in the second case each packet must
be transported over a distance equal to the diameter of the
network, and in the first case over a (possibly random) distance
which is of the same order. Therefore, it is straightforward to
show that the above results can be used in our setting.

III. ANALOGY WITH ELECTROSTATICS

In this section we first show that in order for information
to appear only at the traffic sources and to disappear only
at the traffic sinks, it is necessary that the divergence of the
traffic flow equals the information density function. We then
show that, in order to minimize the number of nodes needed
to transport the information, it is necessary that the traffic
flow has a zero curl. Jointly, these results show the traffic
flow function that minimizes the number of required nodes is
the same as the electrostatic field created by a charge density
function equal to the information density function. We then
show that a function analogous to the potential function of
Electrostatics may be defined in the context of wireless sensor
networks, that can be used to determine the number of hops
needed to travel between different locations in the network.
We conclude by presenting two indicative examples.

A. The divergence of the traffic flow function

Let A be a surface on the xy plane, of arbitrary shape. We
will denote its boundary curve by ∂A and its total area by



|A|. For information to be conserved, it is necessary that the
rate with which information is created in the area is equal to
the rate with which information is leaving the area through
its boundary ∂A. In other words, the following equality must
hold: ∫

A

ρ(x, y) dS =
∮

∂A

[T(x, y) · n̂] dl, (4)

where n̂ is the unit vector normal to the boundary curve ∂A
at the point (x, y), and pointing outside A, and the integral
on the right hand side is the path integral [22] of the function
[T(x, y) · n̂]. This function represents the rate (measured in
bps
m ) with which information is leaving A at the point (x, y)

at its boundary ∂A.
Equation (4) must hold for any surface A. Therefore, it will

also hold for a sequence of surfaces Ak that all include in their
interior an arbitrary point (x0, y0), and are such that |Ak| → 0.
Applying (4) for Ak we have:∫

Ak

ρ(x, y) dS =
∮

∂Ak

[T(x, y) · n̂] dl. (5)

Assuming that ρ(x, y) is continuous at (x0, y0), we have
that3 ∫

Ak

ρ(x, y) dS = ρ(x0, y0) × |Ak| + o(|Ak|). (6)

Combining (5) and (6), and taking the limit with respect to
k, we arrive at

ρ(x0, y0) = lim
k→∞

1
|Ak|

∮
∂Ak

[T(x, y) · n̂] dl � ∇ · T(x0, y0).

(7)
The limit in (7) is defined as the divergence of the vector

function T, at the point (x0, y0) [23]. The divergence of the
traffic flow function measures the degree with which the traffic
flow increases (when information in injected in the network)
or decreases (when information is removed from the network)
at the particular point (x0, y0). In cartesian coordinates, the
divergence is given by the formula ∇·T = ∂Tx

∂x + ∂Ty

∂y , however
its intuitive meaning can best be conveyed by the limit of (7),
which is independent of the choice of the coordinate system.
More information on the definition and physical meaning of
the divergence function, and its generalization in the three-
dimensional space, can be found in any book on vector
calculus, for example in [23], or Electromagnetics, for example
in [24].

To summarize, we have showed that

∇ · T = ρ. (8)

B. The curl of the traffic flow function

Equation (8) is not enough to uniquely specify the traffic
flow function. To show this, we note that there is an infinity
of distinct functions whose divergence is zero everywhere.
Such functions are called solenoidal [23], and each of them
represents a distinct way with which a quantity of liquid can
flow on a two dimensional infinite plane with no sources and

3We write f(x) = o(x) to denote that limx→0
f(x)
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Fig. 4. The setup of the proof that the optimal traffic flow function has a
zero curl.

sinks. Now let T0 be a flow that satisfies (8): ∇ · T0 = ρ.
By the definition of the divergence (7), it follows that the
divergence operator ∇· is linear, therefore if ∇ · T1 = 0,
then ∇ · (T0 + T1) = ρ. Since there is an infinity of distinct
solenoidal functions T1, the result follows.

We now show that among all traffic flow functions that
satisfy (8), the one that needs the smallest number of nodes
to be supported must also be irrotational, i.e. its curl must be
zero everywhere:

∇× T = 0. (9)

The curl ∇ × T of a two dimensional vector T at a point
(x0, y0) is a scalar function defined as follows:

∇× T = lim
|Ak|→0

∮
∂Ak

T · dl

|Ak| , (10)

where {Ak} is a sequence of surfaces of vanishing area,
that contain (x0, y0) in their interior, and the integral of
the right hand side is the line integral [25] of the function
T over the curve ∂Ak (which is taken to have a counter-
clockwise direction). Intuitively, the magnitude of the curl
at a point (x0, y0) is a measure of how much circulation
around the point (x0, y0) the function T has. The circulation
is counter-clockwise, if the curl is positive, and clockwise, if
the circulation is negative. In cartesian coordinates, the curl
of a function is given by ∇ × T = (∂Ty

∂x − ∂Tx

∂y ). A more
detailed exposition on curl, with its generalization in the three
dimensions (which is a vector function) can be found in [23].

We now prove (9), by arriving at a contradiction. In partic-
ular, suppose that the traffic flow T0 that needs the minimum
number of nodes has a non-zero curl at some point in space.
It follows from (10) that there is a curve C, of length L, along
which the line integral of T0 is non-zero. By choosing a proper
direction for C, we can assume that the line integral is positive:∮

C
T0 · dl = p > 0. (11)

As shown in Fig. 4, we form around C a strip S of
infinitesimal and constant width δ. Because δ is infinitesimally
small, the area of the strip can be taken to be equal to
|S| = δ × L.

We construct an auxiliary vector function T1 in the fol-
lowing manner: Outside the strip, T1 = 0. Inside the strip,



at a point (x, y), T1 = −εt, where t is a unit vector
tangential to C, at the point where C is closest to the point
(x, y). Therefore, we construct T1 to resemble the flow of a
small quantity of liquid around a closed hose of impermeable
boundaries, which goes against the average flow of T0 in S.
By its physical interpretation, it is clear that T1 has a zero
divergence everywhere. It is also straightforward to show this
mathematically. Indeed, outside the strip T1 is identically zero,
and inside the strip it can be shown that the divergence is zero
by a direct application of the definition of (7).

As noted, the divergence operator is linear. Therefore:

∇ · (T0 + T1) = ∇ · T0 + ∇ · T1 = ρ,

and it suffices to show that the traffic flow function (T0 +T1)
can be supported by fewer nodes. Indeed, let N0 be the total
number of nodes needed to support T0 and N0+1 be the total
number of nodes needed to support T0 + T1. We have:

N0 − N0+1

=
∫

S

(|T0|2 − |T0 + T1|2) dS

=
∫

S

(|T0|2 − |T0|2 − |T1|2 − 2T0 · T1) dS

= −
∫

S

ε2 dS +
∫

S

2εT0 · t dS

= −ε2|S| + 2εδ

∮
C

T0 · dt = −ε2|S| + 2εδp.

The first equality comes from noting that the functions T0

and T0 + T1 differ only within the surface S. The last one
comes from applying (11). It follows that for a sufficiently
small value of ε, the traffic flow T0 + T1 can be supported by
a smaller number of nodes than the traffic flow T0. Therefore,
we arrive at a contradiction, so (9) must hold4.

To summarize, we have proved that the traffic flow func-
tion must satisfy (8) and (9). These equations jointly do
not uniquely specify the traffic flow. Indeed, provided there
is a solution T0 that satisfies both of them, then so does
T0 + c where c is a constant vector. However, by Helmholtz’s
theorem [24], it follows that the solution exists and is uniquely
specified if, in addition, we require that the traffic flow is zero
at infinity:

T|∞ = 0. (12)

Assuming that the traffic sources and sinks are constraint over
a finite region, this is a reasonable boundary condition to take,
as there is no need for the traffic flow to arrive at the sink by
going first to infinity and back5.

To summarize, it follows by Helmholtz’s theorem that (8),
(9), (12) uniquely specify the traffic flow function. However,
it is a basic fact of electrostatic field theory [24], that these

4Equation (9) can also be shown by use of calculus of variations, or
straightforward vector equality manipulation, however these proofs are non-
constructive and therefore not as intuitive [26].

5Note that Helmholtz’s theorem is typically mentioned in a three dimen-
sional setting, however its two dimensional version follows as a special case.

equations also uniquely specify the electrostatic field E in-
duced by a two-dimensional electric charge density ρ(x, y)6.
We are now ready to formally present our main result:

Theorem 1: In an environment with an information density
function ρ(x, y), in which Assumption 1 holds, the traffic
density function T that minimizes the number of nodes needed
to support ρ(x, y) is uniquely specified by the equations

∇ · T = ρ, ∇× T = 0, T|∞ = 0. (13)

Therefore, T is identical to the two-dimensional electrostatic
field that would be induced by a two-dimensional density of
electric charge equal to ρ.

The corresponding node density function d(x, y) is given by

d(x, y) =
1

K2
|T(x, y)|2,

and the total number of nodes N needed is given by

N =
∫

1
K2

|T(x, y)|2 dS,

where the surface integral is taken over the whole plane.

C. The hop function

It is a well known fact of vector calculus [23], [24] that an
irrotational vector function E may be represented in terms of
the gradient ∇U of a scalar function U :

E = ∇U. (14)

The difference U(A) − U(B) is given by the line integral

U(A) − U(B) =
∫ A

B

E · dl (15)

where the line integral is along any curve that starts at B and
ends at A. When E is the electrostatic field, −U is know as the
potential function, and it follows from (15) that the difference
U(A)−U(B) is the amount of energy required to move a unit
negative charge from point B to point A.

Since, by Assumption 1, the traffic flow T is irrotational, it
can also be associated with a function H such that T = ∇H ,
which can also be shown to have a physical interpretation. In
particular, consider a curve C along the trajectory of a packet
stream, starting at a point B and ending at a downstream point
A. Equation (15) becomes:

H(A) − H(B)

=
∫ A

B

T · dl =
∫ A

B

|T| dl =
∫ A

B

K
√

d(x, y) dl.

The second equality comes from noting that, by its con-
struction, curve C is parallel to T. The third equality comes
from assuming that Assumption 1 holds with equality, so
that at each point the network uses its available resources
optimally, following a scheme that resembles that of Fig. 3.

6By a two-dimensional density, we mean a density of charge immersed in
the three dimensional space that is invariant with respect to the z coordinate.
By symmetry, the electric field it induces will also be invariant with respect
to the z coordinate, and with a zero z-component.



Fig. 5. Field lines (in thin black) and lines of constant potential (in thick
gray), in a two dimensional topology consisting of 5 positive singular charges
of equal magnitude, and a single singular negative charge of 5 times that
magnitude.

As
√

d(x, y) dl is the approximate number of hops that a
packet needs to traverse an incremental length dl at a point
(x, y) where the node density is d(x, y), it follows that the
difference H(A)−H(B) is proportional to the number of hops
needed for the packets to go from point B to point A, when
Assumption 1 holds with equality, and the network behaves
locally as in Fig. 3. Because of its physical interpretation, we
will refer to H as the hop function.

D. Examples

Theorem 1 shows that a problem in wireless sensor net-
works, namely the minimization of the number of nodes
needed to support a given traffic, is identical to a standard
problem in Electrostatics, i.e., the calculation of the elec-
trostatic field induced by a two-dimensional distribution of
charge. As a result, we can use the large amount of knowledge,
intuition, and solving techniques that have been accumulated
over the last hundred years in the fields of Electrostatics and
calculus of irrotational vector functions, in the context of
wireless sensor networks.

As an example, let us consider the topology of Fig. 5, in
which we have placed 5 positive singular charges of equal
magnitude and a single singular negative charge of 5 times
that magnitude, at the center of the setting. The induced
electrostatic field can be calculated by using any of a large
number of software tools that are available, either for solving
arbitrary PDEs, or for solving Electrostatics problems in
particular. In this, and the following examples, we use the
specialized software tool of [27].

As is standard in Electrostatics, we denote the electric field
by use of field lines. These are defined in the following
manner: The field line crossing a point (x, y) is parallel
to E(x, y), and the density of field lines at that point is
proportional to the magnitude |E(x, y)|. In the figure we have
also plotted lines of constant potential. As follows from the

Fig. 6. Field lines (in thin black) and lines of constant potential (in thick
gray), in a two dimensional topology consisting of a singular positive charge
and a uniform distribution of negative charge, of equal total magnitude, along
a linear segment.

definition of the potential as the negative gradient of the field,
these are always perpendicular to the field lines.

By Theorem 1, the above figure also has an interpretation in
the context of wireless sensor networks. In particular, the field
lines show the optimal packet trajectories in an environment in
which there are 5 singular traffic sources of equal magnitude,
and a single, singular traffic sink at the center, collecting all the
created information. The number of hops that a packet must
make to go from an upstream location A to a downstream
location B is proportional to the number of the lines of
constant potential that the packet will cross. As there is a
convergence of field lines to the central traffic sink, more nodes
will be placed there, in order to support the traffic.

As a second example, in Fig. 6 we plot the field lines
and lines of constant potential in a topology consisting of a
singular positive charge, and a distribution of negative charge,
of equal total magnitude, along a horizontal linear segment.
The field lines of the figure are also the trajectories of packets
in a topology where the positive and the negative charges are
substituted with a traffic source and a traffic sink respectively.
It is interesting to note that the optimal distribution of nodes
actually implies that some of the packets will have to take
very long routes, some of them actually arriving at the lower
side of the traffic sink.

IV. EXTENSIONS

A. Traffic sources and sinks with limited mobility

Until now, we have assumed that each location of infinitesi-
mal size (x, y) in the environment of Fig. 1 is associated with
a fixed rate of information creation (or absorption). However,
there are cases where it is best to associate whole regions
of finite (and possibly large) area with a certain rate of
information creation (or absorption), without specifying how
this information rate should be distributed on the surface.

As an example, let us consider a sensor network designed
to monitor the levels of humidity and temperature of a large
plantation, and forward the measurements to a large central



building. If we assume that a large number of wireless
receivers, connected over very high capacity wired links with
a central traffic sink, are placed along the circumference of
the building, then the sensor network should be free to select
which parts of the circumference of the building should receive
how much traffic, in a way that minimizes the number of
wireless nodes that must be deployed.

We model such environments by an information rate func-
tion ρ(x, y), defined as in Section II, and a set of t traffic
regions {Ti}, where i = 1, . . . , t, each associated with an
information rate Qi, measured in bps. When Qi > 0, the
region is creating information with rate Qi, and when Qi < 0,
it is absorbing information with rate Qi < 0. With no loss of
generality, we assume that ρ = 0 within each of the t traffic
regions. Equation (1) is modified as follows:

∫
ρ(x, y) dS +

t∑
i=1

Qi = 0, (16)

where the surface integral is taken over the whole plane.
For any distribution D of the information rates {Qi} along

the traffic regions {Ti}, there is an optimal node distribution,
dD(x, y), given by Theorem 1, that minimizes the number
of wireless nodes needed to support the traffic. A problem
that arises naturally, is to find the optimal distribution Dopt of
the rates {Qi} along the regions {Ti}, whose optimal node
distribution dDopt(x, y) needs the minimum number N of
sensor nodes. In other words, we have a problem that consists
of two consecutive minimizations.

We also note that

N =
∫

d(x, y) dS =
1

K2

∫
|T(x, y)|2 dS, (17)

therefore the minimization of nodes is equivalent to the
minimization of the integral of the square of the magnitude
of the traffic flow.

To solve this double minimization problem, let us consider
its Electrostatics analogy: We have a setting with a fixed
spatial electric charge density ρ(x, y), and a set of regions
{Ti} on which we have placed a set of charges {Qi}. Our
assumption that the charges Qi can move everywhere along
their corresponding regions Ti means that, in the Electrostatics
setting, these regions become conductors. As the traffic flow
is mapped to the electric field, by (17), the equivalent problem
becomes the calculation of the distribution of electric charge
on a set of surfaces, such that the energy of the electric field,∫ |E|2 dS, is minimized.

Happily, this is exactly the same problem that nature solves
when placing charges on conductors. In particular, Thomson’s
theorem7 [24], [28] states that charges placed on conductors
distribute themselves so that the energy of the electric field is
minimized.

This field can be determined by solving the equations:

∇ · E = ρ, ∇× E = 0, E|∞ = 0, (18)

7Named after William Thomson, better known as Lord Kelvin.

Fig. 7. Field lines (in thin black) and constant potential lines (in thick gray)
when a singular positive charge is placed over a infinite conducting plane,
infused with a negative charge of the same magnitude.

with the additional boundary condition:

E(x, y) · t = 0, (19)

where (x, y) is any point on the boundary ∂Ti of a region Ti,
and t is the unit vector parallel to the boundary ∂Ti at point
(x, y), and the conditions (that follow from Gauss’s law):

∮
∂Ti

[E · n̂] dl = Qi, ∀i = 1, . . . , m, (20)

where the path integral above is taken along the boundary ∂Ti

of the region Ti, and n̂ is a unit vector, normal at each point
of the boundary, and pointing outwards.

Going back to sensor networks, it follows that the optimal
distribution of traffic sources should create a traffic flow
similar to the electric field induced by a placement of charges
on a set of conductors, and this field T can be calculated by
solving (18), (19), and (20), substituting E with T, and taking
ρ to be the information density function and the Qi to be
information rates.

As an example, in Fig. 7, we have placed a positive
electric charge over a planar conductor infused with a negative
electric charge of the opposite magnitude. In the figure, we
have plotted the electric field, which can be calculated easily
for this topology by the method of images [24]. We have
also plotted lines of constant potential. It follows by the
boundary condition (19) that the electric field is vertical to
the conducting plane, therefore the potential (which is defined
as the negative of its gradient) must be constant along the
plane.

The above figure has a dual interpretation in the context of
wireless sensor networks. In particular, it shows the optimal
routes that packets must follow when moving from a singular
source of information to a planar traffic sink, when there is no
particular restriction on how many packets should be received
at each location on the boundary of the sink. As the hop
function is constant on the surface of the sink, it follows that
the number of hops that a packet must make does not depend
on the particular trajectory it decides to take.



Fig. 8. Field lines (in thin black) and constant potential lines (in thick gray)
created by a positive and a negative charge of equal magnitude, that are placed
close to a boundary on which we impose the Neumann boundary condition
E(x, y) · n̂ = 0.

B. Forbidden regions

Until now, we have assumed that we are free to place nodes
anywhere on the plane. However, in many applications, the
environment contains areas that are inaccessible to nodes. As
an example, let us consider a large sensor network designed
to monitor temperature and pressure readings in a large area
that contains large bodies of water, such as rivers and lakes.
As a second example, we may have a situation in which both
the traffic sources and the traffic sinks are placed in a large
room, and we are required to place all our wireless nodes on
the floor of the room.

This situation can be modeled by assuming the existence
of a set of forbidden regions {Fi}, where i = 1, . . . , f , such
that through their boundaries no traffic can enter. Therefore,
we require that:

∇H · n̂ = T(x, y) · n̂ = 0, (21)

for any point (x, y) along the boundary ∂Fi of any forbidden
region Fi. The unit vector n̂ is normal to the boundary ∂Fi

at the point (x, y). The traffic function will be determined
by solving the equations (13), together with the boundary
condition (21), and perhaps the boundary conditions (19) and
(20) if the topology also contains traffic regions.

Boundary conditions on scalar functions H of the form of
(21) are called Neumann’s boundary conditions, and appear
often in problems of Electrostatics. In the general form of
Neumann’s boundary conditions, the right hand side is an
arbitrary function on the boundary of Fi. As an example,
consider a material of some shape, in the interior of which the
electric field is assumed zero, and on the boundary of which
we have placed electric charge with a density σ. It follows
from Gauss’s law that the potential function U should satisfy
the Neumann boundary condition

∇U · n̂ = −E(x, y) · n̂ = −σ, (22)

for any point of the boundary of the material.
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Fig. 9. The boundary between two regions with different node capabilities.

As an example, in Fig. 8 we plot the electric field that is
created by two electric charges, of the same magnitude but of
opposite sign, that are placed close to a planar boundary on
which we impose the Neumann boundary condition E(x, y) ·
n̂ = 0. The plotted field lines can also be interpreted as the
optimal trajectories of packets when we place a singular traffic
source and a singular traffic sink, of the same magnitude, close
to a region in which no sensors may be placed.

C. Nonhomogeneous environments

Until now it has been assumed that all parts of the wireless
network are equally efficient. This is a reasonable assumption
when the network consists of a set of identical nodes, and
in addition all parts of the environment present a similar
challenge to the network. However, these assumptions may not
always hold. For example, perhaps part of the sensor network
lies close to a strong interferer that makes the communication
harder. Alternatively, part of the network may be in an environ-
ment with heavy vegetation, which increases the attenuation
of the signals with distance, or parts of the bandwidth are not
available everywhere.

Such cases can be modeled by assuming that the coefficient
K appearing in (3) of Assumption 1 is no longer a constant,
but is a function of the location. In particular, we modify
Assumption 1 as follows:

Assumption 2: The environment is partitioned in a number
of propagation regions Pi, where i = 1, . . . , p, each associ-
ated with a coefficient Ki, such that within Pi we have:

|T(x, y)| ≤ |T(x, y)|max = Ki

√
d(x, y). (23)

In this setting, equations (13) continue to hold within each
region Pi. However, they break down at their boundaries,
therefore they are not enough to uniquely specify the traffic
flow. For this, we also need boundary conditions, that hold on
the boundaries between any two different regions Pi and Pj .

Let us concentrate, with no loss of generality, at a point
(x, y) on the boundary of regions P1 and P2. As shown in
Fig. 9, let n̂ and t̂ be respectively the normal and tangential
unit vector of the boundary at (x, y). Also, let T1 and T2

be the traffic flows at point (x, y), at the two sides of the
boundary, which we decompose as follows:

T1(x, y) = Tn1n̂ + Tt1 t̂, T2(x, y) = Tn2n̂ + Tt2 t̂.

Let us apply (4) on the perpendicular region ABCD, shown
in Fig. 9, centered at (x, y) and with height h and width w.



By taking first h → 0, (4) becomes:∮
∂A

[T(x, y) · n̂] dl = 0. (24)

By assuming T to be continuous on each side of the boundary,
we have that∮

∂A

[T(x, y) · n̂] dl = [Tn1(x, y) − Tn2(x, y)]w + o(w),

and by dividing by w and taking w → 0, we have that:

Tn1 = Tn2. (25)

Next, we develop a boundary condition on the tangential
components of the traffic flow. For this, let us consider the
two streams of traffic moving tangentially along either side of
the boundary. Since the traffic is optimally distributed, i.e., it
uses the minimum number of wireless nodes, it follows that
the moving of a part of the tangential traffic of the one side, to
the other side, can only result to a net increase of the number
of nodes needed. Therefore, we must have:

∂Tt1

∂d1
=

∂Tt2

∂d2
,

which, after noting that T 2
n1 + T 2

t1 = K2
1d1 and T 2

n2 + T 2
t2 =

K2
2d2, and some straightforward algebra, becomes:

(K2
2 )Tt1 = (K2

1 )Tt2. (26)

To summarize, the traffic flow must satisfy the partial
differential equations (13) inside the propagation regions Pi,
and the boundary conditions (25) and (26) at their boundaries.
Contrary to the previous cases, this set of equations is not
satisfied by the electric field of any setting in Electrostatics
(for example, the tangential components of the electric field
across a boundary must always be equal, by applying the
integral form of Faraday’s law [28]), However, it happens to
be the set of equations that must be satisfied by the electric
displacement vector D that would exist if ρ were the density
of free electric charge, and the regions Pi contained dielectrics
characterized by relative permittivities εi

r = K2
i . The electric

displacement vector and the electric field are connected by
the simple equation D = εi

rε0E, where ε0 is the permittivity
of free space [28]. In other words, this sensor network problem
can also be cast as an Electrostatics problem, with the minor
differentiation that the traffic flow does not resemble the
electric field, but rather the electric displacement.

As an example, in Fig. 10 we plot the lines of the electric
field and lines of constant potential that are created by a
distribution of charge similar to that of Fig. 6, but where in
addition we assume that the lower half of the place is occupied
by a dielectric with relative permittivity er = 10, and the upper
half of the plane is empty. The electric displacement vector is
also parallel to the lines of the field, and its value in Pi can
be retrieved by the electric field by multiplying it with εi

rε0.
In the context of wireless sensor networks, Fig. 10 shows how
the traffic flow of the network of Fig. 6 would be modified if
the lower half of the plane was substituted by nodes whose
coefficient K was increased by a factor of

√
10 (for example

by increasing their available bandwidth by the same factor).

Fig. 10. The setting of Fig. 10, in which we have placed in the lower half
of the plane a dielectric with relative permittivity equal to εr = 10.

V. LIMITATIONS

In this section, we consider three cases in which our analogy
between Electrostatics and wireless sensor networks breaks
down. Because of space limitations, the discussion is brief,
and more details can be found in [26].

A. Three dimensional networks

Until now, it was assumed that our sensor network is placed
on a two dimensional plane. Let us now move to the study of
three dimensional sensor networks. Such networks could be
deployed, for example, in large buildings or in the sea.

The information density function, the node density function,
and the traffic flow function can be defined similarly to their
two dimensional equivalents, and they will now be measured
in bps

m3 , nodes
m3 and bps

m2 respectively. Equation (8) continues to
hold, but using the three dimensional divergence operator [23].
Its physical interpretation, i.e., the conservation of information,
remains unaltered.

As in the two dimensional case, we need an assumption
linking the node density and the traffic flow function. One
might be tempted to use Assumption 1 with no modification.
However, a moment’s reflection shows that its analogous in
the three dimensions is the following:

Assumption 3: A location (x, y, z), where the node den-
sity is d(x, y, z), can support any traffic flow vector with a
magnitude less or equal to a bound |T(x, y)|max which is
proportional to the 2

3 power of the density:

|T(x, y, z)| ≤ |T(x, y, z)|max = K ′[d(x, y, z)]
2
3 , (27)

where K ′ is a normalizing coefficient measured in bps.
To motivate (27), let us consider the three dimensional

equivalent of the network of Fig. 2, which we plot in Fig. 11.
In the figure, m3 nodes are arranged in a three dimensional
regular grid. Assuming the same MAC protocol and physical
layer as in the network of Fig. 2, we find that it is possible for
the nodes to use a time division that consists of three slots,
such that each node transmits during exactly one of the slots,
to the node directly on its right. Using this time division, we
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Fig. 11. A wireless three dimensional network of m3 nodes placed on a
regular grid. Nodes connected by edges can interfere with each other. A time
division scheme exists that allows each node to transmit a packet to the node
directly on the right, in one out of every three slots.

can create m2 disjoint routes, each consisting of a set of m
nodes and being able to move traffic from left to right with a
rate of W

3 bps. Therefore, an aggregate traffic stream of size
m2 W

3 bps can be supported by this network of m3 nodes.
Working as in Section II, we arrive at (27).

As additional justification, we also note that in [29] the
authors calculate the capacity of a three dimensional network,
under a more realistic model for interference, and assuming
a random placement of n nodes. Their main result is that the
aggregate throughput that the nodes can sustain is in the order
of [ n

log n ]
2
3 . Assumption 3 may be viewed as the macroscopic

version of that result, ignoring the logarithm that appears in the
denominator, and the fact that the traffic of [29] is not going
through the network, but originates and ends in the network.

Our problem remains the minimization of the number of
nodes needed to support the traffic flow function, subject to
the divergence constraint (8). In light of Assumption 3, we
can formulate it as follows:

minimize:
∫ |T|b dV,

subject to: ∇ · T = ρ, T|∞ = 0,
(28)

where b = 3
2 . Note that we solved the same problem in the two

dimensional case, but with b = 2. Could it be that the solution
T0 of (28) happens to be irrotational? Such a function would
be unique, by the three dimensional version of Helmholtz’s
theorem. In general, the answer is no. An indirect proof of this,
is by noting that the unique irrotational function that satisfies
the constraints of (28), also minimizes the integral when b = 2.
The proof of this fact is a straightforward extension of the
proof of Section III-B, in the three dimensions. It is intuitively
clear than in the general case, the same function can not be the
solution of both these optimization problems, and since there
is only one irrotational function that satisfied the constraints,
it follows that in general the solution of (28) will not be
irrotational.

B. Ultra WideBand communication

Let us return to the consideration of two dimensional
networks. Assumption 1 makes sense in networks in which
bandwidth is limited, such as the ones considered in [20]. If,

however, bandwidth is unlimited, as is in the case of Ultra
WideBand communication, Assumption 1 should be modified.

The authors of [14] consider a network in which signal
power decays polynomially with an exponent α > 0, and
either (i) the bandwidth available to each node is very large,
or, equivalently, (ii), the maximum power P available to
each node is very small. In this setting, it is shown that the
maximum aggregate throughput that a network of n nodes can
support is on the order of n

α+1
2 bps, ignoring poly-logarithmic

factors. Assuming that the network occupies a square of area
ε2, so that the node density d satisfies n = ε2d, we have that
the through traffic that the network can support is on the order
of T ∼ εd

α+1
2 .

Working as in Section II-B, we derive the following as-
sumption, that should be used in place of Assumption 1:

Assumption 4: A location (x, y), where the node density is
d(x, y), can support any traffic flow vector with a magnitude
less or equal to a bound |T(x, y)|max which is proportional
to the α+1

2 power of the density:

|T(x, y)| ≤ |T(x, y)|max = Kd(x, y)
α+1

2 ,

where K is a normalizing coefficient measured in bps×mα.
The new optimization problem becomes:

minimize:
∫ |T| 2

α+1 dS,
subject to: ∇ · T = ρ, T|∞ = 0.

(29)

By using the same line of reasoning as in Section V-A, we find
that the solution of (29) will not necessarily be irrotational.

C. Networks with multiple traffic types

Until now, it was assumed that there is only one type of
traffic in the network. Therefore, if more than one traffic
stream flows through a point in the network, we are allowed
to perform vector addition, and abstract the flow of traffic by
a single vector, the traffic flow function at that point.

If, however, there are m > 1 different types of traffic, each
of them will have to be associated with its own traffic flow
function Ti, and its own information density function ρi, for
which we will have:

∇ · Ti = ρi, i = 1, . . . , m. (30)

A point in the network through which different types of
traffic cross, will have to divide its resources (in the time
and/or the frequency domain) to support the different traffic
types, therefore Assumption 1 will have to be substituted with
the following:

Assumption 5: A location (x, y), where the node density
is d(x, y), can support any combination of traffic traffic flow
vectors T1, . . . , Tm, provided the following inequality holds:

m∑
i=1

|Ti(x, y)| ≤ |T(x, y)|max = K
√

d(x, y),

where K is a normalizing coefficient measured in bps.



Our new optimization problem is now the following:

minimize:
∫

[
∑m

i=1 |Ti|]2 dS,
subject to: ∇ · Ti = ρi, Ti|∞ = 0, ∀i = 1, . . . ,m.

(31)
As there is only one type of charge in Electrostatics, and

many types of traffic in our settings, it is clear that our analogy
can not be extended in any obvious way.

VI. CONCLUSIONS

Our setting is a two dimensional environment, in which
a distributed set of traffic sources is creating information
that must be received by a distributed set of traffic sinks.
The transport of information is handled by a network of
wireless nodes, and our problem is the calculation of the
optimal placement of nodes, such that the resulting network
can transport all the created information while requiring the
minimum number of nodes. We assume that we have so many
nodes, that is does not make sense to specify their placement
in terms of the positions of individual nodes, but in terms of
the node density at any location of the environment.

Under a reasonable assumption, that approximates well the
capabilities of many MAC and physical layers, we show
that the optimal placement of nodes induces a traffic flow
that resembles the electrostatic field that would exist if we
substituted the traffic sources and sinks with positive and
negative electric charges.

The analogy between sensor networks and Electrostatics can
be extended in a number of different ways. For example, net-
works where we have limited freedom on the initial placement
of sources and destinations can be mapped to Electrostatics
topologies than include appropriately placed conductors. Also,
environments that contain areas that are inaccessible to wire-
less nodes are similar to Electrostatics topologies that contain
regions on whose boundaries we impose Neumann boundary
conditions. Finally, environments that are composed of regions
in which the capabilities of nodes differ are analogous to
Electrostatics topologies in which there are placed dielectrics
with different relative permittivities.

On the other hand, the analogy has important limitations.
For example, if we move to the three dimensions, appropriately
adapting our assumption on the physical and MAC layers, the
optimal traffic flow is not in general irrotational, and so can not
be mapped to any electrostatics field. The optimal traffic flow
is also not irrotational if we consider an alternative assumption
on the physical and MAC layers, that is more appropriate if the
communication is power limited or the available bandwidth is
infinite. Finally, the analogy can not be extended to include
networks in which there is more than one type of traffic.
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