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ABSTRACT
Many existing systems for sensor networks rely on state in-
formation stored in the nodes for proper operation (e.g.,
pointers to parent in a spanning tree, routing information,
etc). In dynamic environments, such systems must adopt
failure recovery mechanisms, which significantly increase the
complexity and impact the overall performance. In this pa-
per, we investigate alternative schemes for query processing
based on random walk techniques. The robustness of this
approach under dynamics follows from the simplicity of the
process, which only requires the connectivity of the neigh-
borhood to keep moving. In addition we show that visiting
a constant fraction of sensor network, say 80%, using a ran-
dom walk is efficient in number of messages and sufficient
for answering many interesting queries with high quality.
Finally, the natural behavior of a random walk, also provide
the important properties of load-balancing and scalability.
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1. INTRODUCTION
Wireless sensor networks represent an emerging new type

of networks and computing platform. They are constructed
from small devices equipped with sensing capabilities, wire-
less communication and limited power supply, CPU and
memory. These devices are expected to be embedded into
the environment to create very dense networks. High level
tasks, such as monitoring specific events, are accomplished
by the cooperation of multiple nodes using their limited abil-
ity to collect and process information.

The execution of a task usually starts from base stations,
which issue queries into the network. The sensor nodes are
viewed as data sources that can provide relevant informa-
tion for the querying agents. A distinctive characteristic of
this framework is the focus on the data to be collected, as
opposed to the particular entities that generate it.

Sensor networks are supposed to operate unattended and
under strict energy constraints [14]. The natural problems
that arise from such conditions are overcome by relying on a
large amount of redundancy. This presents a very different
scenario than the one encountered in traditional computing
systems. On top of that, many such networks will also be
subject to high dynamics, created by failures, mobility, tem-
porary communication obstacles, nodes switching on and off
[5], etc. Such adverse conditions make the design of energy
efficient, robust and scalable systems a considerable chal-
lenge.

The extensive research in this field, though, allowed to
learn a few principles for the design of efficient sensor net-
works. For example, solutions based on transferring the
data generated by the sensors for centralized processing are
not acceptable [17]. This requires an excessive amount of
communication, which is a critical component in the energy
consumption of the devices. Taking advantage of the fact
that computation is much less energy expensive than com-
munication [14], most existing designs consist of distributed
systems, which delegate a large portion of the information
processing to the sensor nodes themselves.

A common characteristic of existing sensor network sys-
tems is their dependence on state information stored in the
nodes for proper operation. Examples range from pointers
to parents in spanning tree structures [11] to routing infor-
mation stored in the intermediate nodes of a path [8]. In
related areas such as ad-hoc networks and distributed ap-
plications, this technique is used to obtain tight control over
the process and achieve high levels of performance [3]. In



sensor networks, however, optimality is not a fundamental
issue. More importantly, in a highly dynamic environment
these ideas require the development of sophisticated fail-
ure recovery mechanisms, which significantly increase the
complexity of the system, and have impact on the overall
performance.

1.1 Overview of Our Approach
In the search for an alternative solution, we investigate

the use of random walk techniques for the task of query
processing in dynamic environments. The use of random-
ization in the context of sensor networks is not new and has
been explored, for instance, in [4, 16, 15]. However, while
those systems make a great effort to avoid some undesirable
effects of the random steps, like visiting a node more than
once, or moving in the ”wrong” direction, we accept the
natural behavior of the random walk and try to explore its
good properties.

The first important advantage of our approach is related
to critical points of failure. State based approaches usually
introduce nodes whose failure has a great impact on the
operation of the system. Examples include nodes close to the
root in a spanning tree, and cluster-heads in cluster based
designs. A random walk, on the other hand, only needs a
connected neighbor to keep moving. There are no critical
points, all the nodes are equally unimportant at all times.

To study the efficiency of the approach, we first observe
that, due to the redundancy in the network, it is not nec-
essary to consult every node to answer many interesting
queries. This motivates the definition of Partial Cover Time
(PCT) as the expected number of steps required by a ran-
dom walk to visit a constant fraction of the nodes, for ex-
ample 50%, 80% or 99%. This definition generalizes the well
studied concept of Cover Time [1, 6, 18, 9], that is, the time
required to visit every node in the network.

Our main analytical result provides an upper bound on
the Partial Cover Time, which is asymptotically smaller
than Matthews’ bound on the Cover Time [12] (for any con-
stant fraction c of the network). Intuitively, this means that,
on sufficiently large graphs, almost all the time used by a
walk to cover the entire graph is spent trying to reach the
last log (n) nodes.

Clearly, results of this nature may have little consequences
for practical applications, because the constants hidden in
the asymptotic notation can be very large. Then, to get
a better understanding of the efficiency of our approach in
practice, we conduct an extensive, simulation study. Our
results show that the approach is very competitive, perform-
ing better than a cluster based design on 2-dimensional grids
(under the measure of number of messages per query).

To investigate the issue of dynamics in our approach, we
consider two failure models. The first model assigns a uni-
form probability of failure p to all the nodes, and captures
the effect of defective devices and the process of switching on
and off in duty cycle. The second model specifies regions of
high probability of failure, and capture the effect of disasters
and areas under hostile conditions. As we should expect,
the approach perform well as long as the network is rea-
sonably connected and there are no bottlenecks. Indeed we
only observe considerable degradation of performance under
extreme situations.

Besides efficiency and robustness, we also study the qual-
ity of the answers that can be obtained with a partial cover of

the network. For this purpose, we first investigate how well
distributed are the nodes visited by a random walk that cov-
ers 80% of a typical sensor network. The results show that
almost every unvisited node is with in distance 1 or 2 (in
number of hops) from a visited node. Also, since geographi-
cally close nodes are likely to observe the same phenomena,
this indicates that the answer should be very accurate. Ac-
tually, this is confirmed in another set of experiments, where
we assume a non-uniform distribution of data values for the
sensors, and obtain an approximation of this distribution
from a partial cover of the network. We observe that the
histogram computed by the random walk is very close to
the actual distribution.

Finally, we present simulation results showing that the ap-
proach achieves very good load balancing among the nodes,
and make some comments on how to attenuate the problem
of latency, which is inherent to our approach.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2

review related work. In section 3 we discuss random walks,
cover times, and prove the ”Partial Cover Lemma” that is
the basis for this paper. The following four sections focus
on the properties of Partial Cover studied through simula-
tions. In Section 4 we discuss efficiency and compare our
result to the cluster head scheme. Section 5 talks about
the robustness of our approach and shows the problem with
spanning tree based systems. Section 6 explores the quality
of the random walk and gives an application example. Sec-
tion 7 discusses load balancing, scalability and latency. We
conclude in section 8.

2. RELATED WORK

2.1 Query Answering Systems
Madden et al. [11] present a tiny aggregation (TAG) for

sensor networks and describe a SQL-like query language for
answering queries. Their basic approach consists of building
a spanning tree using a flooding mechanism, and then uses
this structure to answer queries in an efficient way. They
show how to apply aggregation ideas on different types of
queries, and propose methods to deal with dynamic environ-
ments. Heinzelman et al. [7] analyze the use of a cluster-
based system for answering queries. They develop a random-
ized scheme for choosing cluster heads, and explore compres-
sion (aggregation) techniques, in order to achieve load bal-
ancing and reduce energy consumption. Chalermek et al. [8]
provide a data-centric mechanism called “directed diffusion”
to answer long term queries. Interest requests (queries) are
flooded into the network leaving gradient paths back to the
base station. When a node has data that matches the in-
terest request, the gradient information stored in the inter-
mediate nodes are used to establish a flow from the node to
the base station. These routes are reinforced later to over-
come failures and aggregation is performed along the path
to increase efficiency.

2.2 Randomize Systems
Servetto and Barrenechea [16] propose the use of con-

strained random walks to perform routing in dynamic net-
works. They consider an n × n grid topology, where the
nodes have precise knowledge about their location. This
knowledge is used to compute transition probabilities at each
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Figure 1: An example of short random walk on a
grid starting at (0, 0)

node, in order to route the messages to their destination. In
the situation analyzed in this paper (routing a message from
location (0, 0) to (n, n)), the message always follows a short-
est path, and perfect load balancing among the intermediate
nodes is achieved. The approach of Braginsky and Estrin [4]
is closer to ours in the sense that they also employ random
walks to process queries. Their solution, however, only relies
on random walks to find a route between two points. The
basic idea is that both the base station and a node that ob-
serves some event of interest start random walks that leave
traces on the nodes that they visit. Whenever the traces
intersect, a route is discovered and the information can be
transferred between the two points. The most similar solu-
tion to ours is provided in AQUIRE [15]. this system uses
random walks to answer one-shot, non-aggregate, complex,
replicate data queries. AQUIRE adopts a look ahead mech-
anism in which at each step, information is collected from
every node at distance at most d hops away from the current
one, and then the walk jumps to a node at distance d. The
goal of such a mechanism is to reduce the impact of the ran-
dom steps. Their analysis, however, only investigates how
long it takes for a random walk to reach a node with specific
information, assuming a uniform distribution of data values
over the nodes in the network. Here, we present a more com-
plete and general study of the use of simple random walks
to the task of query processing.

3. RANDOM WALKS AND COVER TIME
A Random Walk is the simple process of visiting the nodes

of a graph G in some sequential random order. Basically, the
walk starts at some fixed node, and at each step it moves to
a neighbor of the current node randomly chosen according
to an arbitrary distribution. Figure 1 is an example of such
a process on a grid.

This procedure can be easily implemented in sensor net-
works as follows. In the beginning, the base station releases
a special message, or token, with a description of a query to
be performed. When the token arrives at node v, the infor-
mation contained in the token is updated with the local data
stored at node v. Then, a neighbor of v is randomly chosen
and the token is sent to it. When the answer is satisfying
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Figure 2: An example of random walk that covers
80% of a random network with 4096 nodes

or a sufficient number of steps have been taken, the token is
sent back to the base station. For example, say we want to
find the minimum temperature in the network. Each time
the token sees a lower temperature it updates the answer.
After seeing enough nodes the token reports the value back
to the base station.

The simplicity of the process makes it an almost assump-
tion free method. Taking advantage of the broadcast na-
ture of the communication, it is possible to define a simple
protocol for token passing that does not require nodes to
have knowledge about their location, neighbors, transmis-
sion range or symmetric connection. In addition since there
is only one token (or few in parallel) moving around, colli-
sion is not a problem.

However, an important question is: “How many steps
should a random walk take in order to obtain a satisfactory
answer to a query ?” In the following, we approach this
problem from an analytical perspective, and obtain some
answers for the case of a simple random walk, a walk that
chooses the next node uniformly at random.

Let G(V, E) be the graph on which the random walk is
performed and let n = |V |. For arbitrary nodes i, j ∈ V ,
let hij be the expected number of steps (or messages in our
case) for the random walk to move from i to j. Then hmax

(hmin) is defined as the maximum (minimum) hij over all
ordered pairs of nodes. Finally, the Cover Time C is define
as the expected number of steps taken by a random walk
to visit every node in G, (starting from the worst node in
the graph). The following theorem provides bounds on the
cover time C in term of hmax.

Theorem 1 (Matthews’ theorem [12]). For any
graph G,

hmin · Hn ≤ C ≤ hmax · Hn

where Hk = ln(k) + Θ(1) is the k-th harmonic number.

Notice that the bound provided above is not always tight,
since in the line, for instance we have C = hmax. Known
results for the cover time of specific graphs vary from the
best case of O(n log(n)) to the worst case of O(n3). The best
cases correspond to dense, highly connected graphs such:
the complete graph, d-regular graphs with d > n

2
, and the



Hypercube. When connectivity decreases and “bottlenecks”
exist in the graph, the cover time increases. In the line, for
example, it is known to be O(n2).

3.1 Upper Bound on Partial Cover Time
In sensor network application, however, for many tasks it

is not always necessary to consult every node in the network.
So, in the following we investigate the Partial Cover Time
(PCT), the time required to cover only a constant fraction
of the network (see Figure 2 for an example of the result
of a random walk that covers 80% of a random network ,
this should give intuition about how such walks may look).
For 0 ≤ c ≤ 1, let PCT (c) be the expected time to cover
bcnc nodes of a graph G. In Lemma 1 we prove that as long
as we want to cover a constant fraction of the graph we can
reduce Matthews bound by an order of log(n) so the bounds
becomes linear in hmax.

Lemma 1 (Partial Cover Lemma). For any
graph G, and 0 ≤ c ≤ n−1

n

PCT (c) < 2 · hmax ·
�
log2(

1

1 − c
) � = O(hmax)

Proof. For simplicity of exposition we prove the result

for special cases where c is of the form cl = 2l−1
2l

. The
general case will follow directly by taking the minimum l

such that 2l−1
2l

≥ c. Let n = 2Lk + 1. The proof will be by

induction on l. Let cl = 2l−1
2l

. For a fixed random walk, let
γl be the minimum number of steps to visit more than cl · n
of the nodes. Let αv be the time (step number) when node
v is visited for the first time and let Sl = {v ∈ V |αv ≥ γl}
be the set of all nodes visited at time γl or later. Note that
|Sl| = n − bclnc = 2L−lk + 1 and that S0 = V is the set of
all nodes.

Base Case: The base case is stated in Lemma 2.8 [10]
where l = 1, cl = 1

2
and visiting more than half of the nodes

take less then 2hmax steps. We will follow this proof here:
Let k′ = kL and so n = 2k′ + 1 is odd. The time γ1 when

we reach more than half of the nodes is the (k′+1)-st largest
of the αv. Hence �

v∈S0

αv ≥ (k′ + 1)γ1

taking the expectation on both sides

PCT (c1) = E(γ1) ≤ 1

k′ + 1

�
v∈S0

E(αv)

≤ 2k′ + 1

k′ + 1
hmax

< 2hmax log2(
1

1 − c1
) = 2hmax

Induction Step: Assume true for 1, . . . , l ≤ L− 1. We will
prove true for l + 1. Let α′

v be the number of steps until
node v is first visited after γl steps.�

v∈Sl

αv =

�
v∈Sl

(γl + α′
v) ≥ kL−lγl + (kL−l + 1)γl+1

Taking the expectation, the l.h.s is:

E �� �
v∈Sl

(γl + α′
v) �� =

�
v∈Sl

E[γl + α′
v]

= (2L−lk + 1)PCT (cl) +

�
v∈Sl

E[α′
v]

The r.h.s will be:

E � kL−lγl + (kL−l + 1)γl+1 � =

kL−lPCT (cl) + (kL−l + 1)PCT (cl+1)

Putting it together:

PCT (cl+1) ≤ PCT (cl) +
1

kL−l + 1

�
v∈Sl

E[α′
v]

Using the induction assumption we get:

PCT (cl+1) ≤ 2hmax log2(
1

1 − cl

) +
2L−lk + 1

kL−l + 1
hmax

< 2hmax log2(
1

1 − cl

) + 2hmax log2(2)

= 2hmax log2(
1

1 − cl+1
)

This implies the following interesting results: for graphs
in which hmax = n, PCT becomes linear in n; known graph
of this type are the complete graph, the Star and the Hyper-
cube. Covering x percent of the nodes in the Hypercube, for
example, is linear in n while the cover time is O(n log(n)).
The Hypercube is of interest since it is a d-regular graph
with d = log(n). For the grid, which is also a d-regular graph
(d = 4) the maximum hitting time is n log(n) [18] so PCT
becomes O(n log(n)). These two graphs are related since we
think of sensor networks as “almost” d-regular graphs that
lie between these two.

4. EFFICIENCY OF PARTIAL COVER TIME
In the following four sections, we are going to study in

more detail some of the properties of random walks and
PCT, using simulations. We performed experiments on grids,
the Hypercube and random graphs. The random graphs
were generated by placing n nodes uniformly at random in
a 1× 1 square, and making neighbors of every pair of nodes
at distance less than R. When not explicitly mention we
assume n = 4096 and R = 0.04. For each experiment, we
took the average results of 100 runs.

In this section, we want to validate the analytical result on
the efficiency of Partial Cover Time. Figure 3 compare the
partial cover time curves for a few distinct networks of size
4096: a grid, a random network with R = 0.035 (average
node degree about 15), a random network with R = 0.04
(average degree of about 19) and a Hypercube of degree
12. Observe that most of the steps required to cover these
networks are performed after 80% of the network has been
covered. Moreover, we call attention to the fact that the high
density of sensor networks improves the result for random
walk , as opposed to other methods such as flooding where
the high density causes more problems, mostly because of
collisions [13].
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Figure 3: The Partial Cover time progress in four
network of size 4096

As we can see from the graph, the average degree is not
the only parameter that influences the random walk. The
average degree in the Hypercube is lower than in the random
graph, but the connectivity is still higher and the maximum
number of hops between any two nodes is 12. This means
that if we lay out the Hypercube on a plane, many links
will require long radio range which is not available in sensor
networks.

4.1 Biased Random Walk
Can we improve on the previous result ? What if we can

direct our random walk toward unvisited nodes ? Biased
random walk gives priority to unvisited neighbors instead
of choosing uniformly at random. We define a bias param-
eter 0 ≤ bias ≤ 1 and select our next node according to
the following rule: Let d be the number of neighbors of the
current node, and let du be the number of unvisited neigh-
bors. Then: (i) A visited neighbor is selected with prob-
ability (1 − bias)/d. (ii) An unvisited neighbor is selected
with probability (1− bias)/d + bias/du. If all neighbors are
already visited and bias = 1, a neighbor selected uniformly
at random is returned. When each node knows whether it
has been visited then we can execute this protocol without
knowledge of neighbors, again using the broadcast nature of
the communication.

We realize that bias = 1 cannot be always maintained
due to errors, but as we can see in Figure 4 the substantial
improvement in the number of steps required is obtained
even with a small bias. Notice also that covering 80% with
bias greater than 0.8 requires less than n steps. A future
improvement can be to have “super bias” which take the
neighborhood into consideration the neighborhood. A node
will decrease its priority even if it hears the token passing by
in his neighborhood. We can do this easily, again, because
of the broadcast channel.

4.2 Comparison with Cluster Head Scheme
In this subsection we compute the number of messages M

that will be needed to collect data from the network by an
optimal cluster head protocol with two-level hierarchy on
a grid. The protocol goes as follow: each node sends its
data to its cluster head via the shortest path. Cluster heads
then aggregate all the information and sends it to the base
station via the shortest path. Let n be the number of nodes
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Figure 4: Partial Cover Time in random walks with
increasing bias on random network

in the grid and assume the base station is in the center of
the grid. First we will consider the case of one cluster where
the base station is the cluster head (this case is equal to the
case where there are n cluster of size one). For simplicity
let

√
n = 2k + 1. Then the number of messages required to

collect all the information from the nodes is:

M = 4 · 1 + 8 · 2 + · · · + 4kk + 4k(k + 1) + . . .

. . . +8(2k − 1) + 4(2k)

= 4
k

�
i=1

i2 + 4
k

�
i=1

i(2k + 1 − i) = 4(2k + 1)
k

�
i=1

i

= 4
(2k + 1)k(k + 1)

2
≈ 2

√
n

n

4
=

(
√

n)3

2

Now assume we have square sub grids as clusters and cluster
heads in the center of them and we want to optimize the
number of clusters. Let x be the size of the side of a cluster.
So there are (

√
n

x
)2 clusters. In each cluster there are x2

nodes. Let f(x) be the number of messages sent using this
protocol. This involves two quantities: (i) the number of
messages sent from nodes to cluster heads, (ii) the number
of messages sent from the cluster heads to the base station.
Note that the cluster heads now form a grid with x as the
new unit, so:

f(x) =
x3

2 � √
n

x � 2

+ � √
n

x � 3

2
x =

xn

2
+

n
3
2

2x2

Taking the derivative we find that f is minimized at x∗ =

(4n)
1
6 :

f ′(x) =
n

2
− n

3
2

x3
= 0

n =
2n

3
2

x3

x3 =
2
√

n

n

x = (4n)
1
6

so the minimum number of messages this protocol will re-
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quire is

f(x∗) =
(4n)

1
6 n

2
+

n
3
2

2(4n)
1
3

≈ 0.945n
1
6 n

From our analytical result we know that the PCT on the grid

is O(n log(n)) which is asymptotically better than O(n
7
6 ),

the result for the cluster head. In Figure 5 we compare the
cluster head result to the simulation result obtained using
Partial Cover random walk on grid, one with no bias and
one with bias 0.5. We examine the result of the methods
on increasing grid sizes, plotted on a log scale. The cluster
head curve does not include any additional calculation, just
the optimal lower bound. In reality the result may be higher
because of other factors, such as dynamics. The point we
want to make is that the efficiency of PCT is on the same
order as the cluster head protocol. The biased walk is doing
better even on a small 10 × 10 grid.

5. ROBUSTNESS TO DYNAMICS
Dynamics in sensor networks are due to many different

factors. Nodes can fail, turn off their radio in a duty cycle,
or move. Wireless communication obstacles can disconnect
links and more. How robust is our process to these dynamics
? We know that as long as the network is strongly connected
with no bottlenecks, the random walk will do well. Actually
we do not care about the whole network, since we only need
this requirement in the area of the token. The nice thing
is that this condition is, in many cases, orthogonal to the
network dynamic. A high duty cycle rate, for example, can
still leave the network strongly connected at any time, so
the random walk is robust to that. No fault tolerance or
recovery mechanism is in needed. As long as the token is
alive, there is nothing to recover from.

To illustrate this point we choose the following model of
failures. Each node can fail independently with probability
p during the run (or nodes switching on-off in a duty cycle).
The failure can occur at any time during the walk, so the
probability that a node will fail exactly when it has the token
is negligible . We simulated the worst case for the random
walk, where all the failures happen at once before the walk
starts. It is worth mentioning that for other methods all-
fail-at-once may not be the worst case. For example for a
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Figure 7: An example of a 4096 random network
with 4 disaster areas. We can see the creation of
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spanning tree it will be the best case, while nodes turning on-
off during the data collection will be worst. Figure 6 shows
the result for this model for p = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
The vertical axis is normalized to the number of active nodes
in each run. We see that the walks in this case continue
to perform well (better than the grid) even at high rate of
failure.

What about dependent, or correlated failures ? Our sec-
ond model tries to answer that by creating random areas of
“disaster” where at the center of each there is a source and
the probability of failures decreases exponentially from the
source with parameter α (up to r hops). Figure 7 shows an
example of a 4096 nodes random network with 4 holes. As
we increase the number of holes, we create more bottlenecks.
Figure 8 supports that the random walk is highly robust to
such failures. We can see that the effect of this type of fail-
ure is mostly on the covering of the last nodes and not on
the Partial Cover.

But a token can still be lost, so what do we do then ? First,
to solve the problem of unreliable communication which can
destroy our token, we suggest using a reliable protocol. The
cost of that will not be too high, assuming there is a prob-
ability p of each transmission to fail. The expected number
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Figure 8: The Partial Cover time required when we
increase the number of disaster areas in the network

of transmission to pass the token reliably (including ACK)
will be 2−p

(1−p)2
. For p = 0.2 for example we get 2.8125 trans-

missions. Second, if we still lost it, we will just issue another
one. Since the probability for that is so small, it will not af-
fect the overall performance of a few tokens traveling across
the network at the same time.

5.1 Counter Example: Spanning Trees
Spanning trees are very powerful data structures that are

used in many similar systems. They can also be used in
sensor networks. For example, shortest path trees can be
optimal for many types of query processing. The problem
with this approach arises when dynamics are present in the
network. Then, in order for the protocol to work, it has
to maintain the tree at all times. Since there is only one
path from each node in the tree to the root, when nodes
or links fail they disconnect their sub tree from the root.
Moreover, failures of nodes close to the root will lead to
disconnectivity of a larger fraction of the network. To avoid
this, the protocol has to include a recovery mechanism. This
is a non-trivial task since we have to prevent loops during
the recovery. In fact, this process must include all the nodes
in the subtree and that significantly reduces the efficiency
of the protocol and increase latency.

We conjecture that a spanning tree is not a scalable so-
lution to a large, dense, dynamic sensor network. To show
why, we compute the expected network fraction that will re-
main connected to the root given the probability of a node
to fail during the query processing. Let p be the probability
of a node to fail and q = 1 − p. To find a lower bound, we
consider an optimal d-regular spanning tree where d is the
maximum degree in the network. The data collection goes
as follows: each node collect the values from all its unfailed
children, aggregates it and sends it to its parent with prob-
ability q, or fails with probability p. Let Ti be a d-regular

tree with height i and n = di+1−1
d−1

nodes. Let T ∗
i be the

same tree but the root is a base station that cannot fail.
First we will find E[Ti], the expected number of nodes in Ti

whose data will reach the root (i.e if the root fails, no data
will be available). We also assume that qd > 1 meaning
that the expected number of children that will not fail is
greater then 1. For the other case (qd ≤ 1) the result will
be worse. The base cases are: E[T0] = p · 0 + q · 1 = q and
E[T1] = p · 0 + q(1 + dE[T0]) = q + q2d. For the general case
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Figure 9: Histogram of the min distance of uncov-
ered nodes from visited nodes after 80% of the net-
work was covered. n=4096

i = h we have:

E[Th] = p · 0 + q(1 + dE[Th−1]) = q + dq(q + dq(E[Th−2])

=

h

�
i=0

qi+1di = q

h

�
i=0

(qd)i

Since qd > 1 we get

E[Th] = q
(qd)h+1 − 1

qd − 1

In the case of T ∗
h the root cannot fail so the expected number

of nodes that will report to the root is E[T ∗
h ] = dE[Th−1],

and the total number of nodes except the root in T ∗
h is |T ∗

h | =

d( dh−1
d−1

). The expected fraction of the tree that will report

to the root is E%[T ∗
h ] =

E[T∗

h
]

|T∗

h
| .

E%[T ∗
h ] =

dq
(qd)h − 1

qd − 1

d
dh − 1

d − 1

≈ q
d − 1

qd − 1

(qd)h

dh
= O(qh)

In sensor networks the radio transmission radius of the node
is usually relatively small compared to the network size, and
so the diameter of the network is not small. Since any span-
ning tree has height which is at least the diameter of the
network divided by two, a spanning tree in sensor network
will have considerable height which will cause a large frac-
tion of the network to execute a recovery mechanism. In our
simulation with R=0.04, the diameter is about 35, but even
if we take, for example, p = 0.1 and h = 10 then 65% of the
nodes will be disconnected from the root. We think that
this property make the spanning tree not robust to dynamic
large networks, and so not a scalable solution.

6. QUALITY OF PARTIAL COVER TIME
Partial Cover is fast, but what is the quality of the cover

? In Figure 9, we try to measure the quality of 80% cover by
showing how far on average the uncovered nodes are from
the ones that have been covered. We show a histogram of the
minimum distance between uncovered to covered nodes. As
we can see in the random graph, about 90% of the uncovered
nodes are at most 2 hops away from a covered node. In the
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Figure 10: Histogram of the maximum number of
consecutive runs without a node or his neighbor in
100runs of 80% cover

grid it is about 60%. This is not an obvious result: if we
arrange the 80% covered nodes on a same size grid, in the
worst case, less than 15% of the uncovered nodes will be
at most 2 hops away. The random walk is leading to a
much better result. This measure is important since sensors
are densely spread with redundancy and phenomena will be
probably detected by more than one node. This histogram
shows that expected run on networks of this size will not
leave large areas uncovered.

From Figure 9 we can also observe that the expected walk
does leave some nodes far away from covered nodes. How
many walks do we need until we will visit those nodes ?
Figure 10 shows that if an area is left out in one walk it will
be visited in the next few runs with very high probability,
so all “neighborhoods” of the network will be covered very
fast. This figure shows what is the maximum sequence of
consecutive walks that does not visit a node or any of his
neighbors (i.e neighborhood) in 100 runs. The neighborhood
of nodes in the 0 column were visited in every run, for the
nodes in the 1 column there was at least one run in which
they were not visited, and no two consecutive runs without
a visit and so on. In 100 runs we see that for about 85%
of the nodes, a walk will visit their neighborhood at most
every other walk. In the worst case, a node will have to wait
4 walks for his neighborhood to be visited.

6.1 Application Example
Until now we only mentioned briefly applications or tasks

that can be done using random walks, but it is clear that
many types of queries can be answered using this method,
for example; finding the min, max or mean of the data,
calculating statistics of the network, finding sensors with
specific thresholds and so on. We can even use a SQL like
language to describe these queries as offered in [11, 3].

To illustrate this ability we choose as an example a simple
query, finding the histogram of the data in the network. The
procedure is as described earlier, the token is moving in the
network, each time it arrives at an unvisited node it updates
its histogram (we note that in order to distinguish between
visited and unvisited nodes, each node should keep a flag if
it has been visited by this walk). After seeing 80% of the
nodes the token reports its histogram back.

We wanted to make reasonable assumptions about the
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data observed by the sensors in order for this task not to
be trivial. For example, assuming uniform distribution over
the data did not seem reasonable, so we created a model
of light sources that will produce a non-uniform tempera-
ture distribution over the network, Figure 11 is an example
of such a distribution. Figure 12 compares the histogram
obtained from the real data and the one collected by the
random walk with 80% cover. As we can see from this ex-
ample, the histogram is accurate with expected error as low
as 0.37%.

7. OTHER PCT PROPERTIES

7.1 Load Balancing
Random walk is an uncontrolled process. It may be the

case that the walk will go to a neighbor and return back
to the same node after one step. Even if we forbid this
move, we cannot prevent it from happening in small cycles.
This leads to the intuition that there will be nodes that are
much more visited than others, so consuming more energy.
However, for very long random walks this is not necessarily
true. Since this process is a Markov Chain, it is known that
the stationary distribution π of it is π = {π1, . . . , πn} where
πi = di/2m, di is the number of neighbors of i and m is
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the number of edges in the network [2]. So if the graph
is regular the stationary distribution will be uniform. This
means that after a long enough time the probability of the
token to be at any node is the same. From this, it follows
that the frequency of returning to a node is the same for all
nodes, which gives us load balancing.

We see sensor networks as “almost regular” graphs where
with very high probability each node degree is bounded by
a constant, but in our case we are issuing “short” random
walks. There is no guarantee that in any given walk there
will not be nodes that are much more visited than others.
Although this is true, our simulation results show that if we
issue many (i.e 100) such “short” walks, we will still get very
close to this property.

To measure the load balance we looked at the expected
number of visits to each node in a 80% cover random walk.
Figure 13 present the histogram of these values in a ran-
dom walk with 13100 steps. The mean of the expected
number of visits for each node is 3.19 which is approxi-
mately 13100/4096 and the standard deviation is 0.81606.
This is showing that only small part of the network will
be visited much less (more), and will use less(more) en-
ergy. For this histogram more than 95% of the nodes are
in mean(x) ± std(x).

7.2 Scalability
Figure 14 validates our theoretical result that Partial Cover

in sensor networks is scalable. The graph shows the increase
in the Partial Cover normalized to n in increasing random
network size with constant density. While increasing the
network 16 times from 1024 nodes to 16384 the expected
number of steps to cover 80% increases from 2.92n to 3.37n.
In the Hypercube for example the normalization factor for
covering 80% will remain constant as n increases (for big
enough n).

7.3 Latency
Random walk is a sequential process where no steps are

performed in parallel. The latency therefor is proportional
to the number of steps required to accomplish the task. In
many cases this will be on the order of the size of the net-
work. This is an inherent problem of the approach, and
certainly reduces its range of applicability. One possible
idea to mitigate this problem is to divide the network into
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regions, and perform random walks in parallel on each of
them. However, it is not clear if every query can be an-
swered in this way. We leave this and related questions to
future work.

8. CONCLUSIONS
In this paper we studied the use of random walks for query

processing in sensor networks. The approach is especially
appealing for dynamic environments where approaches that
maintain data structures must relay on recovery mechanisms
which reduce their performance. Our analysis and simula-
tion shows that the approach, while simple and achieve a
high quality results, is very efficient and robust to failures.
In particular, it is more efficient than the cluster head on
a grid and more robust than the spanning tree in under
dynamics. Clearly, this approach may not be a general so-
lution for all types of queries. However, whenever it applies,
it provide an elegant, simple and efficient solution.
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