Autonomicity vs. Complexity

Stefan Schmid

NEC Europe, Network Laboratories, Germany

stefan.schmid@netlab.nec.de

WAC 2005, Athens, Greece, 3-5 October 2005

Two Sides of the Coin

One side of the coin:
• Complexity calls for autonomicity
 – Systems that are very complex require autonomic support (esp. dynamic systems)
 – How else can they be managed in an economic manner?

The other side of the coin:
• Achieving full autonomicity in large systems is very complex (e.g., Internet)
 – Where to start?
 – How to ‘divide’ a large, complex system in order to ‘conquer’ it?
 – What if we ‘divide’ the problem in the wrong way?
A way out …

• However, complexity also depends on the approach
• My proposal:
 – Let’s start bottom up
 – Build simple autonomic components (that solve some aspects of the overall problem space)
 – Put them together
• But, what if $1 + 1 \neq 2$
 – What happens if you combine 2 autonomic components – is the result a autonomic component?
 • To what extend?
 • How optimal is the composite?
 • What functionality is missing?
 – What is the likelihood that 2 autonomic components after they are put together interfere with each other?

⇒ Iterative / evolutionary approach necessary!

Further thoughts on discussed issues …

• Standards are still required – for interoperability of autonomic systems
 – at different levels though – depending what is made autonomic
 – and hopefully not that many

• Autonomicity introduces complexity (and hence CAPEX – but only initially for the 1st time development), but reduces management cost in the long-run (and hence OPEX)!

• Autonomicity is a principle that can be built in all systems/functions – not just a new middleware that is applied at one point in the network