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ABSTRACT

In this paper we study the queueing behavior of a
statistical multiplexer with a finite number of input lines.
Each of the input lines is assumed to deliver fixed length
packets of information according to a'generally distri-
buted process, whose parameters depend on the state of
an underlying finite state Markov chain associated with
each of the input lines. Special cases of this general model
for the packet arrival processes have been studied in the
past.

A method for the derivation of the moments of the
buffer occupancy is developed and the first and the
second moments are derived. The mean packet delay
introduced by the statistical multiplexer is then derived
through Little’s theorem. Finally, the applicability of the
analyzed multiplexer in packet communication systems is
illustrated through a simple example and numerical
results are provided for this case.

L Introduction

Statistical multiplexers are common elements of
communication networks used to coordinate the alloca-
tion of a single transmission media among many potential
users. The statistical multiplexer consists of a buffer for
the temporary storage of information packets awaiting
transmission, and the server that carries out the actual
transmission task over the single output channel. In this
paper N users (or input lines) are assumed to be served
by the statistical multiplexer. Potential packet arrival
instants are synchronized and at most one packet can be
served during the time interval between consecutive
potential arrival instants. More than one packet arrivals
per input line are possible at the same arrival instant.

Previous work on similar statistical multiplexer can
be found in [1]-[5] (and the references cited there). All
previous models differ significantly from the one
presented here. In [1], the authors assume a single arrival
line and a two state Markov Modulated Poisson arrival
process. In [2], the author considers a single input line
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and arrivals that depend on an underlying two state Mar-
kov chain. In [3]-[5] N input lines are assumed present.
In [3], it is assumed that the packet arrival process of
each of the identical input lines depends on an underlying
two state Markov chain (active/inactive). In [4] it is
assumed that the per line packet arrival process is a first
order Markov chain and at most one packet arrival is
possible. A closed form solution for the mean packet
delay has been derived for the latter case. In [5], a closed
form expression for the mean packet delay in the case of
Bernoulli per line arrivals can be found. The systems
presented in [3]-[5] (and some special cases of the system
in [2]), can be seen as special cases of the general system
investigated here.

As it will be illustrated in the last section of this
work, special cases of the general statistical multiplexer
(described in the next section) result in practical systems
which cannot be handled by the previous work in this
area.

II. The Statistical Multiplexer

Consider a statistical multiplexer fed by N input
lines. The input lines (which are mutually independent)
are assumed to be slotted and packet arrivals and service
completions are synchronized with the end of the slots.
A slot is defined to be equal to the fixed service
(transmission) time required by a packet. At most one
packet can be served during one slot. The first-in first-
out (FIFO) service discipline is adopted. Packets arriving
at the same slot are served in a randomly chosen order.
The buffer capacity is assumed to be infinite. The packet
arrival process associated with line i is defined to be the
discrete time process {aj}jzq,i=1,2, -+ ,N , of
the number of packets arriving at the end of the j* slot;
aji=k , 0=k<, if k packets arrive at the end of the j&
slot through input line i.

Let {2}};20, be a finite state Markov chain imbedded
at the end of the slots, which describes the state of the
input line i. Let S'={xjx}, - xip_,}, M!<®, be the
state space of {z}}jzo . It is assumed that the state of



the underlying Markov chain determines (probabilisti-
cally) the packet arrlval process of the corresponding line.
That is, if a(xl) st -Zg, is a probabilistic mapping from
S! into the nonnegative finite integers, Z, then the proba-
b]lnty that k packets arrive at the buffer at the end of the

b slot is given by d>(zj, )—Pr{a‘(zj)-—k} Furthermore,
1t is assumed that there is at most one state, xo such that
$(x3,0)>0 and that the rest of the states of the underly-
ing Markov chain result in at least one (ibut a finite
number of) packet arrivals, ie. ¢(x,0)=0, for
1sk=M!—1. All packet arrivals are assumed to occur at
the end of the slots. To avoid instability of the buffer
queue it is assumed that there is always one state x& ,
such as described above.

IIL Analysis of & istical multip]

IMa. General case : Asymmetric system.

In this section we study the statistical multiplexer
described before. In particular, a method for the deriva-
tion of the moments of the buffer occupancy is developed
and the first moment is computed. The mean packet
delay is then derived through Little’s theorem. The
asymmetry of the system is due to the fact that although
all packet arrival processes are described by the same
general model, no two of them are identical.

Let wi(k) and pl(k, i) kije St denote the steady
state and the transition probablhtles of the ergodic
underlying Markov chain, {ZJ}JZO’ associated with the i th
input line, i =1, 2, , N. Let also p"(j ,y) denote
the joint probability that there are j packets in the sys-
tem at the n'® time instant, or beginning of slot, (arrivals
at that point are included) and the states of the Markov
chains are v,y oo, yN, where
y=0G" JY); the arrivals which result from
the state y are not included at this time instant. The
vector y describes the state of a new ergodic Markov
chain generated by the N independent Markov chains
described before. Let w(y) and p(x, y) be the steady state
and the transition probabilities, respectively, and
§ = S'xS% - xSN be its state space. The evolution
of the buffer occupancy can be described by an N + 1
dimensional Markov chain imbedded at the beginning of
the slots, with state space T = (0, 1, 2, - )x S and
state probabilities given by the following recursive equa-
tions

A 2 P (j+1-v; x)

xe§ v=0

p(x, ¥) g5(v)

Po(i;y) =
i =R+l (12)

- i+ .
P(7)=3 3 p" ! (kx)p(x,y)eg(i+1-k)

xeS k=1
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+3p"1(05%) p(x, Y)e;(i) , 0=<i=R (1b)
xeS

where R is the maximum number of arrivals from all

input lines over a slot, x is the state of the N-dimensional

Markov chain at time instant n-1 and

£=Pe( 3 )=v) (22
with p;= EIVE’(V) » OF= E vig;(v). (2b)

gz(v) ii the probability that the N dimensional underlying

state x results in v packet arrivals. There are totally

MixM2x - - - xMN equations given by (1) for a fixed j

and all y € S where M! is the cardinality of s , 1i=1,2,
-, N.

Ergodicity of the Markov chains associated with the
input streams implies the ergodicity of the arrival
Pprocesses {a.;}jzo, i=1,2, , N. The latter together
with the ergodicity condition for the total average input
traffic A

xeS
imply that the Markov chain described in (1) is ergodic
and there exist steady state (equilibrium) probabilities.
Thus, we can consider the limit of the equations in (1) as
n approaches infinity and obtain similar equations for the
steady state probabilities. By considering the generating
function of these probabilities, manipulating the resulting
equations, differentiating with respect to z and setting
z=1, we obtain the following system of equations.
P'(Ly)=3P'(1;x) p(xy)}+

xeS

+3 (rg-Dp(x.y)n(x)+ 2 p(O0x)p(x,

xe8 xeS

;) , yeS (4)
where P'(l;;) denotes the derivative of the generating
function of the probability distribution p(j;y) evaluated
at z=1,

(x)= H wi(x) p(x,Y)—— H p'(¥y)
=1

and p(O;x)=p0p(x0,x); pg=1—A is the probability that
the buffer of the multiplexer is empty and

= (xdx¢, - - - xY) is the only state that results in no
packet arrival. The above equations are linearly depen-
dent and thus an additional equation is required. By
adding all the above equations and using L’Hospital’s rule
we obtain an additional linear equation which is linearly
independent of those in (4) and it is given by

5, 2 0P (13 2z Dp(03)+

xeS

+[2+0-3pg]w () ] =0 (5)



By solving the M'x -+ xMYN dimensional linear
system of equations which consists of (5) and any
M!x - -+ xMN — 1 equations taken from (5), we com-
pute P(l x), x€8. Then, the average number of
packets in the system, Q=P (z), can be computed by
adding all the solutions. The average time, D, that a
packet spends in the system can be obtained by using
Little’s formula as the ratio D=Q/\.

The k™ derivative of P(z), evaluated at z=1, gives
the k*® factorial moment of the number of packets in the
system, [6], it turns out that the k th moment of the buffer
occupancy can be evaluated by differentiating (4) k-1
times, setting z=1 and solving the resulting system equa-
tions. By differentiating (4) and setting z=1, we get the
followmg system of linear equations with respect to
P(1;y) , yeS,

P ()= SN (13)+ 3, [wFn(@+

x€eS xe8

+2u(P (1) +0(09) [p(7) ©)

where

W= 3 - De0) = S (- Do-Des)

v=0

The required linearly independent equation is obtained as
in the previous case and it is given by

>3 [p,——l P(1; ;)=—*E_{p.ff+3p.ft [P'(l ; X)+

xeS xeS
+ 903 )] } Q)
where
w¥= 3 (1-1)(r-2)(v-3)e(¥)

v=0
By solving the linear equations given by (6) and (7) we
compute P"'(1;x),x €S. The second factorial moment
of the number of packets in the system, P’ (1) , is
obtained by adding all the solutions. Finally, the vari-
ance V can be obtained from, [6],

2

V=p"()+P'(1)- [P (1)] ®)

Notice that the solution of the same number of

equations is required for the computation of any moment.

Furthermore, the coefficients of the unknown quanitities

are the same in all systems of equations except from
those of the last linearly independent equation.

Consider the special case in which the per stream
arrival process is Bernoulli. The underlying Markov
chain has one state and the equations (4) and (5) become

p(0)=1-p #)

and
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2(n~1)P (1)+2(n—1)p(0)}+[2+0-3u]=0 (5

where

p=321, o= zx’(l—x‘)w

i=1

and where A! is the packet arrival rate of the i*® line.
From (6’), by substituting (5') and manipulating the
resulting expression, we get the following equation with
respect to P (1)

N N
2 TN+ u{l-p)

i=1 j=1
(1-n)

(9)

Q=P'(1)=

where Q,, denotes the average number of packets in the
system. The mean packet delay, Dy is given by Qy/n,
which is a known result, [5]. The variance of the number
of packets in the system, which is useful for the buffer
design, has not been derived before for the case of Ber-
noulli per line packet arrival processes. In this case equa-
tion (9) becomes

P(1)=

[u"+3u”QB+3u” l—u)] (10)

3(1

A closed for expression for the variance of the number of
packets in the system, V}, can then be obtained in this
case by using (8)-(10).

ecial case : etric sys

Let us now assume that the input processes are
identical, i.e. the parameters of all such processes are
identical. Let M be the cardinality of any of the involved
one dimensional Markov chain. As it will be shown
shortly, the number of equations which need to be solved
for the calculation of the mean delay in the queueing sys-
tem is reduced significantly. This can be easily seen by
observing that the unknown quantities in (4) and (5),

P'(1;x), are the same for certain values of x. For
instance, the quantity that corresponds to state
x=(x,Xp,X3, * " * ,Xy) is equal to that of state
x=(Xg,X,X3, " * * ,XN)-

If ;(;):(vlf;),vz(;), - vp(X)) is an M-dimensional
vector with vi(x), i=1,2,...,M, denoting the number of
input processes at state S;, then each such vector v(x)
with the constraint 3 vi(x)=N, represents a class of

i=1
equivalent states x. The number of equivalent states x in
a class v(x) is given by (pp. 20, [9])
- N N!
c(x)= = =, = |= = =, =
vi(x)iva(x), - - vm(X)) T v () () vt

Let F be the set of representative states x of the




symmetric system (i.e. no two states g_eF belong to the
same class of equivalent states); let v(x,) be the class of
the equivalent to x, states. For each x,,y,€F, equations
(4) and (5) can be written as follows.

P(Ly)=3{ 3 p(x¥) P (1x)+

x.6F xeV(x,)

+ 3 (g, ~DR(Tom(x)+ 3 pOX)P(60) » YoeF (43

xe8 xeS

3 e(x)2(pg,—1)P (15x)+
X.€F

+_2§ [2(#;—l)p(0;§)+[2+u—3u;]ﬂ(§)]=0 (52)

By solving the above equations with respect to
P (1;x,), X,€F, we obtain the first moment of the buffer
occupancy from the expression

P(1) = 3 P(Lix)e(x)
X €F

For the computation of the second moment in the
case of the symmetric system we modify equations (6)
and (7) in a similar way. Similar procedure can be
applied for the computation of any higher moment as
well. Depending on the number of input streams, the
reduced number of equations, K, in (4a) and (5a) is easily
computed. For the case of N=2 and 3 input streams the
number of these equations is given by the next theorem.
By following the procedure outlined in the proof of this
theorem, similar expressions for N>3 can be easily
derived.

Theorem

Let M be the cardinality of S!' (ie. of the 1-
dimensional underlying Markov chain, as defined before).
The number of classes of equlvalent N-dimensional states

x—(xl,xz, C XN xkes k=12, - - - ,M, is given by K,
where
K=M+M }‘g'l for N=2

K=M(M+ M—IGM—2) for N=3 0O

Proof:

The proof is based on the enumeration of all M
dimensional vectors v(x)= (v, (%),va(x), - - - vp(x)) with

S vi(x)=N, and where v(x) is the number of input
j=1
processes in state x; (pp. 20, [9]).

The above theorem indicates that significant reduc-
tion in the number of equations can be achieved in the
case of the examined queueing system under symmetric
inputs. In the later case the required number of linear
equations is K versus MY for the general asymmetric
case. Partially symmetric inputs will also result in a
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significant reduction of the number of the equations.

IV. Results and conclusions

In this section we use the results of the previous
analysis to evaluate the first and the second moments of
the buffer occupancy and the mean packet delay induced
by the statistical multiplexer, under specific packet
arrival processes. Each of the input lines is assumed to
carry at most one packet over a slot. The following
traffic situations are considered.

() Bernoulli arrivals per slot (arrival / no arrival).

(b) First order Markov arrivals per slot (arrival / no
arrival).

Arrivals appear in blocks of length L (slots), where L
follows a general distribution. The arrival of the
first packet after an idle slot (occurring with proba-
bility r ) is assumed to be followed by consecutive
packet arrivals over the next L-1 slots.

(©)

Model (c) corresponds to an on-off line where the
length of the off period is geometrically distributed and
the length of the on period has an arbitrary distribution.
This model can be used for the deseription of the traffic
of a message switched line (or node), where a message
may consist of more than one packets. It may also
describe the output process of a multi user communica-
tion network (one successful transmission is possible over
a slot). Particularly, the output traffic of a reservation
multi user communication network could be described by
a general distributed number of packets, transmitted over
a2 number of consecutive slots, during a reservation
period. Notice that in those message arrival models,
packets are transmitted one at a time slot and the result-
ing packet arrival process is different from one which
would assume simultaneous arrivals of all packets of a
single message.

To describe the arrival process in terms of the gen-
eral model introduced before, we define the state of line i
at the end the j*® slot to be given by z], where zj =0, if
no packet arrived in the j b slot and zj—k 1<k<L if
there are k packets of a message to be transmitted over
the next k slots, starting with the j+1** slot. In this
environment, a message describes a block of packets
arriving through the same line over consecutive slots.
According to the message arrival model described above,
a message is generated during a slot with probability r if
the slot is empty, and with probability 0 if the slot is
occupied. This scenario of the message arrival process
could describe the output of a reservation multi user ran-
dom access slotted communication network, where an idle
slot is necessary for the release of the channel. If no such
a slot is necessary, we allow a nonzero message generation
process over slots in states 0 and 1; in this case the next
message transmission may start right after the end of the
previous one (the coming end is declared by the line state
1). This second scenario may also represent the output



of a single message buffer which can receive a new mes-
sage while in the last stage of the transmission of the pre-
vious one. We can also generalize, by defining the line
state to be the content of the buffer at the other end of
the line; L in this case denotes the buffer capacity.
Different message acceptance disciplines may also be
incorporated. For instance, if the length of the new mes-
sage arriving at the buffer exceeds the available capacity
at that time, the message can either be rejected or be
accepted in part. All these cases can easily be translated
into the appropriate transition probabilities of the process
{z}}, which can be easily shown to be a Markov chain
with state space S={0,1, ... ,L}.

The process {zji} in the case of the initial scenario (a
message can be generated only when the line state is 0),
is a Markov chain with state transition probabilities
given by (we omit the superscript i for simplicity)

1 j=k-1, 1=k=L

. rd(j) k=0, 1=<j=<L
p(k,j) = 1—'r k=j=0
0 otherwise

where d(j) is the probability that the length of a message
(block) is j, 1=<j<L. The probabilistic mapping in this

case is
1
a(k) = 0

The steady state probabilities of {zjl} can be easily
obtained from the system of equations

I=np

1=<k=<L

L
3 w(k)=1
¥=0

where Il is the vector of steady state probabilities and P
is the matrix of the transition probabilities.

The Bernoulli approximation for the packet arrival
process described before has parameter p (packet arrivals
per slot) equal to p=1-m(0). The first order Markov
approximation (arrival=1, no arrival=0) has the. follow-
ing parameters

‘l'l‘m(0)=11'(0) ’ “m(1)=l"‘"m(0)

Pu(0,0)=1-pn(0,1) , pu(1,0)=1—py(1,1)
where
T(0)
(1)

For this model, we define the burstiness coefficient vy to
be equal to

Pw(0,1)=r , py(1,1)=1—p(0,1)

'Y=pm(111)_pm(0’l)

To obtain some numerical results we assume that
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N=3 , L=5 and d(1)=.1, d(2)=.2 d(3)=.3 d(4)=.3
d(5)=.1. The exact value of the mean packet delay, D,
induced by the statistical multiplexer can be obtained by
solving the equations (5) and (6) and applying (7). The
approximate delay results under the Bernoulli, Dy ,(see
(7) and (11) or [5]) and the Markov, D, (see [4]) models
are calculated from the closed form expressions that are
available for these cases and are given by

N N
S 3 e
D.= 1 n=1 m>n
b= |1+ N N
(1= S\ 3 an
n=1 n=1
and
N N n m
> 3 A" 1+—7—ll +—7——m
D n=1 m>n 1—y 1—y
o= |1+ N N
(1-3 A7) 3 a2
n=1 n=1

where Al is the packet arrival rate of the i*® line.

The delay results for different values of per line mes-
sage (block) arrival rate r, which result in a per line
packet arrival rate roy, and a total packet arrival rate
Tiots together with the corresponding burstiness coefficient
7, are shown in Table I. From these results, 2 number of
interesting conclusions may be drawn. It can be noticed
that the Bernoulli approximation results in smaller delay
than the one calculated under the Markovian approxima-
tion. This is always the case; the latter can be shown
directly from the corresponding equations, keeping in
mind that y=0 in the case of the Bernoulli model while
¥>0 under the Markovian model. The latter fact can be
explained intuitively as well. Under the Markov model,
packet arrivals tend to arrive in bursts. Whenever simul-
taneous bursts of arrivals occur, the content of the buffer
of the node will keep increasing until the end of all but
one burst and cannot start decreasing before the end of
all bursts. Clearly, this situation (not present under the
Bernoulli model) results in the increased packet delays.
We believe that the latter behavior of the Markov model
(or the geometrically distributed message length) is the
reason for the larger delay results obtained under this
approximation, when the true arrival process has the gen-
eral length distribution described before. The Markov
model creates concrete blocks of packets of average
length equal to the average length of the generally distri-
buted message length. On the other hand, generally dis-
tributed message lengths result in better randomized
empty slots which reduce the intensity of the queueing
problems.

In Table II, the results for the mean and the vari-
ance of the number of packets in the multiplexer are
shown for packet arrival processes as in Table I. Both



the exact results and those obtained under the Bernoulli
approximation on the true input processes are shown. It
can be easily observed that the error due to the Bernoulli
oversimplification of the true input processes is very
large. Since both the mean and the variance of the queue

length are critical quantities for the determination of the
appropriate buffer size, it can be easily concluded that a
buffer design based on the results of the approximate
analysis may be completely inappropriate.

In Table ITI, similar results are presented. In this
case it is assumed that two of the packet arrival processes
are exactly described by the Bernoulli model and one by
the message length distribution used before. The total
input traffic is .90 packets per slot; oy is the intensity
of the non-Bernoulli line and (.9-r,y)/2 is the intensity of
each of the Bernoulli lines. The delay error introduced
by the adoption of the Bernoulli model for the packet
arrival process of the non-Bernoulli line, is also shown.
Notice that the error is significant ("20%) even when the
dependent input line carries less than 15% of the total
load. This observation implies that even if more than
85% of the total traffic is accurately described, the error
in the approximation can still be large.

The simple application presented in this section indi-
cates that our general model for the statistical multi-
plexer studied in this paper can be useful for the analysis
of simple but difficult to analyze systems. A great deal of
previous work can also be seen as a special case of the
system considered here.

r T Tiot D Dy Dp
.05 | .134 | 403 1.654 | 1.224 1.982 | .63
.10 | 236 | .710 2.997 | 1.816 4.045 | .58
12 | 271 | 813 4.330 | 2.453 6.113 | .56
.14 | .303 | .908 8.064 | 4.287 | 11.97 .54
15 | 317 [ 952 | 14.84 7.643 | 22.47 .53
Table 1

Results for the mean delay for N=3 input lines.

r Tout | Tiot Q N v Vi
.05 | .134 | .403 666 .493 1.222 455
.10 | 236 | .710 2.127 | 1.289 6.213 1.548
12 | 271 | 813 3.522 | 1.995 14.364 3.385
.14 | .303 | .908 7.324 | 3.893 55.685 | 13.132
15 | 317 | 952 | 14.126 | 7.278 | 201.313 | 48.325

Lable II.

Results for the mean and the variance of the queue length
for N=3 input lines.
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T Tout D Dy, - error Dy, - error

05 | 134 [ 4.861 | 3.771 -22.4% | 5.693 +17.1%
10 | 237 | 5.229 | 3.967 -24.1% | 6.350 +21.4%
20 | .383 | 4.809 | 3.943 -18.0% | 5.953 +23.7%
30 | 482 | 4105 | 3.724 -09.3% | 5.082 +23.8%
40 | 554 | 3.481 | 3.464 -00.05% | 4.282 +23.0%
50 | 608 | 2.984 | 3.210 +07.6% | 3.636 +21.8%
60 | .650 | 2.597 | 2.977 +14.6% | 3.128 +20.4%

Table III.
Results for the mean delay for N=3 input lines.
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