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Abstract

In this paper, two non-communicating stations
share a time slotted communication channel on a
random slot assignment basis. The optimal assign-
ment policy is derived and a simple strategy, based
on a threshold test, is developed for the implemen-
tation of the optimal policy in a dynamically chang-
ing environment. Although the random slot assign-
ment policy is inferior to the optimal periodic,
fixed slot assignment policy, it is shown than it
achieves the performance of that policy as the vari-
ance of the packet arrival process increases; the
optimal periodic, fixed slot assignment policy is
not, in general, implementable and it is very diffi-
cult to become adaptive to the conditions of a
dynamically changing environment.

L. Introductio

In this paper a common channel is shared by
two distributed stations on a time slot assignment
basis. Information is packetized and the packet
size is assumed to be equal to the time slot; the
time slot is defined to be equal to the transmission
time of a single packet. Each station has no
knowledge regarding the packet arrival process at
the other station. Information regarding the com-
mon channel activity is assumed to be available to
the stations, if an adaptive channel allocation
scheme is to be implemented. In this case, the
channel activity information is utilized for the esti-
mation of the traffic at each station. The stations
are assumed to be synchronized with the slot boun-
daries and they are allowed to transmit only at the
slot boundaries. The slot boundaries form the
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clocking times of two identical and synchronized
random number generators. Each station is
equipped with one such random number generator
for the implementation of the random slot assign-
ment policy. If the value of the random number is
less than B the slot is assigned to station 2; other-
wise, it is assigned to station 1. Thus, 100(1-B)%
of the channel capacity is assigned to station 1 and
1008 % of it is assigned to station 2. This random
slot assignment scheme will be defined as policy
R(B) for station 1 and policy R(1-B) for station 2.
The standard TDM policy which assigns every
other slot to a station will be defined as the fixed
slot assignment policy F, [1], [2], [3].

The random, conflict-free, slot assignment pol-
icy has been briefly considered in [8] for the pur-
pose of demonstrating the merit of the fixed slot
assignment policy compared with the random one.
It has been shown in [8] that the optimal periodic,
fixed slot assignment policy is superior to the ran-
dom slot assignment one, under independent
packet arrival processes; the optimal policy is
defined to be the policy which induces the
minimum mean packet delay. Then effort was con-
centrated on the derivation of an implementable
periodic, fixed slot assignment policy which would
achieve the optimal capacity allocation. The gol-
den ratio policy was proposed in [8] as a policy
which could result in the optimal channel alloca-
tion, at least under certain traffic conditions. The
difficulty in achieving the theoretical optimal allo-
cation is discussed in [8], especially under certain
traffic situations. In addition to this problem it is
not clear how an implementable near-optimal,
periodic, fixed slot assignment policy would
become adaptive to a dynamically changing packet
traffic environment and what the resulting perfor-
mance would be.

In view of the above comments, the superior-
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ity of an implementable periodic, fixed slot assign-
ment policy over the random one becomes ques-
tionable, particularly when a simple policy which is
adaptive to packet traffic changes is desirable.
Furthermore, it is shown in the next section
(Corollary 1) that the (easily and accurately imple-
mentable) random slot assignment policy achieves
the performance of the theoretical periodic, fixed
slot assignment policy asymptotically, as the vari-
ance of the traffic approaches infinity. As a conse-
quence, when the variance of the traffic is large,
the deviation of the random slot assignment policy
from the optimal periodic, fixed slot assignment
one could be smaller than that of an implementable
near-optimal periodic, fixed slot assignment policy.

Under identical packet traffic conditions in
both stations, policy F (defined above) is the
optimal periodic fixed slot assignment policy for
the system of the two stations. Before policies F
and R(B) are applied to the system of the two sta-
tions (section III), their performance in terms of
the induced mean packet delay to a single station is
investigated in section II. Although the expres-
sions for the mean packet delay induced by policies
F and R(B) may be found in [8] or elsewhere for
policy F, [2], [3], they are derived in this paper
(Theorems 1 and 2) by following a new, simple and
unified approach for both policies. This approach
is directly applicable to the case when the system
consists of an arbitrary number of users, as well.
Furthermore, although the closed form expression
for the induced mean packet delay is obtained for
independent per station packet arrival process, the
derivation approach is applicable to the case of
Markov modulated packet arrival processes to the
stations, which are dependent processes. The
resulting  queueing models under policies
Fand R(B) have not been analyzed in the past,
under the dependent, Markov modulated packet
arrival processes. The optimal policy for a single
station in P={F, R(B) for 0=<B<1} is derived and
the excess capacity 1/2-B required for policy R(B)
to achieve the optimal performance of policy F is
established. Numerical results (Fig.4 and 5) show
that the excess capacity is insignificant for large
variance, which is a manifestation of the result
(Corollary 1) that policy R(B) becomes optimal as
the variance of the packet arrival process
approaches infinity.

Notice that, unlike policy F, policy R(B)
assigns a variable portion of the channel capacity to
a station, according to the value of 1-B. In the sys-
tem of the two stations, a larger capacity assign-
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ment to one station will reduce the available capa-
city to the other station and, thus, it will increase
the intensity of the queueing problems in the latter
station. The performance of the system of the two
stations under policy R(B) is investigated in section
III; policy R(B) is defined as the system policy
which applies policy R(B) to station 1 and policy
R(1-B) to station 2. The optimal policy R(By)
(defined as the one which minimizes the induced
mean delay of a random packet) is derived and it is
compared with the fixed policy F. From the latter
comparison, the optimal policy in P={F, R(B) for
0=B=1} is established. Again, although policy F is
optimal under completely symmetric traffic condi-
tions, the performance of the optimal policy R(B) is
practically the same for large variance of the packet
arrival process. Thus, when the variance of the
packet arrival process is significant, both (easily
implementable) policies perform similarly. It is
under asymmetric traffic load that policy F looses
its optimality and the optimal such policy is in gen-
eral, only approximately and non-easily implement-
able. Such a near-optimal policy becomes more
complicated if, in addition to the traffic asymmetry,
the parameters of the traffic vary in time; in this
case, the slot assignment policy needs to become
adaptive. While an adaptive policy R(B) is easily
implementable through the adaptation of the pro-
bability 8 (and a strategy is developed for this pur-
pose, Corollary 4) an adaptive optimal or near-
optimal implementable, periodic, fixed slot assign-
ment policy would be very complicated and such a
policy, to our knowledge, has not been proposed
anywhere. For this reason, only the easily imple-
mentable policy F is consider here for comparison
to the optimal policy R(B); under asymmetric
and/or time varying traffic conditions the optimal
policy R(B) is shown to outperform policy F in
most cases. It should be pointed out that the
objective in this paper is not to show that the ran-
dom slot assignment policy is better than the
periodic, fixed slot assignment one, but to study a
simple, implementable and potentially adaptive slot
assignment policy which is also comparable in per-
formance to the theoretically optimal fixed slot
assignment policy whose practical implementation
is not always possible (especially under time vary-
ing traffic conditions) or it may be only approxi-
mately implementable at the expense of increased
complexity and a possibly large deviation from the
optimal (theoretical) performance.

In section IV numerical results are presented
and useful conclusions regarding the relative per-
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formance of the policies are drawn. The effect of
the asymmetry (with respect to the rate and/or the
structure) of the traffic on the system performance
is also illustrated.

IL._Optimal policy in P f. inel ;

In this section, the performance of the policies
in P={F, R(B) for 0=<B=1} is investigated and the
optimal policy in P is determined. No constraint
on the available capacity 1-B under policy R(B) is
imposed, as opposed to policy F under which the
available capacity is always .5. This way, the capa-
bilities of policy R(B), 0=B=1, are fully investi-
gated. An optimal policy in P determines the best
slot allocation policy for a particular station
without taking into consideration its possible nega-
tive effect on the resulting policy which is applied
to the other station of the system. The policy in
P={F, R(B) for 0=B=1}, under which optimality is
achieved for the 2-station system, is investigated in
section III.

Let ., sz be the mean and the variance of the
(independent per slot) packet arrival process of the
j™ station of the system, j=1,2 . The following two
theorems provide for the induced mean packet
delay under policies F and R(B), 0=B=<1.

Theorem 1: The mean packet delay induced by pol-
icy Fis given by

pl, o

T2 w02
for p,j<-;— , j=1,2 (stability condition).
Proof: The queueing problem in the buffer of sta-
tion j operating under policy F is the one depicted
in Fig. 1. The server (which is capable of serving
one packet per slot) is assumed to be unavailable
every other slot, giving rise to a discrete time
queueing system with periodic service interrup-
tions. This queueing system can be studied by
developing the equivalent statistical multiplexer
shown in Fig. 2 and applying the analysis presented
in [4]. Let {aj}i=o denote the packet arrival process
to station j. Let {a)}i=o denote a packet arrival
process which delivers one packet every other slot;
let p;=.5 denote the resulting packet arrival rate.
The packets delivered by [aJ},zo are assumed to
have priority over those delivered by {aj}i=o. Thus,
the delay of the packets from {aj}q is equal to
one. The two queueing systems are equivalent
with respect to the induced delay for the packets

=12 )

3C.4.3.

delivered by {aj};~o. Whenever the server is una-
vailable in the queueing system of Fig. 1, the server
serves packets from {aj)};»o in the queueing system
of Fig. 2. The packet arrival process {aj}i=g
together with the adopted priority policy in the
queucing system of Fig. 2 completely represent the
interruption policy in the queueing system of Fig.
1. Let Dy, denote the mean packet delay in the
queue of Fig. 2. The work conservation law [5],
[6], implies that

1 +DFu.
g RtDf
Di3=

L

The queueing system of Fig. 2 has been analyzed in
[4] under Markov modulated generalized Bernoulli
packet arrival processes. According to this pro-
cess, the state of an underlying Markov chain
determines the distribution of the number of
packet arrivals over a slot. It is easy to see that
the packet arrival process {ajli=q can be described
in terms of an underlying Markov chain with state
space §i={0,1] and steady state and transition pro-
babilities given by

w(0)=m(1)=
and distribution, $(x,k) of the number of packet
arrivals, k, given a certain state, x, given by
$(0,0)=1 , é(1,1)=1

When the number of stations is N, then the
corresponding Markov chain would have N states,

N-1 of which would deliver one packet, describing

, p(0,0)=0 , p(1,1)=0

.

> —> Ij&oe

Figure 1

The queueing system with service interruptions.

i
R

Figure 2

The equivalent queueing system.
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the visit of the server to the other stations in the
original queueing system with service interruptions.

The Markov modulated generalized Bernoulli
model which describes the process {aj};~q (assum-
ing here an independent per slot packet arrival pro-
cess) is simply a generalized Bernoulli model which
can be seen as being based on a single state of an
underlying Markov chain with state space S;={s}
and parameters

m($)=1, p(s,)=1 , é(s,k)=g(k)
where g(k) is the distribution of the number of
packets delivered by the independent process
{al)i=g over a slot. By applying the analysis
presented in [4] the followin Pgexpressxon is derived
for the mean packet delay Dy5.

2
ph=-—L {H'L’# o _|
(r5+15) 1-24; )

Finally, (1) can be obtained from the above. A
detailed proof may be found in [9]. O

Theorem 2: The mean packet delay induced by pol-
icy R(B), is given by
D (@)- L+t

I (=B
for p;<1-B (stability condition ).
Proof: The queueing problem in the buffer of sta-
tion j operating under policy R(B) is the one dep-
icted in Fig. 1, where the service interruptions are
now random. By following the approach used in
the proof of Theorem 1, the equivalent queueing
system shown in Fig. 2 can be derived. Under pol-
icy R(B), the packet arrival process {aj};=g, describ-
ing the service interruption policy, is a Bernoulli
process with rate B. The server is absent in a slot
with probability B (Fig. 1) or a priority packet is
delivered by {af};>( with probability B (Fig. 2). By
following the approach used in the proof of
Theorem 1 and assuming that {a—'},>0 is an indepen-
dent process expression (2) is obtained. O

» 71,2, 0=p=1 (2)

It is of interest to see how policy F compares
with a policy R(B) for 0=8=<1. Let P(B)=
{F, R(B)}. The following theorem provides for the
optimal policy in P(12). By setting =12 in (2),
the following can be shown.

Theorem 3: Policy F is optimal in P(12) for
Kj<12. That is, it is the optimal among those poli-
cies in P which assign half of the available capacity
to the station under consideration. O

0250

Corollary 1: For fixed packet arrival rate
i (1j<12), the normalized deviation d of policy
R(12) from the optimal policy in P(12) decreases
monotonically as 0]-2 increases. Policy R(12) is
asymptotically optimal for o'jz -,
Proof:
DR(12)-DF _ 1
DF 2(@1—2;1.24-0 )
and thus limd=0. O
o}
Corollary 1 implies that, for sufficiently large
], policy R(12) can be arbitrarily close to the
optimal policy F. Notice that as B increases, the
capacity 1-f assigned to the station decreases and,
thus, an increase in the induced mean packet delay
is expected. This observation (or by inspection
from (2)) establishes the following.

Corollary 2: DR(B) is a monotonically increasing

function of . O

Theorem 1 implies that policy F is optimal in
P(12). The latter, in view of Corollary 2, implies
that F is optimal in P,(12), where P, (12)=
{F, R(B) for B=12}. The following theorem pro-
vides for the set of policies P_(Bg)={F, R(B) for
0=B=By} in which policy R(B) is optimal.

Theorem 4: Policy R(B) is optimal in P_(B). Policy
F is optimal in P,(By) where By is the optimality
threshold given by

0'-2 1

B N——

=B (1—2)Lj)}hj+20'j2 2 3
Proof: The existence of a threshold B as above is
guaranteed in view of the monotonicity of DR(B)
(Corollary 2) and the fact that R(0) is optimal in
P(0). The latter is true since a policy which never
makes the server unavailable (8=0) induces smaller
delay than that under a policy which makes the
server unavailable every other slot. Let B, be the
value of B which makes both policies in P(B)
optimal, that is D®(Bp)=DF. By using (1) and (2)
and solving the previous equation with respect to
Bo we obtained the result. O

From (3) it can be seen that By~12 as o7~
That is, both policies become optimal in P(12) as
o7 - ®, which was shown before (Corollary 1).
The following corollary is evident in view of the
previous theorem.
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Corollary 3: The excess capacity c¢ required in
order for policy R(B) to become optimal in P is
given by
1 1
=== <.
c ) BO > lL] )

Notice that c-0 as o7-®, which implies the addi-
tional capacity is insignificant for large variance of
the traffic. O

IIL._Optimal policy in P for the system

The developments of the previous section
imply that the random slot allocation policy R(B)
can be optimal in P at the expense of an additional
capacity ¢ compared to that under policy F (Corol-
lary 3). In a 2-station communication system, the
latter implies that an optimal policy R(B) for one
station might cause increased queueing problems to
the other station or even instability if its packet
arrival rate is larger than the assigned capacity.

In the case of an asymmetric system, the
reduction in the mean packet delay due to the
adoption of an optimal policy R(B) by one station
might more than compensate for the increased
mean packet delay of the other station. Policy F
cannot be adjusted to asymmetric packet load con-
ditions. Under such conditions, the optimal
periodic, fixed slot assignment policy is not policy
F and it can be, in general, only approximately
implemented, [8]. Even if the traffic parameters
were such that an implementation as suggested in
[8] is possible and well performing, its complexity
is significantly larger than that of policies R(B) and
F and its adaptation to a dynamically changing
traffic environment probably more so. For these
reasons only policies R(B) and F are considered as
candidate policies which are easily implementable.
Furthermore, policy R(B) is easily become adaptive
through the appropriate selection of the parameter
B. A strategy for the identification of the optimal
capacity allocation under policy R(B) is developed.
By properly adjusting B, policy R(B) is capable of
handling temporary severe queueing problems or
temporary queueing instabilities and outperforming
the (easily implementable) policy F. These issues
are investigated in this section.

Let F and R(B) denote the policies F and
R(B), respectively, applied to a 2-station communi-
cation system. Under policy F, policy F is applied
to each of the stations. Under policy R(B), policy
R(B) is applied to one station and policy R(1-B) is
applied to the other. Let P={F, R(B) for 0=B=1}
be the class of all policies considered here. An
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optimal policy in P is defined to be the policy
which minimizes the mean delay of a random
packet (coming from any of the stations). Let p;,
sz be the mean and the variance, respectively, of
the packet arrival process in station j, j=1,2. The
next theorem identifies the optimal policy in {R(B)
for 0=p=1). The following lemma is useful for the
proof of that theorem.

Lemma 1: Let p=pi+p,<1 and pp<B<l-p,g.
Then,

(a) fi(B) is strictly increasing for 0=p<1-p, and
convex U

(b) f(B) is strictly decreasing for pup<B=1 and
convex U

(¢) G(B) is convex U for py<p<1l-py, where

mBtof p(1-B)+of
s—, LB
f1(B) 20prp) 2(B) 2(Bry) 4
G(B)=f1(B)+(B) )
Proof: It is easy to show that the first and the

second derivatives of f;(8) with respect to B are
strictly positive for 0=p=1-p; and, thus, f;(B) is
strictly increasing and convex U. Similarly, the
first and second derivatives of f(B) are strictly
negative and strictly positive, respectively, for
wy<B=1 and, thus, f(B) is strictly decreasing and
convex U. Part (c) is true in view of the fact that
both functions f;(B) and f,(B) are convex U, [7]. ©

Theorem 5: Let p=p+p,<1. The optimal policy
in {R(B) for 0=p=1} is policy R(B¢), where

Bo=arg{orsngg 1G(B)}

and G(B) is given in Lemma 1. It turns out that By
is the root in [0,1] of the second order polynomial

(c1-c2)B>+ [2(1—u1)<>z—2 HaCy ] B+ufci-(1-12)°c6)
where
cr=p (=)0 | =py(l-py)+03

Proof: The optimal policy in {R(B), 0=B=1} is the
policy R(B) which minimizes the induced mean
packet delay

K 27
Df(R)+
K1t B1tpg

By substituting (2) and manipulating the resulting
expression we obtain

DR(1-B)

DR(B)=
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BR(B)=+— -

2 ptpy RS
Thus, minimizing DR(B) with respect to B is
equivalent to minimizing G(B) with respect to pB.
The existence of B, is guaranteed since G(B) is a
convex U function (Lemma 1). By setting the first
derivative of G(B) equal to zero and manipulating
the resulting equation the proof of the theorem is
completed. O

[ (B)+5(B)]- 3 +——G(B)

The above theorem provides for the optimal
policy R(Bo) in {R(B) for 0=B=1} by identifying the
optimal value By. In a real, dynamically changing
environment, it is of interest to develop a simple
mechanism capable of testing whether a certain
current policy R(B) is optimal or not and, more
important, to develop a strategy which brings the
system close to the currently optimal point of
operation. The following theorem sets the ground
for the development of such a strategy.

Theorem 6: Let B be the operation point (adopted
policy R(B) ) of a system. The optimal point Bo

(policy R(By)) is such that
Bo<B if h(B)>-1
Bo>B if h(B)<-1

Bo=B if h(B)=-1
where
£2(8)
h(B)=— , Ra<B<l-
® £(8) Ko <B<1-p,

and f(B), f,(B) are the first derivatives of

f1(B), f2(B) given by (4). A typical function h(B) is

shown in Fig. 3.

Proof: It is easy to show that f,(B)>0, f; (8)>0,

£,(B)<0 and f, (B)>0 (see proof of Lemma 1).

Then,

wp- EOROEON®
[f:(B)]

Thus, h(B) is a strictly increasing function of B for

P<B<l-p;. Theorem 5  implies that
G (Bo)=f1(Bo)+f,(Bo)=0 ; therefore,

(o) _

£1(Bo)

The above equation, together with the monotoni-
city property of h(B) complete the proof. O

The following Corollary is obvious in view of
the above theorem.
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Corollary 4: Let R(B) be the currently adopted pol-
icy. The optimal point By (policy R(Bg) ) can be
reached by the following strategy : § = { increase B
if h(B)<-1, decrease B if h(B)>-1, maintain B if
h(B)=-1}. D

The above strategy generates a sequence of
policies {R(B;)}; which converges to the optimal
policy in {R(B) for 0=B=1}, R(By). Strategy S can
be used for the adaptation of policy R(B) to the
varying optimal policy R(B), in a dynamically
changing environment. For instance, if the rates
w1 and p, change, strategy S is capable of adjust-
ing the operation of the system so that optimality
can be achieved, provided that some estimates of
the traffic parameters be available. The mechan-
ism for the generation of such estimates, its good-
ness and the detailed implementation of strategy §
are beyond the scope of this paper. The common
channel is assumed to be capable of providing the
information necessary for the derivation of the esti-
mates and the identical update of the random
number generators (B). The following Corollary
provides some intuitively expected results. The
proof and some discussion on the implications of
this corollary can be found in [9].

Corollary 5: Let m=pi+p,<1 and 0=(l-p;—p,)

(bimia). () 1F b1, then By= 222 if ang
h(B)
D
4

Figure 3
A typical function h(B).
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only if 02=02-6. If p,>p,, then By= %-’L—l;&"l if

and only if oZ=0?+6. Equalities hold when the
corresponding conditions hold with equality as
well. (b) If py=p, then Bo=% or Bo<% or Bo>';‘
depending on whether 07=07 or o ?>0% or o?<0?,
respectively. O

So far the optimal policy in {R(B) for 0=p=1}
has been studied and the optimal value By has been
derived. The optimal policy in P={F, R(B) for
0=p=1} is given by the next theorem.

Theorem 7: Let p;+p,<1. The optimal policy in P
is the optimal policy in {R(8), 0=B=1}, R(By),
given by Theorem 5, if and only if one of the fol-
lowing conditions is satisfied:

1 1
(a) m>; or >
(b) _2“ 1_2;1'2 > G(Bg), where G(B) is given

in Theorem 5.
Proof: = (a) If either p.1>—;- or u2>% is satisfied,
then one of the two queues would be unstable
under policy F and, thus, the optimal policy in P
will be R(By), since F would induce infinite mean
packet delay to at least one of the stations. (b)
The mean packet delay under policy F is given by
Bitps B1tiy
where DF is given by (1), j = 1,2. The mean
packet delay under the optimal policy R(Bg) in
{R(B),0=B=1} is given by

D]

DR(1-Bo)

where DR(Bo) is given by (2), j = 1,2. R(By) is
optimal in P if and only if

DR(By)<DF

<R _ .31 R ]
D (Bo)-FL o D (Bo)+p "

By substituting for DR(By) and DF and mani-
pulating the resulting expression the desired result
is obtained. O
Corollary__6: Policy F is optimal in P if
1=Ky, 07=0F and pi+pp<l.

Proof: Tt is easy to show by direct substitution that
the necessary condition (b) of Theorem 7 is not
satisfied. The proof can be also obtain by invoking
Corollary 5. Corollary 5-(b) implies that the
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optimal policy in {R(B), 0=B=1} for p;=p, and
of=0% is policy R(12). Under policy R(12), each
station of the system operates under policy R(12).
The latter policy is inferior to policy F, as proven
in Theorem 3. Thus, the optimal policy in
{R(B), 0=B=1}, R(12), is inferior to policy F. O

IV. Numerical results.

In Fig. 4 the mean packet delay induced under
policies R(B), 0=B=1 and F is plotted for mean
packet amval rate pn=.25 packets/slot and variance
o2=2u and ¢? 10}1- Notice that DR(12) is always
greater than DF, as shown in Theorem 3. Notice
also that a small increase in the allocated capacity
is sufflment for policy R(B) to become optimal
( 056 for 02=2u). As o2 increases both DF(B) and
DR increase as expected (see (1) and (2)). Notice
that as o2 increases the additional capacity required
for policy R(B) to become optlmal decreases, as
implied by Corollary 1 (.013 for a?=10w). Also,
notice that the optimality threshold By is as com-
puted by (3) and it is always less than .5, which

10

0.00 0.25 0.50 0.76

Mean packet delay (in slots) for a single station
under policies R(B) andF (DF: constant; DR:
convex U; p=.25; 1 » 02=2.5, 2 - 0%=.5).
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illustrates the optimality of policy F for B=.5 ; for
B=By policy R(B) is optimal as implied by Theorem
4.

In Fig. 5 similar results are shown for heavier
traffic load (p=.45). Notice that the additional
capacity required for policy R(B) to be optimal is
even smaller (.0025) since a%=4.5 is large. Practi-
cally, both policies R(12) and F are optimal for
large variance. Notice also that if 55% (for
02=4.5) of the channel capacity (as opposed to 50%
under policy F) can be allocated to the station,
then the induced mean packet delay under R(.45) is
about half the one induced under policy F (52
versus 100 slots). The latter observation implies
that the theoretical advantage (optimality) of policy
F over policy R(12) may disappear in practical
cases, if some additional capacity is offered to the
station. The performance improvement may be
tremendous at the cost of the utilization of slightly
larger capacity. This cost may be insignificant

120 }

100

80

L8]

40 - 1

0 L3 L]
0.0 0.2 0.4 B 0.6

Mean packet delay (in slots) for a single station
under policies R(B) and F. (DF: constant; DR:
convex U; n=.45;1 - 02=4.5, 2~ 02=.9).
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when the rest of the capacity is under-utilized (for
instance, under asymmetric traffic situation). The
latter issue is discussed later (Fig. 7 and 8).

In Fig. 6, the mean packet delay in a 2-station
communication system under policies R(B), 0=B=1
and F is plotted, for the case of symmetric traffic
load. Notice that the optimal policy in
{R(B), 0=B=1} is policy R(12), as implied by
Corollary 5-(b). The optimal policy in P is policy
F, as implied by Corollary 6.

In Fig. 7 similar results under asymmetric
traffic load are shown. For p;=.3, 0f=.6 and
o=.4, 02,2:.8, the asymmetry in the rate and the
structure of the packet arrival processes is not
strong enough to render policy R(8y) optimal. For
o#=3 and o$-4, policy R(Bg) has clearly become
the optimal policy. This is due mostly to the struc-
ture (variance) of the packet arrival processes
rather than the difference in the rates. The favor-
ing effect of the structure on policy R(By) is due,
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Mean packet delay (in slots) for the two symmetric
stations under policies R(B) and F. (DF: constant;
DR: convex U; 1-p=.45, 0%=.9; 2-p=.25,
0'2=.5).
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first, to the larger variance of the traffics, which
under symmetry would bring policy R(By) very
close to the optimal policy F (Corollary 1) and,
second, to the larger difference in the variances
which further emphasxzes the asymmetry of the
traffic (since o2>0f and o> ) and certainly
results in the inequality/condition (b) of Theorem
7. For 01 =3 and 022 .4, the asymmetry in the
packet arrival processes, due to the asymmetry in
the packet arrival rates, is balanced out by the
non-coherent (i.e., if p,<p, then 6#>¢? ) asym-
metry in their structurc (variance). As a result, the
two packet arrival processes behave as being
almost symmetric, with respect to the intensity of
the resulting queueing problems, and policy F
becomes optimal. For ¢i=10 and 022— 1, the non-
coherent asymmetry in the structure of the
processes is strong and overwhelms the asymmetry
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Mean packet delay (in slots) for the two stations
under policies R(B) and F. (DF: constant; DR:

convex U; m=.3,p,=.4; 1-02=.6, 03=.8;
2> 0'12=3, O’%:4; 3= 0'12=3’ 0-22='4; 4 - 0.12=10,
a=.1).
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in the packet arrival rates. Thus, the packet arrival
processes behave as being asymmetric in a direc-
tion opposite to that implied by the packet arrival
rates. As a result policy R(B;) becomes optimal
again due to this strong asymmetry. Notice that
Bo=.44 which implies that more capacity (.56) is
assigned to station 1 despite the significantly
smaller packet arrival rate (.3 versus .4).

In Fig. 8 similar results are presented. The
packet arrival rates are assumed to be asymmetric
with py=.1 and p,=.45 . The large asymmetry in
the rates together w1th the coherent asymmetry
(i.e. if py<p, then of <02 ) in the structure of the
packet arrival processes (al 1, 02-4.5) render pol-
icy R(Bo) optimal. The asymmetry in the rates is
capable of rendering policy R(B,) optimal even if
the structure of the two processes is symmetric
(01 =02 1). When the asymmetry in the structure
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Mean packet delay (in slots) for the two stations
under policies R() and F. (DF: constant; DR:
convex U;

py=.1, Ba=. 45; 1»01~1 04=4.5;
2~02=1, 02=1; 3 - 02=12, 03=.45).
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is non-coherent (i.e., if p{<p, then 0?>0? ) and
sufficiently large then its counter-effect will have a
balancing effect on the two queues which will show
a symmetric behavior and render policy F optimal
= 2_
(0{=12, 05=.45).
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