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Abstract

A commonly employed abstraction for studying the object placement problem for

the purpose of Internet content distribution is that of a distributed replication group. In

this work the initial model of distributed replication group of Leff, Wolf, and Yu (IEEE

TPDS ’93) is extended to the case that individual nodes act selfishly, i.e., cater to the

optimization of their individual local utilities. Our main contribution is the derivation of

equilibrium object placement strategies that: (a) can guarantee improved local utilities

for all nodes concurrently as compared to the corresponding local utilities under greedy

local object placement; (b) do not suffer from potential mistreatment problems, inher-

ent to centralized strategies that aim at optimizing the social utility; (c) do not require

the existence of complete information at all nodes. We develop a baseline computa-

tionally efficient algorithm for obtaining the aforementioned equilibrium strategies and

then extend it to improve its performance with respect to fairness. Both algorithms are

realizable in practice through a distributed protocol that requires only limited exchange

of information.

1 Introduction

Recent efforts to improve the service that is offered to Internet users have considered sup-

plementing the traditional bandwidth-centric Internet with a rather non-traditional network

resource – storage. A network node installs storage to replicate popular Internet content

locally, and then provide it to local users and others efficiently (i.e., at a small end-to-end

∗The authors are with the Department of Informatics and Telecommunications, University of Athens, 15784

Athens, Greece. Email: {laoutaris, telelis, vassilis, istavrak}@di.uoa.gr.

1



delay) and economically (i.e., without having to access the origin servers each time, thereby

consuming bandwidth). Several technologies have been developed for this purpose, such as

web caching, web mirroring, content distribution networks (CDNs), and lately peer-to-peer

applications (P2P).

A commonly employed abstraction for studying such systems is that of a distributed repli-

cation group [1]. Under this abstraction, nodes utilize their storage capacity to replicate

information objects and make them available to local and remote users. Replication amounts

to maintaining fixed copies of objects which, contrary to caching, cannot be removed before

the re-invocation of the placement algorithm (caching amounts to storing temporary copies of

objects upon request and then releasing them through a replacement algorithm in order to free

storage for newer ones). A user’s request is first received by the local node. If the requested

object is stored locally, it is returned to the requesting user immediately, thereby incurring a

minimal access cost. Otherwise, the requested object is searched and fetched from other nodes

of the group, at a potentially higher access cost. If the object cannot be located anywhere

in the group, it is retrieved from an origin server, which is assumed to be laying outside the

group (maximum access cost). Depending on the particular application, the search for objects

at remote nodes may be conducted through query protocols [2], succinct summaries [3], DNS

redirection [4] or distributed hash tables [5].

Several placement problems can be defined regarding a distributed replication group. The

proxy (or cache, or mirror, or surrogate) placement problem refers to the selection of appro-

priate physical network locations (routers or AS’s) for installing content proxies [6, 7, 8, 9].

Another relevant problem is the object placement problem, which refers to the selection of

objects for the nodes, under given node locations and capacities [1, 10, 11, 12, 13, 14]. Joint

formulations of the above mentioned problems have also appeared, e.g., in [15, 16], where the

proxy placement, proxy dimensioning, and object placement problems are combined into a

single problem.

All the aforementioned work has focused on the optimization of the so called social util-

ity (sum of the individual local utilities of the nodes, defined as the delay and bandwidth

gains from employing replication). Optimizing the social utility is naturally the objective

in environments where a central authority dictates its replication decisions to the nodes. It
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suits well applications such as web mirroring and CDNs, which are operated centrally by a

single authority (this being the content creator or the content distributor). Applications that

are run by multiple authorities, such as web caching networks and P2P networks, may also

seek to optimize the social utility. This, however, requires some nodes to act in a spirit of

voluntaryism, as the optimization of the social utility is often harmful to several local utilities.

Consider as an example a group of nodes that collectively replicate content. If one of the

nodes generates the majority of the requests, then a socially optimal (SO) object placement

strategy will use the storage capacity of other nodes to replicate objects that do not fit in the

over-active node’s storage space. Consequently, the users of these other nodes will experience a

service deterioration as a result of their storage being hijacked by potentially irrelevant objects

with regard to their local demand. In fact, such nodes would be better served if they acted

independently and employed a greedy local (GL) object placement strategy (i.e., replicated

the most popular objects according to the local demand). A similar situation can arise if

caching, rather than replication, is in place: remote hits originating from other nodes may

evict objects of local interest in an LRU-operated cache that participates in a web caching

network (we study this problem in [17]). Concern for such exploitation can prevent rational

nodes from participating in such groups, and, instead, lead them to operating in isolation in

a greedy local manner. Such a behavior, however, is far from being desirable.

Being GL is often ineffective in terms of performance, not only with respect to the social

utility, but with respect to the individual local utilities too. For example, when the nodes have

similar demand patterns and the inter-node distances are small, then replicating multiple times

the same most popular objects, as done by the same repeated GL placement at all the nodes, is

highly ineffective. Clearly, all the nodes may gain substantially in this case, if they cooperate

and replicate different objects. In fact, it is even possible that an appropriate cooperation of

the nodes can lead to a simultaneous improvement of all local utilities as compared to the

GL performance. However, nodes cannot recognize such opportunities for mutually beneficial

cooperation, since they are generally unaware of the remote demand patterns. On the other

hand, they cannot know the impact (bad or good) that the SO object placement strategy may

have on their own local utility.

To address the above mentioned deadlock, we use as reference the object replication prob-
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lem defined by Leff et al. [1], and extend it to account for the existence of selfishly motivated

nodes. We use a strategic game in normal form [18] to model the contention between the selfish

nodes and set out to identify pure Nash equilibrium object placement strategies (henceforth

abbreviated EQ). There are several advantages in employing EQ strategies. First, by their

definition, they can guarantee for each and every node of the group that its local utility under

EQ will be at least as good as under GL, and possibly better. The first case (“at least as

good”) precludes mistreatment problems such as those that can arise under the SO placement

which cause the nodes to leave the group in pursuit of GL placement. The second case (“pos-

sibly better”) is the typical one, and points to the fact that implicit cooperation is induced

even by selfishly behaving nodes as they attempt to do better than GL. Consequently, the EQ

strategy is in position to break the above mentioned deadlock, as it forbids the mistreatment

of any one node, while it also guards against the disintegration of the group, and the poor

performance associated with the GL strategy.

Our main result is that such EQ object placement strategies can be obtained by simple

distributed algorithms that do not require the existence of complete information at all the

nodes. We describe a two-step local search (TSLS) algorithm for this purpose. TSLS requires

each node to know only its local demand pattern and the objects selected for replication

by remote nodes, but not the remote demand patterns of other nodes (the demand pattern

of a node defines explicitly its utility function, thus in the presented framework it is not

assumed that nodes know the utility functions of other nodes). Knowing the remote demand

patterns requires the transmission of too much information and thus is seldom possible in large

distributed replication groups. On the other hand, knowing the objects selected for replication

by remote nodes requires the exchange of much less information, which can be reduced further

by employing simple encoding schemes such as Bloom filters [19] (see also [20, 21] for real

distributed applications/protocols that utilize such information). Thus in terms of the required

information, the proposed EQ strategies fit between the GL strategy that requires only local

information, and the SO strategy that requires complete information.

The TSLS algorithm employs the logical ordering of the nodes as a device for obtaining

EQ in a simple and distributed manner. The ordering, however, can give some nodes an

advantage which, sometimes, is difficult to justify, e.g., in the case of nodes that are identical,
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hence lack any kind of difference in “merit” based on which a preferential treatment can be

justified. To address such issues we develop the TSLS(k) algorithm, a constrained version of

the baseline TSLS, which diminishes any advantage that a node may have over other nodes

due to its particular turn in the execution of the algorithm. We implement both algorithms

through a common protocol that requires the exchange of a limited amount of information

and, thus, is rather simple to apply.

The remainder of the article is structured as follows. Section 2 describes formally the

distributed replication group and the distributed selfish replication (DSR) game. Section 3

describes the baseline TSLS object placement algorithm. Section 4 establishes that the TSLS

algorithm produces a pure Nash equilibrium object placement strategy for the DSR game.

Section 5 includes a discussion concerning the need for node ordering as well as its implica-

tions on the individual gains of the nodes. Section 6 is devoted to the presentation of the

TSLS(k) algorithm. Section 7 describes a common protocol for implementing the two algo-

rithms. Section 8 demonstrates some numerical examples for highlighting the operation of

the algorithms and the properties of the various placements. Section 9 reviews related game

theoretic approaches to replication and caching. Finally, Section 10 concludes the article and

points to some interesting problems for future work.

2 Definitions

Let oi, 1 ≤ i ≤ N , and vj, 1 ≤ j ≤ n, denote the ith unit-sized object and the jth node, and

let O = {o1, . . . , oN} and V = {v1, . . . , vn} denote the corresponding sets. Node vj is assumed

to have a storage capacity for Cj unit-sized objects and a demand described by a rate vector

rj over O, rj = {r1j, . . . , rNj}, where rij denotes the rate (requests per second) at which node

vj requests object oi; let also ρj =
∑

oi∈O rij denote the total request rate from vj.

We follow the access cost model defined in [1] and later used in several works, including [10,

22, 23]. Under this model, accessing an object from a node’s local cache costs tl, from a remote

node’s cache tr, and from the origin server ts, with tl ≤ tr ≤ ts (Fig. 1 depicts the envisaged

distributed replication group). Such a definition of cost, in addition to allowing for a much

clearer analysis of the dynamics of selfish replication, has also a strong relevance to practice.
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This is because distributed replication groups, like the ones studied here, become meaningful

when there is a high degree of proximity among the nodes, while the corresponding distances to

reach the origin servers are far too larger. Such is, for example, the case of nodes belonging to

the same organization or autonomous system. In such environments, the inter-node distances

may be considered to be approximately equal to an average value tr, when compared to the

much larger distance to the remote servers. On the other hand, it is clear that when the

inter-node distances for each pair of nodes vary significantly, possibly approaching ts, then it

becomes less meaningful to seek an efficient cooperation between such distant nodes.

Let Rj = {oi ∈ O : rij > 0} denote the request set of node vj. Let Pj denote the placement

of node vj, that is the set of objects replicated at this node; Pj ⊆ O and |Pj| = Cj (in principle

it can be |Pj| ≤ Cj if, for example, less than Cj objects have none zero request rate, but we

can safely assume that each node takes full advantage of its capacity by also replicating zero-

rated objects arbitrarily, until |Pj| = Cj). Let P = {P1, P2, . . . , Pn} be referred to as a global

placement and let P−j = P1 ∪ . . .∪Pj−1 ∪Pj+1 ∪ . . .∪Pn denote the set of objects collectively

held by nodes other than vj under the global placement P . The gain for node vj under P is

defined as follows:

Gj(P ) =
∑
oi∈Pj

rij · (ts − tl) +
∑
oi /∈Pj

oi∈P−j

rij · (ts − tr) (1)

This definition of gain considers all the objects that exist somewhere in the group under the

global placement P , and returns a weighted summation of vj’s local request rate for each one

of them, and the distance spared by having vj accessing them from the closest position in the

group (either locally, or from a remote node) and thus avoiding going to the origin server,

which is assumed to be the furthest away. Notice that we model only the “read” operations

from the users. We could possibly include “write” operations in the same setting but this is

not required by our targeted application which is the dissemination of large electronic content

(audio files, movies, software distributions). Such content is rarely altered. On the other

hand, web-pages are regularly updated, but such content should probably be investigated

under a different setting, one without storage capacity constraints as the ones considered here

(the small size of typical web-pages in conjunction with the large capacity of hard disk drives

allows for assuming the existence of “infinite storage” at content nodes for web content [16]).
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Step 0 (initialization): P 0
j = Greedyj(∅), 1 ≤ j ≤ n.

Step 1 (improvement): P 1
j = Greedyj(P

1−
−j ), 1 ≤ j ≤ n,

where, P 1−
−j = P 1

1 ∪ . . . ∪ P 1
j−1 ∪ P 0

j+1 ∪ . . . ∪ P 0
n

Figure 1: A distributed replication group. Table 1: The TSLS algorithm.

In the sequel, we define a game that captures the dynamics of distributed object replication

under selfishly behaving nodes.

Definition 1 (DSR game) The distributed selfish replication game is defined by the tuple

〈V, {Pj}, {Gj}〉, where:

• V is the set of n players, which in this case are the nodes.

• {Pj} is the set of strategies available to player vj. As the strategies correspond to place-

ments, player vj has
(

N
Cj

)
possible strategies.

• {Gj} is the set of utilities for the individual players. The utility of player vj under the

outcome P , which in this case is a global placement, is Gj(P ).

DSR is a n-player, non-cooperative, non-zerosum game [18]. For this game, we seek equilib-

rium strategies, and in particular, pure Nash equilibrium strategies.

Definition 2 (pure Nash equilibrium for DSR) A pure Nash equilibrium for DSR is a global

placement P ∗, such that for every node vj ∈ V , Gj(P
∗) ≥ Gj((P

∗
1 , . . . , P ∗

j−1, Pj, P
∗
j+1, . . . , P

∗
n)),

for all Pj ∈ {Pj}.

That is, under such a placement P ∗, nodes cannot modify their individual placements unilat-

erally and benefit.

In the sequel, we develop polynomial time algorithms that, given an instance of the DSR

game, can produce several Nash equilibrium placement strategies for it.
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3 A two-step local search algorithm

In this section we present a two-step local search algorithm (TSLS) that computes a placement

for each one of the nodes. In Section 4 we show that these placements correspond to a Nash

equilibrium global placement, that is they are EQ strategies. In Section 6, we modify the

two-step local search algorithm in order to overcome some of its limitations.

Let P 0
j and P 1

j denote the GL placement strategy and the placement strategy identified

by TSLS for node vj, respectively. Let also Greedyj(P) denote a function that computes the

optimal placement for node vj, given the set P of distinct objects collectively held by other

nodes; we elaborate on this function later on in the section. Table 1 outlines the proposed

TSLS algorithm.

At the initialization step (Step 0) nodes compute their GL placements P 0
j . This is done

by evaluating Greedyj(∅) for each vj, capturing the case in which nodes operate in isolation

(P = ∅).
At the improvement step (Step 1) nodes observe the placements of other nodes and, based

on this information, proceed to improve their own. The order in which nodes take turn in

improving their initial placements is determined based on their ids (increasing order). Thus at

vj’s turn to improve its initial placement, nodes v1, . . . , vj−1 have already improved their own,

while nodes vj+1, . . . , vn, have not as yet done so. Node vj obtains its improved placement P 1
j

by evaluating Greedyj(P
1−
−j ), where P 1−

−j = P 1
1 ∪ . . . ∪ P 1

j−1 ∪ P 0
j+1 ∪ . . . ∪ P 0

n denotes the set

of distinct objects collectively held by other nodes (hence the −j subscript) at the time prior

to vj’s turn at Step 1 (hence the 1− superscript). The placement P 1
j is, thus, a best response

to P 1−
−j .

We return now to describe how to compute the optimal placement for node vj, when the

set of distinct objects collectively held by other nodes is P; such an optimization is employed

twice by the TSLS algorithm: at Step 0 where P = ∅, and at Step 1 where P = P 1−
−j . To

carry it out, one has to select objects according to their relative excess gain, up to the limit

set by the storage capacity of the node. Let gk
ij denote the excess gain incurred by node vj

from replicating object oi at step k ∈ {0, 1} of TSLS; gk
ij depends on vj’s demand for oi and
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also on whether oi is replicated elsewhere in the group.

gk
ij =

⎧⎨
⎩ rij · (ts − tl) , if k = 0 or k = 1, oi /∈ P 1−

−j

rij · (tr − tl) , if k = 1, oi ∈ P 1−
−j

(2)

rij · (ts − tl) is the excess gain for vj from choosing to replicate object oi that is currently not

replicated at any node in V . If oi is replicated at some other node(s), then vj’s excess gain

of replicating it locally is lower, and equal to rij · (tr − tl). Such excess gains are determined

by the request frequency for an object, multiplied by the reduction in access cost achieved by

fetching the object locally instead from the closest node that currently replicates it (either

some other node in V or the origin server).

Finding the optimal placement for vj given the objects replicated at other nodes (P)

amounts to solving a special case of the 0/1 Knapsack problem [24], in which object values

are given by Eq. (2), object weights are unit, and the Knapsack capacity is equal to an integer

value Cj. The optimal solution to this problem is obtained by the function Greedyj(P). This

function first orders the N objects in a decreasing order according to gk
ij (k = 0 at Step 0

and 1 at Step 1), and then it selects for replication at vj the Cj most valuable ones.1 As the

objects are of unit size and the capacity is integral, this greedy solution is guaranteed to be

an optimal solution to the aforementioned 0/1 Knapsack problem.

We now proceed to connect the 0/1 Knapsack problem under the excess gains gk
ij’s, with

the gain Gj(·) for vj under a global placement. We will show that solving the 0/1 Knapsack

for vj under given P 1−
−j is equivalent to maximizing Gj(·), given the current placements of

nodes other than vj.

Proposition 1 The placement P 1
j = Greedyj(P

1−
−j ) produced by the TSLS algorithm for node

vj, 1 ≤ j ≤ n, satisfies:

Gj(P
1
1 , . . . , P 1

j−1, P
1
j , P 0

j+1, . . . , P
0
n) ≥ Gj(P

1
1 , . . . , P 1

j−1, Pj, P
0
j+1, . . . , P

0
n), for all Pj ∈ {Pj}.

The proof and all subsequent ones are in Appendix A

An important observation is that at the improvement step, a node is allowed to retain its

initial GL placement, if this is the placement that maximizes its gain given the placements of

1Ties are solved arbitrarily at Step 0 and not re-examined at Step 1, i.e., an object that yields the same gain as other objects

and is selected at Step 0, is not replaced in favor of any one of these equally valuable objects, later on at Step 1. Thus at Step 1,

new objects are selected only if they yield a gain that is strictly higher than that of already selected ones.
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other nodes. Thus, the final gain of a node will be at least as high as its GL one, irrespectively

of the demand characteristics of other nodes; this eliminates the possibility of mistreatment

due to the existence of overactive nodes.

Step 0 of TSLS has complexity O(nN log N), as there are n initial placements to be com-

puted and each one has complexity O(N log N), which is due to the evaluation of the function

Greedyj(∅). Step 1 is computationally more expensive since the evaluation of Greedyj(P
1−
−j )

requires the evaluation of gain functions g1
ij, which depend on the contents of other nodes, thus

require O(n) complexity (whereas the evaluation of g0
ij at Step 0 requires O(1) complexity as

it does not depend on other nodes). The complexity of Step 1 becomes O(n2N + N log N) if

the g1
ij’s are computed on the fly, that is if P 1−

−j ’s are constructed from the beginning for each

vj. The complexity, however, can be reduced to O(nN log N), if a single P 1−
−j is maintained,

and updated between turns as nodes change their placements (this requires implementing the

set P 1−
−j as a bit-vector in which all operations between the set and individual elements can

by carried out in O(1)).

4 Existence of a pure Nash equilibrium for DSR

In this section it is shown that the global placement (P 1
1 , P 1

2 , . . . , P 1
n) produced by the TSLS

algorithm is a pure Nash equilibrium of the distributed replication game. To prove this result

we introduce the following additional definitions. Let E1
j = {oi ∈ O : oi ∈ P 0

j , oi /∈ P 1
j } denote

the eviction set of vj at Step 1; it is a subset of the initial placement, comprising objects that

are evicted in favor of new ones during vj’s turn to improve its initial placement. Similarly,

I1
j = {oi ∈ O : oi /∈ P 0

j , oi ∈ P 1
j } denotes the insertion set, i.e., the set of new objects that

take the place of the objects that belong to E1
j . At any point of TSLS an object is dubbed

a multiple, if it is replicated in more than one nodes, and an unrepresented one (represented

one), if there is no (some) node replicating it. Regarding these categories of objects, we can

prove the following:

Proposition 2 (only multiples are evicted) The TSLS algorithm guarantees that the eviction

set of node vj is such that E1
j ⊆ (P 0

j ∩ P 1−
−j ).
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Proposition 3 (only unrepresented ones are inserted) The TSLS algorithm guarantees that

the insertion set of node vj is such that I1
j ⊆ (Rj \ (P 0

j ∪ P 1−
−j )).

The previous two propositions enable us to prove that TSLS finds a pure Nash equilibrium

for DSR.

Proposition 4 The global placement P 1 = (P 1
1 , P 1

2 , . . . , P 1
n) produced at the end of Step 1 of

the TSLS algorithm is a pure Nash equilibrium for the distributed replication game.

Assuming that no two gk
ij are the same, then the maximum number of different equilibria that

may be identified by the TSLS algorithm is n!, i.e., a different equilibrium for each possible

ordering (permutation) of the n nodes.

At this point we would like to comment on a subtle difference between the DSR game

and the TSLS algorithm, which is just a solution for the DSR game, and not an augmented

game that also models the ordering of nodes. The DSR game is a well defined game as it is,

i.e., without reference to node ordering, or any other concept utilized by the particular TSLS

solution. The ordering of nodes is hence just a device for deriving equilibrium placements,

and not a concept of the DSR game itself. The ordering of nodes is not required for defining

the DSR game.

5 Ordering of the nodes

In the first part of this section we discuss the reason for using the ordering of nodes in TSLS,

and in the second part, its consequences on the individual gains of the nodes.

5.1 The need for synchronization

The use of a specific ordering of nodes in the improvement step of TSLS is central to the

algorithm’s ability to find equilibrium placements. What the ordering provides is, essentially,

synchronization of the placement decisions of different nodes. This is required in order to avoid

“looping” phenomena. In [25] we present two examples in which the nodes do not line up for

the improvement step, but rather operate in a completely asynchronous manner, and show

that distributed algorithms that follow the spirit of TSLS, cannot lead to stable placements
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in such cases. Ordering avoids such phenomena by enforcing an absolute synchronization

scheme. Other types of synchronization can also be considered, especially ones that introduce

parallelism in the execution of the improvement step. Such possibilities exist, as it might

be feasible to “lock” the state of fewer objects (those that would appear in multiple eviction

and insertion sets) and thus permit all other changes to progress asynchronously in parallel.

Increasing the parallelism in such a way is, however, a non-trivial task, and is left open for

future research.

5.2 Node ordering and its impact on the local gains

The order in which nodes take turns in improving their initial placements affects the pro-

duced equilibrium placement, with different orderings leading to potentially different equilib-

ria. Choosing one out of the many possible orderings, thus, amounts to choosing a specific

equilibrium. The device for defining the desired ordering is the assignment of an appropriate

id j to each one of the n nodes. Then the node with id 1, v1, becomes the first one to take

turn, v2 becomes the second one, and so forth.

When the demand patterns of the nodes are similar (which is the most interesting case

because it allows for higher mutual benefit), nodes naturally prefer to be assigned larger ids so

as to have the chance to be the last ones to improve their placements. The key idea is that it

is better for a node to maintain its initial placement intact, and let others eliminate multiple

ones and insert unrepresented ones. Such a node gets a larger share of the collective extra

gain because it succeeds in keeping locally a larger proportion of the most popular objects

that get to be replicated in the group at the end of TSLS while it gets the newly inserted

ones from the other nodes. In Sect. 8 we give an example of this situation. To apply TSLS

under such demands, we propose in Sect. 7 a simple “merit-based” protocol which assigns

turns to the nodes according to their relative importance for the group (with more important

nodes getting a better turn). This represents a simple approach for implementing equilibrium

strategies with only a small exogenous intervention (the merit based protocol).

When the demand patterns of the nodes differ, a higher turn is not necessarily better and,

in fact, there are situations in which a node can take advantage of a lower turn. In the sequel

we give such a “lower-turn-is-better” example. Suppose that there exist n = 2 nodes with the
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following properties: (1) each node has a capacity for only one object in a universe composed

of N = 3 distinct objects, and (2) each one of the two nodes employs a different request vector,

namely, r1 = {0.51, 0.49, 0} and r2 = {0.51, 0, 0.49}. Assume also that tl = 0, tr = 1, ts = 2. It

is easy to verify that the first node has the advantage now. By changing its initial placement

P 0
1 = {1} (which is also the initial placement for the second node) to P 1

1 = {2}, v1 can increase

its gain from G1({{1}, {1}}) = 2 ∗ 0.51 = 1.02 to G1({{2}, {1}}) = 2 ∗ 0.49 + 1 ∗ 0.51 = 1.49;

v2 on the other hand cannot benefit, because the remotely available object {2} is useless to it,

so it has to settle with G2({{2}, {1}}) = 2 ∗ 0.51 = 1.02 (whereas it could be the one getting

gain 1.49 if it had the first turn and made a switch to object 3).

The previous example demonstrates that an optimal turn depends, among others, on

the resemblance of the individual demand patterns. This also means that without a priori

knowledge of the remote demand patterns, which is the typical case in distributed replication

groups, nodes are essentially unable to act strategically and determine an optimal turn for

them.

Irrespectively of which turn is optimal (whether higher or lower), it remains that under

TSLS the final gain of a node is affected by its turn during the improvement step and thus

some nodes end up having a higher gain than others. Although these differences are small

under typically request workloads, there are situations in which they cannot be tolerated. An

example is the case of a homogeneous group, i.e., a group composed of nodes with identical

characteristics in terms of capacity, total request rate, and demand distribution. Since such

nodes are identical, it is natural to expect that they should be treated equally by a placement

strategy. The TSLS algorithm and the merit-based protocol of Sect. 7, however, can treat

such nodes unequally. This can be hard to justify since homogeneous nodes lack any kind of

difference in merit, based on which a preferential treatment could be justified.

To remedy this issue, we propose in the next section a modified version of the baseline TSLS

algorithm in which the ordering of nodes has a diminishing effect on the achieved gains. This

precludes any possibility for strategic behavior with respect to the chosen order (assuming

a node had the required information for realizing such a strategic behavior), while it also

addresses the unfairness issue in homogeneous groups.
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6 TSLS(k): Improving on the TSLS fairness

The TSLS(k) algorithm is a slight variation of the baseline TSLS algorithm. Under TSLS(k),

each node may perform only up to k changes during a round of the improvement step, i.e.,

evict up to k objects to insert an equal number of new ones. Note that under TSLS, any

number of changes are permitted during the single round of the improvement step. Under

TSLS(k), the improvement step might require multiple rounds to reach an equilibrium place-

ment, whereas under TSLS, an equilibrium placement is reached only after a single round.

Intuitively, TSLS(k) works in a round-robin fashion based on some node ordering, and allows

each node to perform up to k changes of its current placement during a given round, even

if the node would like to perform more changes; for the additional changes, the node has to

wait for subsequent rounds. The effect of this round-robin, k-constrained selection of objects,

is that TSLS(k) is at least as and generally more fair than TSLS with respect to the achieved

individual gains. By selecting sufficiently small values of k, e.g., k = 1, which is an extreme

case, it is possible to almost eliminate the effect of a node’s turn on the amount of gain that it

receives under the final placement. Essentially, when k is small, TSLS(k) is able to overcome

the inherent limitations of having to decide a specific node ordering in order to produce an

equilibrium placement. For k sufficiently large (approaching the maximum node capacity),

TSLS(k) reduces to the baseline TSLS.

6.1 Description of the algorithm

Table 2 outlines the proposed TSLS(k) algorithm. After computing the initial placements P 0
j ,

the algorithm enters the improvement step, which comprises multiple rounds. At round m,

node vj computes its current placement P 1,m
j by executing the function kSwitchj(P

1,m−1
j , P 1−,m

−j ).

This function selects the most valuable objects for vj in a greedy manner (similarly to the

Greedyj(·) function of Sect. 3), under the added constraint that P 1,m
j may differ from the

previous round’s placement P 1,m−1
j , in up to k objects. P 1−,m

−j = P 1,m
1 ∪ . . . ∪ P 1,m

j−1 ∪ P 1,m−1
j+1 ∪

. . . ∪ P 1,m−1
n denotes the set of distinct objects collectively held by other nodes at the time

prior to vj’s turn at the mth round of Step 1; P 1,0
j = P 0

j . The algorithm terminates at round

M , in which case it holds that P 1,M
j = P 1,M−1

j ,∀j, i.e., when there are no more changes to be
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Step 0 (initialization): P 0
j = Greedyj(∅), 1 ≤ j ≤ n.

Step 1 (improvement): while there exists a node with more changes

perform another round

Round m: P 1,m
j = kSwitchj(P

1,m−1
j , P 1−,m

−j ),

1 ≤ j ≤ n

Table 2: The TSLS(k) algorithm.

made on the placements.

Proposition 5 (TSLS(k) terminates) The TSLS(k) algorithm terminates after a finite num-

ber of rounds M ≤ �Cmax/k
, where Cmax denotes the capacity of the largest node.

Proposition 6 The global placement P 1,M = (P 1,M
1 , P 1,M

2 , . . . , P 1,M
n ) produced at the last

round of Step 1 of the TSLS(k) algorithm is a pure Nash equilibrium for the distributed

replication game.

What the TSLS(k) algorithm provides is essentially a tradeoff between an increased fairness

and an increased execution time due to the multiple rounds during the improvement step.

6.2 Approximate analytic expression for the extra gain under TSLS(k)

Consider the ratio qj = GEQ
j /GGL

j which captures the relative increase of gain for node vj

when employing the EQ placement of TSLS(k) as opposed to employing the GL placement.

Since GEQ
j ≥ GGL

j it is guaranteed that qj ≥ 1.

Our goal in this section will be to study some of the basic performance properties of the

TSLS(k) algorithm through the development of an approximate analytic expression for the

ratio qj. Specifically, we will approximate qj with the quantity q which is given in Eq. (3).

q is derived under the following assumptions, which correspond to a distributed replication

group that is composed of similar nodes: all nodes are assumed to have the same amount of

storage C, all nodes are assumed to be generating requests drawn from the same generalized

power-law distribution, (called also a Zipf-like distribution2) which states that the request

probability for object oi is pi = K/ia where K = (
∑N

i′=1
1

i′a )−1; the skewness parameter a

2Such distributions have been observed in many real-world measurement studies, including [26, 27].
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captures the degree of concentration of requests. The details of the derivation are presented

in Appendix B.

q =

tr

((
C(1+n)( tr

ts
)
1
a −1

n( tr
ts

)
1
a +1

)1−a

− 1

)
+ (ts − tr)

((
nC+n+C

n( tr
ts

)
1
a +1

)1−a

− 1

)

ts(C1−a − 1)
(3)

By inspecting Eq. (3) we can observe that it includes information about the basic ingredients

of the distributed group such as: the number of nodes (n), the storage capacity of each node

(C), the demand (a), the ratio of remote access costs (tr/ts). It is also evident that the

number of objects N does not affect q (N appears only in the constant K of the power-law

demand, which, however, is eliminated when considering the ratio GEQ
j /GGL

j , see Appendix B

for details). It might also come as a surprise that both the exact identity of a node (j) and the

parameter of TSLS(k) are not present. The parameter k is implicitly mapped to q because q

becomes relevant as an approximation only when there are many rounds in the improvement

step of TSLS(k). When there is only one round (as in TSLS) or just a few (when k is large),

then the method by which q is derived becomes less accurate. For sufficiently small k (that

lead to many rounds), the exact value of k does not affect q.3 Similarly, the lack of j in

Eq. (3) means that q captures the amount of improvement that is available to all nodes,

irrespectively of the exact identity (turn) of each one. As will be shown shortly, this is the

basic amount of improvement to consider under TSLS(k), whereas the exact identity has a

negligible additional contribution.

Due to the rather elaborate form of Eq. (3) it is difficult to understand the behavior of

q by inspection only; it is very easy, however, to use (3) for producing graphs that reveal its

behavior. For this purpose, we consider a group in which the access costs are tl = 0, tr =

1, ts = 2 and we plot q for two kinds of power-law demands, a = 0.4 and a = 0.8 (Fig. 2)

and for varying n, C. The two figures show that there are significant performance gains under

TSLS(k). The gain of each and every node of the group can double with respect to the

corresponding GL one under a = 0.4 whereas it can be significant (25% improvement) under

the more skewed demand a = 0.8. The improvement increases with larger groups (n) as more

3The value of k affects GEQ
j , and thus qj also, marginally through the gain component (iii) (defined in Appendix B). As this

gain component is typically very small, it is ignored in the derivation of Eq. (3).
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Figure 2: Illustration of the behavior of q under power-law demand for two values of the skewness parameter: a = 0.4 (left

graph) and a = 0.8 (right graph). The access costs are: tl = 0, tr = 1, ts = 2.

objects become available from remote nodes. It decreases as the nodes become larger (C), in

which case the GL placement includes most of the valuable objects.

In Tables 3, 4 we compare the q obtained from the previous examples with min qj and

avg qj obtained by executing TSLS(k) for k = 1. The main conclusion from these tables is

that the approximate analytic expression q is very close (typically within 1-2%) to the actual

min qj and avg qj from the execution of TSLS(k). The fact that min qj and avg qj and the

approximation (that does not consider specific nodes) are so close to each other, points to the

fact that for sufficiently small k, the identity of a node has a negligible effect on its gain under

TSLS(k).

7 A protocol for applying the Nash equilibrium for DSR

In this section we outline a protocol for implementing TSLS or TSLS(k) in a distributed

replication group.

7.1 Deciding turns for the improvement step

First, we describe a simple way for deciding turns that can be used with both TSLS and

TSLS(k); for TSLS the ordering has an impact on the individual gains, whereas for TSLS(k)

under small k, the ordering has a diminishing effect on the gains. Consider an arbitrary

labelling of nodes, not related to the ordering in which nodes take turns. Let Th denote a

“merit” quantity associated with node vh, 1 ≤ h ≤ n, based on which vh’s turn is decided. Th
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n

C

50 75 100

q 1.404 1.392 1.385

5 min qj 1.438 1.432 1.430

avg qj 1.440 1.422 1.431

q 1.620 1.602 1.592

10 min qj 1.632 1.625 1.621

avg qj 1.634 1.626 1.622

q 1.725 1.704 1.692

15 min qj 1.726 1.718 1.711

avg qj 1.728 1.719 1.712

q 1.787 1.764 1.752

20 min qj 1.776 1.764 1.761

avg qj 1.778 1.765 1.761

Table 3: Comparison of the approximate analytic expres-

sion q to the actual qj ’s from executing TSLS(k) under power-

law demand a = 0.4 and tl = 0, tr = 1, ts = 2.

n

C

50 75 100

q 1.096 1.089 1.085

5 min qj 1.101 1.096 1.093

avg qj 1.102 1.096 1.093

q 1.131 1.121 1.116

10 min qj 1.125 1.119 1.116

avg qj 1.125 1.119 1.116

q 1.145 1.135 1.129

15 min qj 1.135 1.130 1.125

avg qj 1.136 1.130 1.126

q 1.152 1.142 1.136

20 min qj 1.140 1.135 1.130

avg qj 1.141 1.135 1.130

Table 4: Comparison of the approximate analytic expres-

sion q to the actual qj ’s from executing TSLS(k) under power-

law demand a = 0.8 and tl = 0, tr = 1, ts = 2.

will be defined in such a way that larger ids will be assigned to nodes having larger values of

Th. At the end, a node whose value of Th is the jth largest one, will be re-labelled vj, thus

taking the jth turn. There are many ways to define Th for a node; among them the following

three are of particular interest because they can be naturally associated with a common case

in which nodes have similar demand patterns and where a higher turn is better (see Sect. 5.2):

Th =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ch (proportional fairness)

ρh (pro social benefit)

Ch · ρh (hybrid)

The first one caters to proportional fairness. It suggests that a node’s turn, or equivalently

its share of the extra gain produced through the cooperation, be proportional to the amount

of resource (storage capacity) that the node contributes. Under such Th, vj is the jth largest

node.

The second definition is a socially inclining one. It favors nodes that generate more

requests, as these nodes have the largest influence on the social utility. Under such Th, vj is

the jth more active node. Notice that following such a criterion for deciding turns is by no

means equivalent to the Socially Optimal (SO) strategy. An equilibrium placement under the

pro social benefit criterion favors active nodes by allocating them a bigger share of the extra
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gain produced through the cooperation; this is to say that all other nodes will have (at least)

their GL gain intact, whereas under SO, the benefited nodes may cause other nodes to fall

below the GL level of gain.

The third expression for Th is a hybrid way of splitting the gains of the cooperation; it

favors nodes that contribute more storage and also produce more requests. Having defined

the criterion based on which turns are decided, we move on to defining a protocol for im-

plementing the algorithms and obtaining the equilibrium placement that corresponds to the

decided ordering.

7.2 Distributed protocol

A straightforward centralized implementation would require each node to report rj and Cj to

a central node responsible for executing the TSLS algorithm and sending back the placements

Pj. The problem with such a centralized architecture is that it requires transmitting n rate

vectors rj, with each one containing N (object id, request probability) pairs; for large N

this can lead to the consumption of too much bandwidth by all nodes as much as by the

central node, which has to send back the placements. We, therefore, turn our attention to the

development of the following fully distributed protocol which involves three phases:

Phase DT: During this phase, turns are decided.

1. Each node vh multicasts4 to the group its merit pair (Ch, ρh), while listening for, and

storing, such pairs from other nodes. The truthfulness of the transmitted pair is cross-

checked later on by other nodes during the operation of the distributed group.

2. Having listened to n − 1 other merit pairs, each node may compute its turn j based on

a pre-agreed definition of Th.

Phase 0: In this phase the initial placements according to TSLS are computed and dis-

tributed.

1. Each node vj computes its initial placement P 0
j and multicasts it to the group. Taking

turns is not required at this phase and nodes may transmit their information concur-

rently.

4Native, or end-system, multicast can be employed.
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2. Nodes listen and store the initial placements of other nodes.

Phase 1: In this phase, the initial placements of TSLS are improved.

1. Node vj waits for its turn (i.e., until vj−1 completes its own turn and transmits) and

then computes its improved placement P 1
j as described by TSLS.

2. Following the computation of P 1
j , node vj transmits E1

j and I1
j to the group.

3. Nodes vj′ , j < j′ ≤ n receive E1
j and I1

j and use them to produce P 1
j using also P 0

j ,

which they have from Phase 0.

To implement the TSLS(k) algorithm, Phase 1 needs to be repeated until no node has any

more changes to perform. As was mentioned earlier, TSLS(k) provides a tradeoff between

the improved fairness and the increased time required to perform multiple rounds at Phase 1.

The volume of transmitted information, however, is essentially the same as with the baseline

TSLS.

The aforementioned protocol has several advantages. It achieves a degree of parallelism, by

permitting nodes to compute their initial placements during Phase 0 independently and con-

currently with other nodes. Phase 1 involves a distributed computation too, albeit a sequential

one. The major advantage, however, relates to the reduction in the amount of transmitted

information as compared to a centralized computation which requires the transmission of n ·N
pairs (object id, request frequency) towards the central point and then

∑
vj∈V Cj object ids

sent back from the central point to the nodes carrying the placements P 1
j . Our protocol limits

the amount of transmitted information to less than 3 ·∑vj∈V Cj object ids (initial placements

plus eviction and insertion sets, with the worst case occurring when all nodes change all their

objects at the improvement step ). This represents a substantial reduction in the amount of

transmitted information, as typically the number of available objects is several orders of mag-

nitude larger than the aggregate storage capacity of the group. Furthermore, lists of object

ids can be represented succinctly by employing simplr compression techniques such as Bloom

filters [19, 3], whereas rate vectors composed of (object id, request frequency) elements, are

much harder to represent and communicate.

In the above protocol, the transmitted information could be reduced further by not sending

E1
j ’s. The TSLS algorithms needs to know whether at least one copy of an object exists
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somewhere in the group, and not its exact location. Proposition 2 guarantees that evicted

objects are multiple ones, so specifying the eviction set of each node is not required for

the execution of TSLS as it is guaranteed that evicted objects exist elsewhere in the group.

Transmitting the E1
j ’s, however, is valuable for the purpose of truthfulness checking. Having

P 0
j , I1

j and E1
j , every node can compute the final placement P 1

j of every other node vj. Then,

if a node requests an object oi that appears to belong to P 1
j , but vj fails to deliver it, then

this can be taken as an indication that vj has been untruthful. A node may be tempted to be

untruthful and, say, declare at Phase DT a storage capacity that is larger than its actual one.

The purpose for doing that is that under TSLS and the proportional fairness criterion, such

a false declaration can lead to the assignment of a higher, thus better, turn (on the other,

if TSLS(k) is employed, ordering is of limited importance). Knowing the exact placement of

other nodes guards against such exploitations as untruthful nodes can be disclosed. Similar

checks can be performed regarding the declared request rate.

8 Numerical examples

In this section we present some simple numerical examples mostly for the purpose of demon-

strating the operation of TSLS and TSLS(k). When comparing against the social optimal

placement, we use the method of Leff et al. [1] (Appendix C) to obtain it. In the first exam-

ple, there are two nodes that generate requests following the exact same Zipf-like distribution,

i.e., rij = ρj · K/ia. The local access cost is, tl = 0, the remote one, tr = 1, and the cost of

accessing the origin server, ts = 2; this leads to a hop-count notion of distance. There are

N = 100 distinct objects, and each node has a capacity for C = 40 objects.

In Table 5 we show the objects replicated under the GL, SO, and EQ replications strategies

for fixed ρ1 = 1 and varying ρ2; here the EQ strategy is produced by the baseline TSLS. The

GL strategy selects for each node the first 40 most popular objects, i.e., those with ids in

{1:40}, independently of ρ2. The SO strategy, however, is much different. As the request rate

from Node 2 increases, SO uses some of the storage capacity of Node 1 for replicating objects

that do not fit in Node 2’s cache, thereby depriving Node 1 of valuable storage capacity for

its own objects. For ρ2 = 10, Node 1 gets to store only 3 of its most popular objects, while
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placement strategy Node 1 objects Node 2 objects

GL, ρ2 = X {1:40} {1:40}
SO, ρ2 = 1 {1 : 16} ∪ {41 : 64} {1:40}
SO, ρ2 = 2 {1 : 12} ∪ {41 : 68} {1:40}
SO, ρ2 = 3 {1 : 9} ∪ {41 : 71} {1:40}
SO, ρ2 = 4 {1 : 7} ∪ {41 : 73} {1:40}
SO, ρ2 = 5 {1 : 6} ∪ {41 : 74} {1:40}
SO, ρ2 = 6 {1 : 5} ∪ {41 : 75} {1:40}
SO, ρ2 = 7 {1 : 4} ∪ {41 : 76} {1:40}
SO, ρ2 = 8 {1 : 4} ∪ {41 : 76} {1:40}
SO, ρ2 = 9 {1 : 3} ∪ {41 : 77} {1:40}
SO, ρ2 = 10 {1 : 3} ∪ {41 : 77} {1:40}
EQ, ρ2 = X {1 : 23} ∪ {41 : 57} {1:40}

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1  2  3  4  5  6  7  8  9  10

v1 – SO

v2 – SO

v1, v2 – GL

v1 – EQ (TSLS)

v2 – EQ (TSLS)

v1 – EQ (TSLS(1))

v2 – EQ (TSLS(1))

ga
in

G
j

ρ2 (request rate of v2)

Table 5: An example with v1, v2 having the same Zipf-

like demand pattern with a = 0.8. The number of available

objects is N = 100 and the storage capacity of each node is

C = 40. Also, tl = 0, tr = 1, ts = 2, ρ1 = 1.

Figure 3: Individual node gains for the example of Ta-

ble 5. “vj – XX” denotes the gain for node vj under the

placement strategy XX.

it uses the rest of its storage for picking up the next 37 more popular objects for Node 2,

starting with the one with id 41. Under the EQ strategy Node 1 (v1) stores 23 of its most

popular objects. Node 2 (v2) is the second one (i.e., the last one) to improve its placement,

and it naturally selects the initial 40 most popular objects.

We now turn our attention to the gain Gj of the two nodes under the various placement

strategies (the corresponding access cost can be obtained from the expression ts−Gj). Figure 3

shows that as ρ2 increases, the gain of v2 under SO increases as it consumes storage from v1

for replicating objects according to its preference; v1’s gain under SO decreases rapidly as

a result of not being able to replicate locally some of its most popular objects. In fact, for

ρ2 > 2.5, v1’s gain becomes worse (lower) that the corresponding one under GL. From this

point and onwards, v1 is being mistreated by the SO strategy and thus has no incentive in

participating in it, as it can obviously do better on its own under a GL placement.

By following an EQ strategy, a node’s gain is immune to the relative request intensities

and this is why the EQ lines are parallel to the x-axis of Fig. 3. v1’s gain under the EQ

produced by TSLS is immune to the increasing ρ2 and strictly higher than its gain under GL.

This demonstrates the fact that the EQ strategy avoids the mistreatment problem. Under

the EQ produced by TSLS both nodes achieve higher gains than with GL, but it is v2 that

benefits the most, and thus incurs a higher gain than v1. This owes to the fact that v2 is
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algorithm Node 1 objects Node 2 objects

TSLS {1 : 23} ∪ {41 : 57} {1:40}
TSLS(1) {1 : 23} ∪ {25, 27, 29, 31 . . . , 55, 57} {1 : 23} ∪ {24, 26, 28, 30, . . . , 54, 56}
TSLS(2) {1 : 23} ∪ {25, 26, 29, 30 . . . , 53, 54, 57} {1 : 24} ∪ {27, 28, 31, 32 . . . , 55, 56}

...
...

...

TSLS(17) {1 : 23} ∪ {41 : 57} {1:40}
...

...
...

TSLS(40) {1 : 23} ∪ {41 : 57} {1:40}

Table 6: An example of the placement produced by TSLS and TSLS(k). Here v1, v2 have the same Zipf-like demand pattern

with a = 0.8. The number of available objects is N = 100 and the storage capacity of each node is C = 40. Also, tl = 0, tr = 1,

ts = 2.

the second (last) one to improve its placement and, thus, has an advantage under TSLS as

discussed in Sect. 5.2. The difference in performance between the two nodes can be eliminated

by employing the TSLS(k) algorithm. To show this, Fig. 3 includes the gains of the two nodes

under the EQ strategy that is produced by TSLS(1). The corresponding lines almost coincide,

which demonstrates the ability of TSLS(k) to be fair and to assign identical gains to v1 and

v2 (as opposed to TSLS which, in this example, favors v2).

The placements produced by TSLS(k) (for the previous example) are exemplified in Table 6

for different values of k. The round-robin k-constrained operation of TSLS(k) is evident in

the produced placements. For example TLSL(1) places in each one of the two nodes the first

23 most popular objects, while it assigns the next 34 objects (object 24 - object 57) to the

two nodes interchangeably. TSLS(2) similarly, assigns the initial most popular objects to

both nodes, while it assigns the rest most popular ones (up to the available storage capacity)

interchangeably, two objects at a time. TSLS(k) operates similarly for larger k, up to k = 17,

at which point it reduces to the baseline TSLS.

In the previous example, the equilibrium strategy for v2 identified by the TSLS algorithm,

P 1
2 , was identical to its GL strategy P 0

2 , i.e., v2 made no changes to its initial placement during

the improvement step of TSLS (on the other hand, v1 changed its initial placement during

the improvement step). This has been a consequence of the fact that both nodes followed

the exact same demand pattern. This is not, however, the case in general. The following

example, depicted in Table 7, demonstrates an example in which both nodes improve their

initial placements. The left portion of the table shows the object popularity ranking which,
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node object popularity ranking (decreasing order)

v1 4 7 5 3 2 9 1 8 10 6

v2 2 9 3 5 6 1 4 8 7 10

init. placement impr. placement eviction set insertion set

P 0
1 = {4, 7, 5, 3} P 1

1 = {4, 7, 5, 1} E1
1 = {3} I1

1 = {1}
P 0

2 = {2, 9, 3, 5} P 1
2 = {2, 9, 3, 6} E1

2 = {5} I1
2 = {6}

Table 7: An example with v1, v2 having different demand patterns. Here the number of available objects is N = 10 and the

storage capacity of each node is C = 4. The demand pattern of each node is Zipf-like with a = 0.8 but the popularity ranking is

different for the two nodes.

in this example, is not the same for both nodes; v1’s object ranking in decreasing order of

popularity is 4, 7, 5, . . . , 6, while for v2 it is 2, 9, 3, . . . , 10. The right part of the table depicts

the initial placement, the improved placement, as well as the insertion and eviction sets for

the two nodes. Notice that v1 evicts object 3 which is included in the initial placement of

v2 and inserts in its position the next most valuable object that is not included in the initial

placement of v2, which is object 1. Then v2 takes turn in improving its initial placement and

evicts object 5 to insert object 6. The resulting placement (P 1
1 , P 1

2 ) is an equilibrium pair.

9 Related work

We are aware of only a few very recent works on game-theoretic aspects of object replication.

The most relevant to our work is the one due to Chun et al. [28], which studies distributed

selfish replication (despite calling it caching). However, this work does not consider storage

capacity limits on the nodes, while it also addresses more complex payment games and, thus,

differs substantially from our approach. Another related work is due to Erçetin and Tas-

siulas [29], on market-based resource allocation in content delivery networks. Their focus,

however, is on a three-part market game between content providers, distributors, and con-

sumers, and thus they consider only very simple object replication strategies (greedy local

ones). Our work on distributed selfish caching in [17] is, to the best of our knowledge, the

only one studying similar problems under distributed caching (looking at different replace-

ment algorithms, cache configurations and inter-cache cooperation schemes). Recent works

on incentives in P2P networks, e.g., Antoniadis et al. [30], study the problem of attracting

users to a P2P network and making them contribute more content. The aforementioned work

and other similar ones, formulate the problem at a completely different level as compared to

our work, as they focus on the number of files shared by each node, without identifying the
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identities of these files, whereas we focus on identifying the exact set of files shared.

10 Conclusions and future work

This work has described two algorithms and an efficient distributed protocol for implementing

equilibrium object placement strategies in a distributed selfish replication group. Such place-

ment strategies become meaningful when replication nodes cater to their local utilities, as is

the case with some content distribution applications that are run under multiple authorities

(e.g., P2P, distributed web caching). In such applications, following a socially optimal place-

ment strategy may lead to the mistreatment of some nodes, possibly causing their departure

from the group. Our equilibrium strategies on the other hand, guarantee that all nodes are

better off participating in the group as opposed to operating in isolation in a greedy local

manner. This keeps a distributed group from splitting apart, by creating an excess gain for all

(stemming from the cooperation) while forbidding the mistreatment of any one of the nodes.

An interesting line for future work is to investigate the case that nodes are allowed to

communicate and negotiate to form alliances. Such alliances would cooperate and try to secure

for each one of their members a gain that is potentially higher than the one that each member

can achieve by acting selfishly on its own. This would require, however, additional protocols

and mechanisms to be installed, thus increasing the overall complexity (computational and

exchange of information) as compared to the complexity which is required for implementing

the presented equilibrium strategies.
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A Proofs of Propositions 1-6

A.1 Proposition 1

Re-write Gj(P ) from Eq. (1) as follows:

Gj(P ) =

⎛
⎜⎜⎝ ∑

oi∈Pj
oi /∈P−j

rij · (ts − tl) +
∑
oi∈Pj

oi∈P−j

rij · (tr − tl)

⎞
⎟⎟⎠+

∑
oi∈P−j

rij · (ts − tr) (4)

The new expression is derived by considering objects that are replicated at vj and again

elsewhere in the group, and re-expressing their gain by splitting it into two parts through

rij · (ts − tl) = rij · (ts − tr) + rij · (tr − tl). Notice now that given P−j, the quantity outside

the parenthesis of Eq. (4) becomes a constant, i.e., it does not depend on the objects selected

for replication at vj. Thus to maximize Gj(P ) amounts to maximizing the quantity inside

the parenthesis. The quantity inside the parenthesis depends on both the objects replicated

at other nodes, and the objects selected for replication at vj; it is the exact quantity that

is maximized by solving the aforementioned 0/1 Knapsack problem (notice that Eq. (4) is

composed of the gk
ij values of objects that are considered in the 0/1 Knapsack formulation).

This proves the claim of the proposition.
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A.2 Proposition 2

Consider two objects oie ∈ E1
j and oii ∈ I1

j . By their definition oie ∈ P 0
j and oii /∈ P 0

j which

implies that:

g0
iej ≥ g0

iij
(5)

Suppose now that contrary to the claim of the proposition oie /∈ (P 0
j ∩ P 1−

−j ) which translates

to oie /∈ P 1−
−j since oie ∈ P 0

j . Since oii is inserted in place of the evicted oie at the improvement

step, it must be that:

g1
iij

> g1
iej (6)

Since oie /∈ P 1−
−j , oie retains its Step 0 gain (by definition of gk

ij), hence:

g1
iej = g0

iej (7)

Finally, from the definition of the gain function in Eq. (2):

g1
iij

≤ g0
iij

(8)

Combining equations (6), (7) gives:

g1
iij

> g0
iej (9)

Multiplying Eq. (8) by −1 and adding side-by-side with Eq. (9) leads to g0
iej < g0

iij
which is

clearly false as it contradicts Eq. (5). Thus it must be that oie ∈ (P 0
j ∩ P 1−

−j ), which proves

the claim of the proposition.

A.3 Proposition 3

Before going into the proof, notice that since all accesses to objects at remote nodes cost the

same, the following observation can be written with regard to the ratio between the gain of a

represented object and the gain of the same object when it is unrepresented.

Observation 1 For all oi ∈ P 1−
−j and all vj ∈ V ,

g1
ij

g0
ij

=
rij(tr−tl)

rij(ts−tl)
= tr−tl

ts−tl
= τ < 1.

In other words, the relative reduction of gain between represented and unrepresented objects

is the same for all different objects and all different nodes.
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Consider now two object oie ∈ E1
j and oii ∈ I1

j . By their definition oie ∈ P 0
j and oii /∈ P 0

j

which implies that:

g0
iej ≥ g0

iij
(10)

Since oii is inserted in place of the evicted oie at the improvement step, it must be that:

g1
iij

> g1
iej (11)

Proposition 2 gives that oie ∈ P 1−
−j ; combined with Observation 1 this leads to:

g1
iej = τ · g0

iej (12)

Suppose now that contrary to the claim of the proposition, oii ∈ (P 0
j ∪ P 1−

−j ) which translates

to oii ∈ P 1−
−j since oii /∈ P 0

j . By using Observation 1, this assumption leads to:

g1
iij

= τ · g0
iij

(13)

Substituting (12), (13) in (11) we can write τ · g0
iij

> τ · g0
iej, which simplifies to:

g0
iij

> g0
iej (14)

Inequality (14) is clearly false as it contradicts with (10). Thus it must be that oii /∈ (P 0
j ∪P 1−

−j ),

which proves the claim of the proposition.

A.4 Proposition 4

Let P 1
−j = P 1

1 ∪ . . .∪P 1
j−1 ∪P 1

j+1 ∪ . . .∪P 1
n denote the set of objects collectively held by nodes

other than vj at the end of TSLS; notice that generally P 1
−j �= P 1−

−j (the latter refers to the

set of objects collectively held by the other nodes during vj’s turn at the improvement step).

To prove the proposition, it suffices to show that for every node vj ∈ V , Gj(P
1) ≥

Gj((P
1
1 , . . . , P 1

j−1, Pj, P
1
j+1, . . . , P

1
n)), for all Pj ∈ {Pj} (recall that {Pj} denotes the set of

placement strategies for node vj). As Proposition 1 states that solving the 0/1 Knapsack

problem under given P 1−
−j maximizes vj’s gain, what we need to show here is that solving the

0/1 Knapsack, this time under P 1
−j instead of P 1−

−j , leads again to the same placement P 1
j , i.e.,

Greedyj(P
1
−j) = Greedyj(P

1−
−j ), and that this holds true for all vj, 1 ≤ j ≤ n− 1 (it obviously

holds true for j = n). In other words, we need to show that for all vj, the changes in the
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global placement contributed by the nodes that improved their placements following vj’s turn,

do not affect the optimality of vj’s placement, as it was determined at the time of its turn.

Looking at a given vj, the differences between the global placements at vj’s turn and at

the termination of TSLS are determined by: (a) the multiples that were evicted, i.e., E1
h’s,

and (b) the unrepresented ones that were inserted, i.e., I1
h’s, j +1 ≤ h ≤ n. We will show that

these changes do not affect the optimality of P 1
j , i.e., P 1

j = Greedyj(P
1
−j) = Greedyj(P

1−
−j ).

Consider oie , an object that belonged to P 1−
−j , but was later evicted by some of the node(s)

that were holding it during vj’s turn. Proposition 2 guarantees that in the end at least one

node will still be replicating oie , i.e., oie ∈ P 1. This precludes the case that vj would decide

to modify P 1
j so as to include oie , in the case that oie /∈ P 1

j . If on the other hand, oie ∈ P 1
j

then again the evictions of some multiple copies of oie at remote nodes cannot trigger changes

to P 1
j .

Consider now oii , an object that was inserted by a node following vj’s turn. Proposition 3

guarantees that oii is an unrepresented one, which in turn means that oii /∈ P 1
j . This in effect

means that its insertion may not cause the reduction of the gk
ij value of any object oi ∈ P 1

j , as

the only such object that would be affected (its value be reduced thus making it eligible for

eviction), would be oi = oii ; oii however does not belong to P 1
j . The previous two arguments

regarding oie and oii guarantee that node vj has no reason to change P 1
j as a result of the

transition from P 1−
−j to P 1

−j, and this holds true for all vj. Combining the previous with the

fact that P 1
j maximizes Gj given P 1

−j (stems from Proposition 1), establishes that P 1 is a pure

Nash equilibrium for DSR.

A.5 Proposition 5

Since N and Cj’s are all finite, in order for TSLS(k) not to terminate in a finite number

of rounds, it would require it to enter a loop, in which some objects would be evicted and

then be re-inserted indefinitely. Propositions 2 and 3, however, which also apply to TSLS(k),

don’t permit for such loops to occur. This is because they establish: (1) that only multiple

objects may be evicted, and (2) that only unrepresented objects may be inserted. Since the

number of objects N is finite, this guarantees that the elimination of the unprofitable multiple

objects will be completed after a finite number of rounds M . It also points to the fact that
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M will be small, as each inserted object may be inserted by only one node (this precludes the

visiting of all possible global placements, whose number is exponentially dependent on the

input). To realize the stated upper bound on M , observe that it is the largest node that may

perform the maximum number of changes, and thus cause the maximum number of rounds.

For appropriately selected rate vectors rj, the largest node may change all its initial objects

for new ones5, and thus cause up to �Cmax/k
 rounds.

A.6 Proposition 6

The Nash equilibrium property follows from the fact that at round M , all nodes are given the

opportunity to improve their placements after observing the contents of other nodes, but no

node has such an improvement to perform.

B Derivation of q of Eq. (3)

A full round of the improvement step of TSLS(k) is defined to be a round in which each one

of the n nodes performs the maximum number of allowed changes, that is k. Let R denote the

last full round and let i be the index of the last object that is inserted by the last (the nth)

node at the last full round. As each inserted object gets replicated only once in the group

(Proposition 3) it is clear that i will be larger that any other index of an inserted object.

Taking into consideration that objects 1 . . . C are represented in the group due to the initial

GL placement, that the inserted objects are consecutive ones, and that nk unrepresented

objects are inserted in total at each full round, we obtain that R = i−C
nk

.

It is also possible to identify h, the index of the object whose place on the nth node is taken

by i at the last full round. To do that we must take into consideration that with every batch of

n− 1 consecutive full rounds: (i) nk of the least popular objects of the GL placement become

“unique-ized”, i.e., are forced (through the evictions) to reside in only one node of the group

(Proposition 2 guarantees that it is impossible to evict all the copies of an initially represented

object); (ii) (n− 1)nk consecutive unrepresented objects are inserted; (iii) h reduces by nk as

5This would require that all the objects in its initial placement be multiple ones, and that at least Cmax unrepresented objects

may profitably take their place. The second requirement can easily occur if the largest node requests objects with rates that tend

to be uniformly distributed to the different objects.
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compared to its value prior to the current batch of n − 1 full rounds.6 If R was a multiple of

n − 1 then we would be able to accurately identify h through the following equation.

h = C − i − C

nk
· k + 1 =

(n + 1)C − i + n

n
(15)

Given that the approximation that we are deriving is relevant when TSLS(k) performs many

rounds, we can ignore the remainder of the integer division of R with n−1 and retain (for the

sake of simplicity) the h given by Eq. (15). Since we assumed that object i gets the position

of object h, it must be that it leads to a higher excess gain for node n, i.e.:

pi(ts − tl) ≥ ph(tr − tl) (16)

Substituting in Eq. (16) pi and ph (making use of our assumption that all nodes follow the same

generalized power-law demand) and using also h from Eq. (15), we can write the following

inequality for i:

i ≤ min

{
(n + 1)C + n

nφ + 1
, nC

}
, where φ =

(
tr − tl
ts − tl

) 1
a

(17)

At this point we are ready to write an expression for GEQ
j , the gain of the jth node under the

EQ placement produced by TSLS(k). We will split GEQ
j into three components: (i) the gain

contributed by the initial (most popular) objects of the GL placement that are not affected

by the improvement step (objects 1 . . . h − 1 which we denote by the set (H)); (ii) the gain

contributed by any other object that does not belong to (H), but exists somewhere – locally

or remotely – in the group (objects h . . . i fall in this category); (iii) the gain contributed by

any object that does not belong to (H) but is replicated locally (in this category we have the

set of objects (U) which comprises the unique-ized k-tuples that were kept locally, and the

set of objects (I) which comprises the locally inserted objects). These sets are illustrated in

Fig. 4.

The objects of category (i) contribute to the overall gain with the product of their request

probability times a weight (ts − tl). The objects of category (ii) contribute similarly, but

6To understand the eviction/insertion process see that at the first full round nodes 1 ≤ j ≤ n − 1 evict the same objects

C − k + 1 . . . C and insert different consecutive ones C + (j − 1)k + 1 . . . C + jk, while node n evicts a different set of objects

C − 2k + 1 . . . C − k and inserts objects C + (n− 1)k + 1 . . . C + nk. The “unique-ized” objects of the first round (C − k + 1 . . . C)

remain at node n. The unique-ized objects of the next full round (C − 2k + 1 . . . C − k) will remain at node n − 1, and so on

until the completion of the (n − 1)th full round. Then another n − 1 batch of full rounds will begin, with node n being the one

to sustain the currently unique-ized k-tuple of objects.
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Figure 4: Tomography of the objects that are replicated at a node after the end of TSLS(k). (H) denotes the set of objects

that belong to the “head” of the GL placement, i.e., objects that are left intact by the improvement step because they are too

valuable. (U) denotes the set of unique-ized objects, that is objects that were on the GL placement of all the nodes but were

subsequently eliminated from all the nodes but the local one. (I) denotes the set of objects that were inserted locally by the

improvement step.

with a smaller weight (ts − tr) (the weight that amounts to a remote object). The objects

of category (iii) are local objects; they have already contributed to GEQ
j by a partial weight

(ts− tr) as they also belong to (ii), but must contribute by an additional weight (tr − tl), so as

to fill up to the weight (ts − tl) that amounts to local objects (we have split the contribution

of such objects in two parts similarly to what we have done in the proof of Proposition 1).

The following approximate expression for GEQ
j considers only the contribution of (i) and (ii)

and disregards the contribution of (iii) which is typically very small (see Sect. 6.2):

GEQ
j ≈ (ts − tl)K

h−1∑
l=1

1

la
+ (ts − tr)K

i∑
l=h

1

la

= (ts − tl)KH
(a)
h−1 + (ts − tr)K

(
H

(a)
i − H

(a)
h−1

) (18)

In the previous expression, H
(a)
m =

∑m
l=1 1/la denotes the mth Harmonic number of order a.

When 0 ≤ a < 1, H
(a)
m can be approximated by its integral expression (see also [31]):

H(a)
m ≈

∫ m

1

1/ladl =
m1−a − 1

1 − a
(19)

The expression of vj’s gain under the GL placement is much simpler:

GGL
j = GGL = (ts − tl)KH

(a)
C (20)

The approximation q of qj that is given in Eq. (3) is obtained by dividing GEQ
j from Eq. (18)

with GGL
j from Eq. (20), employing the integral approximation of Eq. (19), normalizing tr, ts

by considering tl = 0, and substituting h, i from Eqs (15), (17).

35



C Socially optimal replication

Leff, Wolf and Yu [1] have derived the socially optimal replication strategy under a global

utility by transforming the replica placement problem into a capacitated transportation prob-

lem [32] that can be solved efficiently in polynomial time. Let X = {Xij : 1 ≤ i ≤ N ,

1 ≤ j ≤ n} be a matrix of binary decision variables Xij that equal 1 if object oi is replicated

at node vj, and 0 otherwise; X defines a global placement. Also define zij, 1 ≤ i ≤ N ,

1 ≤ j ≤ n + 1, as follows:

zij =

⎧⎨
⎩ rij · (tr − tl) for 1 ≤ j ≤ n∑n

j′=1 rij′ · (tr − ts) for j = n + 1

Leff, Wolf and Yu showed that the socially optimal replication strategy is given by the solution

of the following capacitated transportation problem.

maximize f(X) =
∑n+1

j=1

∑N
i=1 zij · Xij

subject to
∑n+1

j=1 Xij ≥ 1, 1 ≤ i ≤ N∑N
i=1 Xij ≤ Cj, 1 ≤ j ≤ n∑N
i=1 Xij < ∞, j = n + 1
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