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Abstract— In this paper, a Delay Tolerant Network environ-
ment is considered where the source is in full control of the
two-hop spreading mechanism by setting key parameters such
as the number of copies allowed to be spread in the network
and the delay bound of the messages. The analysis allows for
a differentiation between the source of the message and the
intermediate nodes (in terms of e.g. transmission power or
speed). Analytical expressions for the cumulative distribution
function (cdf ) of the delivery delay and the induced overhead are
extracted, taking into account the fact that the source node may
continue spreading copies after the message delivery. In addition,
a fairly accurate approximate expression for the cdf of the
delivery delay is also derived and validated through simulations.

I. INTRODUCTION

The routing mechanisms considered for Delay Tolerant
Networks (DTNs), where typically no contemporaneous path
between a potential source-destination pair exists, achieve
message (data) delivery by carrying and opportunistically
relaying it at each node encounter, [1]-[9], either by using
a single copy or multiple copies of the message.

This work focuses on the two-hop relay algorithm [10][11],
where the source node relays a copy of the message to every
node it encounters; the intermediate nodes that acquire a copy
of the message are allowed to forward the copy only to
the destination and, thus, one hop or, maximum, two hops
of communication are employed for the message delivery.
The performance of the two-hop relay algorithm has been
studied in [11], for a homogeneous network, in terms of the
expected value and variance of the delivery delay as well as
of the expected number of transmissions until the delivery of
the message. Here, a more general study of the algorithm’s
performance is provided with respect to the setting that is
considered as well as the metrics that are examined.

The setting that is considered in this work allows for a
differentiation between the source of the message and the
intermediate nodes (in terms of e.g. transmission power or
speed), as discussed in detail in the next section. In addition,
instead of allowing the source to relay the message to all the
intermediate nodes that it encounters, the number of copies
allowed to be spread in the network is treated here as a design
parameter.

The delivery delay is fully characterized by extracting its cdf
(cumulative distribution function). Moreover, an approximate
approach is proposed that leads to a fairly accurate and much
simpler expression for the cdf. In addition, the number of

transmissions is considered not only upon the delivery of the
message, but until the actual termination of the algorithm,
which takes place when the source becomes aware of the
delivery. (When the message is delivered to the destination
by some intermediate node, the source continues to forward
the rest of the copies of the message allowed to be spread
until it becomes aware of the successful delivery and, thus,
the number of transmissions until message delivery is only
a fraction of the total number of transmissions that will
eventually take place.)

For all the above derivations, we assume that each message
has a certain delay bound upon the expiration of which the
message is dropped. This delay bound might be considered
either as an application-specific characteristic (e.g. a calendar-
related message or a meeting reminder that are expected to
be delay-bounded) or as a design parameter of the algorithm
(in order, for instance, to limit the spreading of copies by
determining an appropriate delay bound for the messages
within which their delivery is expected).

In the remainder of this paper, the model considered for this
work is introduced and described in Section II. In Section III,
the exact expression as well as a fairly accurate approximation
are derived for the achieved delivery ratio. In Section IV, the
overhead in terms of both the number of transmissions and
energy consumption is studied. The conclusions are drawn in
Section V.

II. MODEL DESCRIPTION

According to the two-hop relay algorithm employed here,
[10][11], the source node is allowed to spread up to a max-
imum number of copies (K) within the network. Each time
it encounters some other node with no copy of the message,
it gives it one until it has only one copy available (for the
destination node only). The intermediate nodes are not allowed
to spread the message copy they may have to any other node
than the destination.

Let N + 1 be the total number of nodes moving within a
square area of size L2. It is assumed that the node intermeeting
times (i.e., the time elapsed between two consecutive encoun-
ters for a given pair of nodes) are exponentially distributed.
This assumption has been demonstrated to be fairly accurate in
the case the communication range R is such that R ¿ L and
that nodes move around according to the random waypoint or
the random direction model, [11]. As it has been shown in [11],
the rate at which a given node encounters some other node, λ,
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Fig. 1. The Markov chain for the two-hop relay algorithm.

may be linked to the nodes’ relative speed v, communication
range R and network area L2:

λ = c
vR

L2
, (II.1)

where c is a constant and its value depends on the mobility
model used.

The setting that is considered in this work allows both for
the spreading of a restricted (K ≤ N ) number of copies
and for diverse intermeeting times between the source and
the other nodes represented by two parameters, λ and λo,
respectively. From equation (II.1), it becomes evident that
the differentiation between the parameters λ and λo may
be directly associated with the transmission range (power)
or/and the speed of the source and the intermediate nodes,
respectively. In addition, this differentiation may be associated
with a possible misbehaviour of the intermediate nodes by
assuming, for instance, that an intermediate node discards
a copy without further relaying it at its encounter with the
destination with a certain probability 1 − q (q expresses the
degree of cooperation of the intermediate nodes); assuming,
for simplicity, a homogeneous network with respect to the
transmission range and speed of the nodes, it is clear that the
network may be modeled by setting λo = qλ.

The above parameters that may lead to differentiation could
either be considered as non-tunable (e.g., the capabilities of
some nodes to transmit by default at a higher power level
or a node’s misbehavior or cooperation degree), or as tunable
(e.g., adjustment of the transmission range of the nodes within
the technological power limitations in order to satisfy specific
performance goals).

III. DERIVATION OF THE CDF OF THE DELIVERY DELAY

Under the aforementioned assumptions, the message spread-
ing process according to the K−limited, two-hop relay algo-
rithm may be modeled by the Markov chain depicted in Fig.1,
consisting of K + 1 states (K states capturing the number of
copies spread in the network and one absorbing state assumed
to be visited when the message is delivered to the destination;
generally, K ≤ N ). When there are i copies (i ≤ K) in the
network, a new copy is forwarded either to one of the (N − i)
nodes which do not have a copy yet (at the rate of λ(N − i)
triggering a transition from i to i+1) or to the destination (at
the rate of λ + (i− 1)λo triggering a transition from i to A).
Thus, the transition rates of the Markov chain of Fig.1 are

q(i, j) =





λ(N − i), i = 1, . . . , K − 1, j = i + 1;
λ + λo(i− 1), i = 1, . . . , K, j = A;
0, otherwise,

where λ and λo denote the exponential distribution parameter
of the intermeeting times for the source and for the rest of the
nodes, respectively.

Let fD(t) and Q(t) = P (D ≤ t) =
∫ t

0
fD(x)dx denote

the pdf (probability distribution function) and the cdf of
the message delivery delay, correspondingly. Adapting the
notation L(g) (L−1(g)) for the Laplace (inverse Laplace)
transform of some function g, Q(t) may be expressed as
Q(t) = L−1

(
F (s)

s

)
, where F (s) = L(fD(t)).

Let Ti denote the sojourn time in state i and let fTi
(t) =

qie
−qit denote its pdf. If Di denotes the conditional total

delay until the message reaches the destination given that the
destination gets the message when the system is in state i, then
Di =

∑i
j=1 Ti and its pdf is fDi

(t) = L−1 (Fi(s)), where
Fi(s) =

∏i
j=1 L(fTj

(t)).
Now, the pdf of the unconditional total delivery delay D,

may be expressed as

fD(t) =
K∑

i=1

pd,ifDi
(t),

where pd,i denotes the probability to be in state i when the
destination gets the message with

pd,i =





q(i,A)
qi

∏i−1
j=1

(
1− q(i,A)

qi

)
, i = 1, . . . , K − 1;

1−∑K−1
j=1 pd,j , i = K;

0, otherwise,

where qi = q(i, i + 1) + q(i, A).
Thus, and since L(fTi(t)) = L(qie

−qit) = qi

qi+s , F (s) (the
Laplace transform of the pdf of D) may be expressed as

F (s) =
K−1∑

i=1

BiF1,i(s) + BKF1,K(s),

where

Bi =
q(i, A)

qi




i−1∏

j=1

(1− q(j, A)
qj

)




i∏

j=1

qj

= (λd + (λ− λd)i)λi−1 (N − 1)!
(N − i)!

, 1 ≤ i ≤ K − 1,

BK =


1−

K−1∑

i=1

q(i, A)
qi

i−1∏

j=1

(1− q(j, A)
qj

)




K∏

j=1

qj

= λK−1(Kλ− (K − 1)λd)
(N − 1)!
(N −K)!

,

λd = λ− λo and

F1,i(s) =
i∏

j=1

1
qj + s

.



Based on the above expressions it may be concluded that

Q(t) = L−1 (F2(s)) =
K−1∑

i=1

Bif2,i(t) + BKf2,K(t), (III.1)

where f2,i(t) = L−1(F2,i(s)) and

F2,i(s) =
F1,i(s)

s
=

1
s

i∏

j=1

1
qj + s

=

{
1
s

∏i
j=1

1
λN−λd(j−1)+s , 1 ≤ i ≤ K − 1;

1
s

1
λ+(λ−λd)(K−1)+s

∏K−1
j=1

1
λN−λd(j−1)+s , i = K.

The derivation of f2,i(t) is lengthy and, thus, quoted in the
Appendix.

The above expression for Q(t) holds for the case K =
N and λd 6= 0. Following a similar methodology, it may be
concluded that for K < N and λd = 0, the cdf of the delivery
delay, denoted as Q0(t), is

Q0(t) =
K−1∑

i=1

Bif2,i(t) + BKf2,K(t) =

K−1∑

i=1

iλi (N − 1)!
(N − i)!

(
(

1
λN

)i −
i∑

k=1

e−λNt

(k − 1)!λN
tk−1

)

+λKK
(N − 1)!
(N −K)!

(
1

λK(λN)K−1
− e−λKt

λK(λ(N −K))K−1

−e−λNt

λK

K−1∑

k=1

(
( 1

λN )K−k − ( 1
λ(N−K) )

K−k
)

tk−1

(k − 1)!


 .

In the special case where K = N and λd 6= 0 it is obtained
that the cdf of the delivery delay, denoted as QN (t), is

QN (t) = 1− e−λNt

(
1 +

λ

λd

(
eλdt − 1

))N−1

. (III.2)

For K = N and λd = 0 the cdf may be obtained by taking
the limit as λd → 0,

lim
λd→0

QN (t) = lim
λd→0

1− e−λNt

(
1 +

λ

λd

(
eλdt − 1

))N−1

= 1− e−λNt(1 + λt)N−1.

The analysis was validated through simulations. Figure 2
depicts an indicative example for the cases of K = 4, 8, 100
when N = 100, λ = 0.08 and λo = 0.04. For the simulations,
a network of 100 nodes that move according to the random
direction mobility model with a speed of 2m/sec within a
square area of a side of 1000m has been considered. The
source node has a transmission range of 50m and spreads up
to 3, 7 and 99 copies of the message to the intermediate nodes
(K = 4, 8, 100, respectively) that have a transmission range
of 25m; the results refer to the average of 20000 runs.
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Fig. 2. Theoretical and simulation results for N = 100, λ = 0.08, λo =
0.04 and for the cases of K = 4, 8, 100.

A. Approximate expression for the cdf of the delivery delay

Instead of using the equation (III.1) in order to calculate the
cdf of the delivery delay, an approximate expression is derived
here, giving a much simpler expression that approximates
fairly accurately the exact one. Its derivation is based on
the observation that the cdf for a specific number of copies
K where K ≤ N , named accurate cdf hereafter, is upper
bounded by two cdfs.

The first one, named maximum-copy cdf hereafter, refers
to the case where the number of copies employed in the
network equals the number of nodes (K = N ), is denoted
as QN (t) and is given by equation (III.2). This is because the
algorithm has exactly the same behaviour up to the time point
where the first K copies are spread in the network, while,
afterwards, the setting corresponding to the maximum-copy
cdf takes advantage of the surplus copies (N −K) allowed to
be spread to enhance its performance.

The second one, named zero-spreadtime cdf hereafter, refers
to the hypothetical ideal case where upon the generation of
a message, all K copies are assumed to have been spread
instantly in the network; one copy is owned by the source
node and (K−1) by some intermediate nodes. In that case, a
transition to the state of the destination’s having acquired the
message takes place at a rate of (λ+λo(K−1)) and, thus, the
zero-spreadtime cdf of the delivery delay, denoted as QḰ(t),
is given by

QḰ(t) = 1− e−(λ+λo(K−1))t.

What may be intuitively expected and is indeed observed
regarding the zero-spreadtime cdf is that when it is shifted
to be tangent to the maximum-copy one, the part of the cdf
from the contact point and afterwards is a fairly accurate
approximation of the original cdf.

Based on the above observations, an approximate expression
for the cdf of the delivery delay, denoted as Q̂K(t), may be
defined as a two-part function, consisting of the maximum-



copy cdf until being tangent to the shifted zero-spreadtime
one and of the latter afterwards, or

Q̂K(t) =





QN (t) = 1− e−λNt
(
1 + λ

λd

(
eλdt − 1

))N−1

,

0 ≤ t ≤ tcr;
QḰ(t− t0) = 1− e−(λ+λo(K−1))(t−t0),
t ≥ tcr,

where t0 denotes the time shift of the zero-spreadtime cdf
needed to be tangent to the maximum-copy one and tcr

corresponds to the contact point of the above two cdfs.
By using a second order series expansion of both sides of

the equation QN (tcr) = QḰ(tcr− t0), and by demanding that
this equation has only a single solution, since the two cdf s
should have a single contact point, it is obtained

t0 =
λo(K − 1)2N

2λ(λK − λd(K − 1))((N − 1)N −K + 1)
,

tcr =
1
λ

b1e
−b1λt0 − a1

2a2 − b2
1e
−b1λt0

.

Figure 3 illustrates how the approximate cdf is constructed
for the case of N = 100, K = 8, λ = 0.08 and λo = 0.04.

The approximate cdf may be used in order to obtain closed
form solutions to design problems for which the exact analysis
allows only for a numerical solution. For example, given the
characteristics of the network and the nodes, which would
allow to determine the intermeeting parameters λ and λo, it
might be desirable to estimate the number of copies K that
the source should spread in the network in order to achieve a
specific delivery ratio, referred to as Qd, within some time t.
Using the above approximation, the following estimation may
be obtained:

Kapprox =
−λd(N + (N − 2)(N + 1)λt)

λo(N − 2λt)

+
λ(N + (N(N − 1)− 1)λt + ln (1−Qd)))±

√
C

λo(N − 2λt)
,

where C = λ
(
2λλo(N − 1)N2 +(λd(N − 1)N

+λ(1−N2 + N))2λt
)

+λ ln (1−Qd)(−2λd(N−1)N(N−
λt) + 2λ((N − 1)N(N − λt) + λt) + λ ln (1−Qd)), and
λd = λ − λo. From the two values obtained for Kapprox,
the positive one that fulfils the condition t0 ≤ tcr should be
selected. It should be noted that the derived Kapprox is found
to provide a performance close to the targeted one even if it
suggests a considerably lower number of copies.

IV. CALCULATION OF THE OVERHEAD

A number of transmissions is required for the message to
be delivered to the destination node; this number of transmis-
sions corresponds to the overhead of the message spreading
mechanism. Since the setting introduced in this work allows
for a differentiation between the source and all other nodes in
terms of transmission power, we also consider the overhead
in terms of energy consumption.

As mentioned, each message is assumed to have a delay
bound (that might be either an application-specific character-
istic or a design parameter of the algorithm itself) after which
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Fig. 3. Approximating the accurate cdf with the maximum copy cdf for
t ≤ tcr and the shifted zero-spreadtime cdf for t > tcr .

it is dropped, no matter if it has been delivered or not to the
destination.

The total overhead spent for the delivery of the delay-
bounded messages is determined in two phases; first, the
overhead until the delivery or drop of the message is extracted
(both in terms of transmissions and energy consumption)
and then the overhead that might occur after the delivery of
the message until the source becomes aware of the message
delivery, referred to as additional overhead, is calculated.

A. Overhead until the delivery or drop of the message

The expected overhead consumption until the delivery or
drop of the message, Odel|drop, may be expressed as

Odel|drop =
K∑

i=1

Odel|drop,iPdel|drop,i,

where Odel|drop,i denotes the expected overhead consumption
provided that the message is delivered or dropped when in
state i and Pdel|drop,i denotes the probability that the system
is in state i when the destination is reached or the message is
dropped. Then, for 1 ≤ i < K,

Pdel|drop,i =
(

1− (1− Pdrop,i)
q(i, i + 1)

qi

)

i−1∏

j=1

(1− Pdrop,j)
q(j, j + 1)

qj
,

where Pdrop,i denotes the probability that the message is
dropped provided that the system is in state i. For i = K,
we use the complementary probability

Pdel|drop,K = 1−
K−1∑

i=1

Pdel|drop,i.

Now, the probability (1 − Pdrop,i) that the message is not
dropped provided that the system is in state i can be expressed



as

1− Pdrop,i =





∫ D

0
fD1(t)dt, i=1;RD

0 fDi
(t)dtRD

0 fDi−1 (t)dt
, 1 < i ≤ K − 1,

where Di depicts the total delay until the message reaches
the destination provided that the destination gets the message
when the system is in state i. More specifically, since the
system is in state i, it holds

∑i−1
j=1 Tj ≤ D, where Tj denotes

the sojourn time in state j. In addition, the message is not
dropped only if

∑i
j=1 Tj ≤ D. Furthermore,

∫ t

0
fDi

(x)dx =(∏i
j=1 qj

)
f2,i(t). Thus,

1− Pdrop,i =

{
q1f2,1(D), i=1;
qif2,i(D)
f2,i−1(D) , 1 < i ≤ K − 1.

Now, the expected overhead consumption provided that the
message is delivered or dropped when the system is in state
i, Odel|drop,i can be expressed as

Odel|drop,i = (i− 1)Es + Pdels,iEs + Pdelo,iEo,

where Pdels,i (Pdelo,i) denotes the probability that the source
(some intermediate node) delivers the message to the destina-
tion provided that the message is delivered or dropped when
the system is in state i. To allow for the calculation of the
consumed energy when different power levels are used for
the transmissions of the source and the intermediate nodes,
the parameters Es and Eo are used respectively. In order
to calculate the overhead only in terms of the number of
transmissions, Es and Eo should be assumed to be equal to
1.

When being in state i, the message is dropped with probabil-
ity Pdrop,i, it is delivered to the destination by some of the i−1
intermediate nodes with probability (1 − Pdrop,i)

(i−1)λo

qi
and

it is delivered to the destination by the source with probability
(1 − Pdrop,i) λ

qi
. Taking the above into consideration, it is

obtained that

Pdels,i =
(1− Pdrop,i) λ

qi

Pdrop,i + (1− Pdrop,i)
λ+(i−1)λo

qi

, 1 ≤ i ≤ K,

and

Pdelo,i =
(1− Pdrop,i)

(i−1)λo

qi

Pdrop,i + (1− Pdrop,i)
λ+(i−1)λo

qi

, 1 ≤ i ≤ K.

B. Calculation of the additional overhead

When the message is delivered to the destination by an
intermediate node, the source node will continue spreading
the rest (if any) of the predefined number of copies (K); the
overhead that is unnecessarily spent in this case is referred
to as additional overhead. Here, the additional overhead is
calculated for two distinct cases: (a) until the source node
meets the destination (referred to as single notification), and
(b) until it meets either the destination or the intermediate
node that delivered the message to the destination (referred to
as double notification).

ri(i, i+1)i i+1 Ai…..i+2 K-1K-2ri(i+1, i+2) ri(i+2, i+3) ri(K-3, K-2) ri(K-2, K-1) ri(K-1, K) Kri(i+2, Ai) ri(K-1, Ai)ri(i+1, Ai) ri(K, Ai)ri(i, Ai) ri(K-2, Ai)
Fig. 4. The Markov chain for the additional overhead calculation.

The single notification may be considered as the straight-
forward notification procedure of the two-hop relay algorithm,
since the source node is obviously expected to end the message
copy spreading process after meeting the destination node.
On the other hand, the double notification is the simplest
notification procedure engaging intermediate nodes and re-
quires that the node which has delivered the message to the
destination keep the source in its memory and notify it after
their encounter; this procedure is used as an indicative example
of how a little more sophisticated mechanism may limit the
overhead spent.

The expected additional overhead may be expressed as

Oadd =
K∑

i=2

Pdel|drop,iPdelo,iOadd,i,

where Oadd,i denotes the expected additional overhead pro-
vided that the message is delivered by some intermediate node
when the system (as modeled by the Markov chain of Fig.1)
is in state i. In order to derive Oadd,i the system may be
modeled as a Markov chain, depicted in Fig.4, starting from
state i (where there are i copies of the message, one for the
source node and the rest for the intermediate ones) up to state
K and having an absorbing state Ai that corresponds to the
case that the source node has been informed of the delivery
success.

The transition rates for the Markov chain of Fig.4 are

ri(j, k) =





λ(N − j), j = i, . . . , K − 1, k = j + 1;
λn,i + λn,d, j = 1, . . . , K, k = Ai;
0, otherwise,

where λn,i and λn,d denote the intermeeting time parameters
for the intermediate node and the destination node when they
notify the source, respectively. (In the case where this param-
eter is assumed to be the same as for message transmissions,
then λn,i = λn,d = λo.)

The expected additional energy consumption provided that
the message is delivered by an intermediate node when the
system is in state i, Oadd,i, may be expressed as

Oadd,i =
K∑

j=i

Oadd,i,jPdel|drop,i,j ,

where Oadd,i,j denotes the expected overhead provided that
the source is notified or the message is dropped when the
system is in state j (Fig. 4) and Pdel|drop,i,j denotes the
probability that the system is in state j when the source is



notified or the message is dropped. For i ≤ j < K, the latter
term is given by

Pdel|drop,i,j =
(

1− (1− Pdrop,i,j)
ri(j, j + 1)

ri,j

)

j−1∏

k=1

(1− Pdrop,i,k)
ri(k, k + 1)

ri,k
,

where Pdrop,i,j denotes the probability that the message is
dropped provided that the system is in state j and ri,j =
ri(j, j + 1) + ri(j, Ai). (In case j = K, there is no additional
overhead spent.)

Now, the message will not be dropped when the system is
in state j if and only if Di,j =

∑i
k=1 Tk +

∑j
k=i Ti,k ≤ D,

where Tk denotes the sojourn time in state k of the chain in
Fig.1 and Ti,k denotes the sojourn time in state k of the chain
in Fig.4. Provided that the system is in state j in Fig.4, it holds
that Di,j−1 =

∑i
k=1 Tk +

∑j−1
k=i Ti,k ≤ D. Thus,

1− Pdrop,i,j =

{
FDi,1(D), j=1;

FDi,j
(D)

FDi,j−1 (D) , 1 < j ≤ K − 1,

with

FDi,j (t) =
∫ t

0

fDi,j (x)dx,

where fDi,j (t) denotes the pdf of Di,j . FDi,j (t) is derived in
the Appendix.

The term Oadd,i,j may be expressed as

Oadd,i,j = (j − 1)Es + Pnd,i,jEnd + Pni,i,jEni,

where Pnd,i,j (Pni,i,j) denotes the probability that the source is
notified by the destination (the intermediate node that delivered
the message) provided that the source is notified or the
message is dropped when being in state j; End and Eni denote
the energy consumed for the transmission of the notification
message by the destination node and an intermediate node,
respectively.

Finally, the following equations may be used:

Pnd,i,j =
(1− Pdrop,i,j)

λn,d

ri,j

Pdrop,i,j + (1− Pdrop,i,j)
λn,i+λn,d

ri,j

,

and

Pni,i,j =
(1− Pdrop,i,j)

λn,i

ri,j

Pdrop,i,j + (1− Pdrop,i,j)
λn,i+λn,d

ri,j

.

It should be noted that for single notification λn,i = 0; thus,
Pni,i,j becomes equal to zero.

Figures 5 and 6 depict the number of transmissions and the
energy consumed, respectively, as a function of λ, for the case
of K = N = 100 and λo = 0.08. (The energy consumed for
a transmission is assumed to be proportional to the square of
λ and equal to 1 for λ = 0.08.) As expected, there is a signif-
icant difference between the number of transmissions and the
energy consumed in heterogeneous networks where different
transmission powers among the nodes may be employed.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

N
um

be
r 

of
 tr

an
sm

is
si

on
s

λ

until delivery
additional, double notification
additional, single notification

Fig. 5. The number of transmissions as a function of λ, where K = N and
λo = 0.08.
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Fig. 6. The energy consumption as a function of λ, where K = N and
λo = 0.08.

By both figures 5 and 6, it may be concluded that the num-
ber of transmissions or consumed energy until the message
delivery time are just a small portion of the corresponding
totals and cannot be ignored. In addition, the participation
of the intermediate node in notifying the source node of the
message delivery (double notification) limits noticeably the
additional energy spent; consequently, it seems that even a
simple approach as the one introduced in this work can be
proved to be a valuable mechanism.

V. CONCLUSIONS

In this work, we investigated the performance of the two-
hop message spreading mechanism within the framework of a
DTN environment, where differentiation on the characteristics
between the source and the intermediate nodes – either in-
tentionally (adjusting transmission range, changing mobility
parameters, misbehaving), or unintentionally (buffer or an-
tenna limitations) – could exist. Analytical expressions for the



message delivery ratio as well as the number of transmissions
and consumed energy were derived. An approximation for
the delivery ratio was also introduced that fairly accurately
captures the performance of the two-hop relay algorithm. It
was shown that the consumed energy or needed transmissions
after the delivery of the message might be significant. In order
to limit the unnecessary transmissions, even a simple message
delivery notification procedure was shown to be a valuable
mechanism when the number of copies to be spread in the
network is high.
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VII. APPENDIX

A. Derivation of f2,i(t)

A.1 For 1 ≤ i < K the poles of F2,i(s) are si,0=0 and
si,k = λd(k − 1) − λN, k = 1, . . . , i, which are all single
poles. Thus,

f2,i(t) =
i∑

k=0

ci,kesi,kt,

where ci,k = (s− si,k)F2,i(s)|s=si,k
. For 0 < k ≤ K,

ci,k =
1

λd(k − 1)− λN
ci,k,

where

ci,k =
∏i

j=1,j 6=k

1
λN − λd(j − 1) + λd(k − 1)− λN

=
1

λi−1
d

∏i

j=1,j 6=k

1
k − j

=
1

λi−1
d

1
(k − 1)!

(−1)i−k

(i− k)!
.

For k = 0,

ci,0 =
i∏

j=1

1
λN − λd(j − 1)

=
i∑

k=1

1
λN − λd(k − 1)

i∏

j=1,j 6=k

1
λd(k − 1)− λd(j − 1)

=
i∑

k=1

−ci,k.

Thus,

f2,i(t) =
i∑

k=1

ci,k(e−λNteλd(k−1)t − 1)

=
i∑

k=1

1
λd(k − 1)− λN

ci,k(e−λNteλd(k−1)t − 1)

=
i∑

k=1

1
λd(k − 1)− λN

1
λi−1

d

1
(k − 1)!

(−1)i−k

(i− k)!
(e−λNteλd(k−1)t − 1).

A.2 For i = K the poles of F2,K(s) are sK,0 = 0, sK,K =
−(λ + (λ − λd)(K − 1)) = (K − 1)λd − Kλ and sK,k =
λd(k − 1) − λN, k = 1, . . . ,K − 1. The above poles are all
single for −(λ+(λ−λd)(K−1)) 6= λd(j−1)−λN, ∀j, 1 ≤
j ≤ K−1 (it can be easily concluded that λ(N−K)+jλd 6=
0,∀j, 1 ≤ j ≤ K−1, so none of the following denominators is
zero), sK,K 6= 0 and sK,k 6= 0, k = 1, . . . , K−1). The case of
poles with multiplicity greater than 1 is not considered in order
to avoid unnecessary complexity; however, in the numerical
results the aforementioned condition is technically never met
by adding some “noise” digits. Thus,

f2,K(t) =
K∑

k=0

c̃K,kesK,kt,

where c̃K,k = (s− sK,k)F1,K(s)|s=sK,k
. For 0 < k < K,

c̃K,k =
1

λd(k − 1)− λN
1

λ + (λ− λd)(K − 1) + λd(k − 1)− λN
∏K−1

j=1,j 6=k

1
λN − λd(j − 1) + λd(k − 1)− λN

=
1

λd(k − 1)− λN

−1
λ(N −K) + λd(K − k)

cK−1,k

=
1

λd(k − 1)− λN
ĉK,k.

where

ĉK,k =
1

λ + (λ− λd)(K − 1) + λd(k − 1)− λN
∏K−1

j=1,j 6=k

1
λN − λd(j − 1) + λd(k − 1)− λN

=
−1

λ(N −K) + λd(K − k)
cK−1,k.

For k = K,

c̃K,K =
1

λd(K − 1)− λK
K−1∏

j=1

1
λN − λd(j − 1) + (K − 1)λd −Kλ

=
1

λd(K − 1)− λK
ĉK,k,



where

ĉK,K =
K−1∏

j=1

1
λN − λd(j − 1) + (K − 1)λd −Kλ

=
K−1∏

j=1

1
λ(N −K) + jλd

=
K−1∑

k=1

1
λ(N −K) + kλd

∏K−1

j=1,j 6=k

1
λdj − λdk

=
K−1∑

k=1

1
λ(N −K) + kλd

1
λK−2

d

(−1)k−1

(k − 1)!
1

(K − k − 1)!
.

For k = 0,

c̃K,0 =
1

λ + (λ− λd)(K − 1)

∏K−1

j=1

1
λN − λd(j − 1)

=
1

λK − λd(K − 1)
K−1∑

k=1

1
λN − λd(k − 1)

1
λK−2

d

1
(k − 1)!

(−1)K−k−1

(K − k − 1)!
.

Thus,

f2,K(t) =
K∑

k=0

c̃K,kesK,kt =
1

λK − λd(K − 1)
K−1∑

k=1

1
λN − λd(k − 1)

1
λK−2

d

1
(k − 1)!

(−1)K−k−1

(K − k − 1)!

+
1

λK−2
d

K−1∑

k=1

1
(k − 1)!

1
(K − 1− k)!

(
(−1)k−1e((K−1)λd−Kλ)t

(λd(K − 1)− λK)(λ(N −K) + kλd)

+
(−1)K−ke−λNteλd(k−1)t

(λd(k − 1)− λN)(λ(N −K) + λd(K − k))

)
.

B. Derivation of FDi,j (t)

FDi,j (t) is derived starting from

L (
FDi,j (t)

)
=

1
s

(
i∏

k=1

qk

s + qk

)(
j∏

k=i

ri,k

s + ri,k

)
.

The poles L (
FDi,j (t)

)
are

si,j,k =





0, k = 0;
−qk, 1 ≤ k ≤ i− 1;
−ri,k, i ≤ k ≤ j;
−qi, k = j + 1.

(We consider −qi as the j + 1 pole.) We consider only the
case where the multiplicity of each pole is equal to one; this

requires that:

qk 6= qk′ , 1 ≤ k, k′ ≤ i, k 6= k′;
ri,k 6= ri,k′ , i ≤ k, k′ ≤ j, k 6= k′;
qk 6= ri,k′ , 1 ≤ k ≤ i, i ≤ k′ ≤ j;

qk 6= 0, 1 ≤ k ≤ i;
ri,k 6= 0, i ≤ k ≤ j.

(In the numerical results it is ensured that these conditions
are met by using some additional “noise” digits for the values
of the parameters.) Then,

FDi,j
(t) =

j+1∑

k=0

ci,j,kesi,j,kt,

where

ci,j,k = (s− si,j,k)L (
FDi,j (t)

) |s=si,j,k
, 0 ≤ k ≤ j + 1.

Thus,

ci,j,k =





1, k = 0;

−
(∏k−1

m=1
qm

qm−qk

) (∏i−1
m=k+1

qm

qm−qk

)
(∏j

m=i
ri,m

ri,m−qk

)
, 1 ≤ k ≤ i− 1;

−
(∏i−1

m=1
qm

qm−ri,k

)(∏k−1
m=i

ri,m

ri,m−ri,k

)
(∏j

m=k+1
ri,m

ri,m−ri,k

)
, i ≤ k ≤ j;

−
(∏i−1

m=1
qm

qm−qi

)(∏j
m=i

ri,m

ri,m−qi

)
, k = j + 1.
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