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Abstract

One of the most widely considered cache replacement policies is Least Recently

Used (LRU) based on which many other policies have been developed. LRU has

been studied analytically in the literature under the assumption that the object

requests are independent. However, such an assumption does not seem to be in

agreement with recent studies of Web-traces, which indicate the existence of short

term correlations among the requests. This paper introduces an approximate analy-

sis that fairly accurately predicts the hit ratio of the LRU policy in the case of short

term correlations. The approximation approach is based on the relation between

the working set model and LRU, while the request generation process is assumed

to follow a recently proposed model for Web-traces, which captures short term cor-

relations among the requests. The accuracy of the introduced approximate analysis

is validated for synthetic as well as real Web-traces.
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1 Introduction

Web caching is a widely deployed technique aiming at reducing network band-

width usage, content access delay and origin server loads. Among the issues

that concern the design of an efficient Web caching system like the exact

location of the proxies, the cooperation among the proxies or the cache reso-

lution/routing process ([14]), the cache replacement policy to be applied (i.e.

the process responsible for making the decisions on the eviction of objects

in case the cache is full) has attracted a great deal of research interest. Sev-

eral replacement policies have been proposed varying in both the achieved

efficiency and the induced complexity ([2], [11]). One of the most widely con-

sidered cache replacement policies is Least Recently Used (LRU), on the basis

of which many other policies have been developed; according to LRU, the ob-

ject that is evicted at the time a replacement is required is the one that was

requested the least recently.

In most of the works regarding the performance analysis of web caching (e.g.,

[5], [9]), the assumption that the object requests are independent has been

adopted. However, the independent reference model has been criticized for in-

adequately explaining the locality of the requests (the fact that a requested

object is highly probable to be requested again in the near future). More

specifically, although the assumption of a Zipf-like distribution of the popu-

larity of the objects implies some degree of locality ([3]), recent studies reveal

the existence of correlations among the requests in real Web traces ([12], [8]).

This paper presents an approximate analysis for predicting the hit ratio (per-

Athanasios Vaios, and Ioannis Stavrakakis).
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centage of the objects being found in the cache when requested) of LRU under

the assumption that the request generation process follows a recently proposed

model for Web-traces ([12]), which captures short term correlations among the

requests. The model has a memory of length h; it is assumed that the request

generation process is a probabilistic mixture of a memoryless process and a

process that chooses one of the h most recent requests.

An additional interesting finding of this study is that when the memory of the

request generation process is less than the capacity of the cache (h ≤ C), the

hit ratio of the LRU replacement policy is approximately independent of the

exact length of the memory h. In addition, in this case (h ≤ C) the value of the

hit ratio can be analytically evaluated by utilizing the proposed approximate

analysis for h = 1.

Finally, it is worth noticing that the LRU policy (that has been mostly con-

cerned for web-caching applications and peer-to-peer networks ([13])) may be

applied in other networking paradigms, like that of Delay Tolerant Networks

(DTNs), where the mobile nodes exchange their messages upon their encoun-

ters and a replacement policy – like LRU – is applied for buffer management

([10]); recently, it was observed that the intermeeting times between the nodes

of a DTN are correlated, ([4]). Thus, this work may be used as the basis for

further investigation in order to capture the effects of caching on such a new

environment.
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2 Model description

The popularity of the (equally sized) objects is assumed to follow a Zipf-

like distribution. Assuming, without loss of generality, that the N objects are

enumerated with decreased popularity order, the probability of object k to be

requested is given by

qk =
K

ka
, 1 ≤ k ≤ N, (1)

where K =
(∑N

k=1
1
ka

)−1
is the normalization constant and a is the skewness

parameter of the Zipf-like distribution. 1

In order to capture short term correlations among the requests, we use the

model recently proposed in [12], which was shown to fairly accurately approx-

imate the behaviour of real Web-traces.

More specifically, let Rn denote the object requested at time n ≥ 1, and Yn,

n ≥ 1, be a sequence of random variables that are independent and identically

1 As reported in [6], for Web proxies, the value of a is typically less than 1, ranging

from 0.64 to 0.83, while for Web servers the reported typical value of a is varying

between 1.4 and 1.6.
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distributed according to qi, 1 ≤ i ≤ N . For object requests and n > h:

Rn =



Rn−1 with probability w1,

Rn−2 w.p. w2,

...

Rn−h w.p. wh,

Yn w.p. β,

(2)

where β +
h∑

i=1

wi = 1. (3)

The wi’s are decreasing with respect to i and follow a Zipf-like distribution;

let ah denote the skewness parameter of this distribution. The history of the

h most recent requests is kept in order to capture short term (temporal) cor-

relations, while Yn injects objects that may or may not have been recently

requested and captures long-term (object) popularity. As proved in [12], in

stationarity, Rn is distributed like Yn.

3 Analysis

The applied approximation for the computation of the hit ratio under the de-

scribed in the previous section request arrival model capitalizes on the results

of [7] regarding the working set model and its relation to LRU. In [7], a dis-

crete time model is considered where time instants are defined by (the event

of) objects’ requests (or references 2 ) and all objects are assumed to be of the

same size. The working set W (t, T ) at time t is defined as the set of distinct

2 The terms request and reference are used interchangeably in this paper.
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objects referenced in the time interval [t − T + 1, t] and the working set size

w(t, T ) is defined as the number of objects in W (t, T ); the parameter T is re-

ferred to as the “window size”. The following expressions have been derived for

the average working set size s(T ) and the fault probability m(T ) (probability

that the requested object is not contained in the working set):

s(T ) =
T−1∑
z=0

(1− F (z)), (4)

m(T ) = 1− F (T ), (5)

where F (z) =
∑N

i=1 qiFi(z), qi is the relative frequency of references to object

i, N is the total number of objects, and Fi(z) is the inter-reference distribu-

tion for object i, which is defined as the fraction of inter-reference intervals

for object i that are less than or equal to z; the inter-reference interval for

object i is defined as the interval between two successive references to object

i (e.g., is equal to z if two successive requests for object i take place at t

and at t+ z). Equations (4) and (5) have been derived in [7] under relatively

general assumptions (the request process is stationary and the requests are

asymptotically uncorrelated).

In order for the working set model to simulate the LRU policy, T should be let

to vary so that W (t, T ) always contains precisely C objects (where C refers

to the capacity of the cache), in which case W (t, T ) will include precisely the

contents of the LRU cache.

In this paper, for the approximate analysis of LRU, T is approximated by a

constant (and is allowed to take non integer values), i.e. T is assumed to remain

(approximately) constant when the working set model is used to simulate LRU.

Under this assumption, the mean working set size is (approximately) equal to

the capacity of the cache. Thus, based on equations (4) and (5), it follows
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that 3

C ≈ s(T ) =
T−1∑
z=0

(1− F (z)), (6)

HR ≈ F (T ), (7)

where C and HR denote the capacity and the hit ratio of the cache, respec-

tively. F (x) is given by

F (x) =
N∑

j=1

qjFj(x), (8)

where Fj(x) is the probability that the inter-reference interval for object j is

less than or equal to x requests. Fj(x) can be expressed as

Fj(x) =
x∑

k=1

Gj(k), (9)

where

Gj(k) = P ({Rn+k = j, {Rz 6= j, n < z < n+ k}}|Rn = j) (10)

denotes the probability that the inter-reference interval for object j is exactly

equal to k requests. For the computation of Gj(k), the recursive expression

Gj(k) =

(
1−

k−1∑
m=1

Gj(m)

)
Hj(k), (11)

which is directly implied by its definition can be employed, where Hj(k) de-

notes the probability that the inter-reference interval for object j is exactly

3 It should be noted that it can be easily concluded that the assumptions under

which equations (4) and (5) have been derived also hold for the employed request

arrival model.
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equal to k requests provided that it is greater than k − 1 requests, or 4

Hj(k) = P (Rn+k = j|{Rn = j, {Rz 6= j, n < z < n+ k}}). (12)

Thus, in order to determine the hit ratio of the cache, it is sufficient to calculate

Hj(k). To this end, the following Lemma will be used (its proof is quoted in

the Appendix).

Lemma 1. Let

cj(i) , P (Rn+i = j|Rn = j), 1 ≤ i ≤ h. (13)

Then, cj(i), 1 ≤ i ≤ h, can be obtained by solving the set of equations

cj(i) = βqj + wi +
h∑

k=1,k 6=i

wkcj(|i− k|), 1 ≤ i ≤ h. (14)

Now, let

cj(k,m) , P (Rn−m = j|{Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k}}),

0 ≤ k ≤ h − 2, 1 ≤ m ≤ h − k − 1. By definition, it holds that cj(0,m) =

cj(m), 1 ≤ m ≤ h− 1 (see equation (13)). Then, Hj(k) may be expressed as

Hj(k) =


βqj + wk +

∑h
t=k+1wtcj(k − 1, t− k), 1 ≤ k ≤ h,

βqj, k > h.

(15)

The computation of the probabilities Hj(k) for k ≤ h is rather difficult since

it requires the analysis of an h-th order Markov chain. To overcome the above

4 Throughout this section, when referring to the n-th request it is silently assumed

that n is sufficiently large (and definitely n > h), since only the steady state behavior

of the system is considered.
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inefficiency, approximations for Hj(k) are derived in the sequel and lead to an

upper bound as well as approximate expressions for the hit ratio.

3.1 Upper bound on the hit ratio

An upper bound on the hit ratio may be obtained by using the quantities

cj(m) instead of cj(k,m) (it is noted that cj(m) ≥ cj(k,m), by definition)

in equations (7) and (8). More specifically, the following Lemma indicates

that by using F̂j(x) instead of Fj(x) an upper bound on the HR, denoted as

HRupper bound, is obtained (the proof is quoted in the Appendix).

Lemma 2. Let

F̂j(x) ,
x∑

k=1

Ĝj(k), x ≥ 1,

where

Ĝj(k) ,

(
1−

k−1∑
m=1

Ĝj(m)

)
Ĥj(k), k ≥ 1,

and

Ĥj(k) ,


βqj + wk +

∑h
m=k+1wmcj(m− k), 1 ≤ k ≤ h,

Hj(k), k > h,

(16)

where Hj(k) is given by equation (15). Then Fj(x) ≤ F̂j(x), ∀x ≥ 1, where

Fj(x) is defined by equation (9).

Now, let F̂ (x) =
∑N

j=1 qjF̂j(x), F̂ (0) = F (0) and let T̂ be the solution of

C ≈
T̂−1∑
z=0

(1− F̂ (z)). (17)

Then,

HRupper bound = F̂ (T̂ ). (18)
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From Lemma 2, it follows that F̂ (x) ≥ F (x), x ≥ 1 and, by comparing (17)

with (6), it is concluded that T̂ ≥ T and, thus (see (18), (7)), HRupper bound =

F̂ (T̂ ) ≥ HR.

3.2 Approximate expressions for the hit ratio

In order to provide approximate expressions for the hit ratio, we focus on

approximating the probabilities cj(k,m). To this end, we use the Bayes’ rule,

according to which:

P (Rn−m = j, Rn+k+1 6= j|{Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k}}) =

P (Rn−m = j|{Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k + 1}})

·P (Rn+k+1 6= j|{Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k}}) =

P (Rn+k+1 6= j|{Rn−m = j, Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k}})

·P (Rn−m = j|{Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k}}).

By employing the above equations on the definition of cj(k,m) it is obtained

that

cj(k + 1,m)

cj(k,m)
=
P (Rn+k+1 6= j|{Rn−m = j, Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k}})

P (Rn+k+1 6= j|{Rn = j, {Rz 6= j, n+ 1 ≤ z ≤ n+ k}})
.

To simplify the above expression, the approximation

cj(k + 1,m)

cj(k,m)
≈ cj(1,m)

cj(0,m)
=
P (Rn+1 6= j|Rn−m = j, Rn = j)

P (Rn+1 6= j|Rn = j)
(19)

is introduced, which allows to express cj(k,m) for k ≥ 2 with respect to

cj(0,m) and cj(1,m) 5 .

5 As it may be seen from the definition of cj(k,m), the difference between cj(k,m)

and cj(k + 1,m) lies on the extra knowledge that Rk+1 6= j; this difference is intu-
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The denominator of equation (19) may be expressed as

P (Rn+1 6= j|Rn = j) = 1− P (Rn+1 = j|Rn = j) = 1− c1(j).

Regarding the numerator of equation (19), it holds that

P (Rn+1 6= j|{Rn−m = j, Rn = j}) = 1− P (Rn+1 = j|{Rn−m = j, Rn = j}) =

1− (βqj + w1 + wm+1 +
h−1∑

t=1,t6=m

wt+1P (Rn−t = j|{Rn−m = j, Rn = j}). (20)

By using the inequalities

max{P (Rn−t = j|Rn = j), P (Rn−t = j|Rn−m = j)} ≤ P (Rn−t = j|{Rn = j, Rn−m = j})

≤ min{1, P (Rn−t = j|Rn = j) + P (Rn−t = j|Rn−m = j)} (21)

in equation (20), an overestimation and an underestimation are derived for

P (Rn+1 = j|{Rn−m = j, Rn = j}), while a third approximation is obtained

as the average of the above two. More specifically, the three approximations,

denoted as ovrest, undest and est, are given by the following equations:

(1) Overestimation:

P (Rn+1 = j|{Rn−m = j, Rn = j})ovrest = βqj + w1 + wm+1

+
m−1∑
t=1

wt+1 min (1, cj(m− t) + cj(t)) +
h−1∑

t=m+1

wt+1 min (1, cj(t−m) + cj(t)) ;

(22)

itively expected to have a rather insignificant impact on the considered probability

especially in the case of large values of k (taking also into account that the wk’s are

decreasing with k). This intuition was confirmed by the numerical results that are

provided in the sequel, at least for the values of β ≥ .5. (This selection of β values

is in agreement with the results of [12], where real Web-traces are examined.)
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(2) Underestimation:

P (Rn+1 = j|{Rn−m = j, Rn = j})undest = βqj + w1 + wm+1

+
m−1∑
t=1

wt+1 max (cj(m− t), cj(t)) +
h−1∑

t=m+1

wt+1 max (cj(t−m), cj(t)) ;

(23)

(3) Average:

P (Rn+1 = j|{Rn−m = j, Rn = j})est =

P (Rn+1 = j|{Rn−m = j, Rn = j})undest + P (Rn+1 = j|{Rn−m = j, Rn = j})ovrest

2
.

(24)

Starting with equations (22), (23) and (24), three different estimations for the

hit ratio are obtained, which are denoted as HRovrest, HRundest and HRest,

respectively. More specifically, the first step is to calculate the probabilities

cj(0,m) = cj(m) that are obtained by solving the set of equations (14). Equa-

tions (19)–(20) in combination with one of (22), (23), or (24) are used in order

to obtain the terms cj(k,m) that are needed to compute Hj(k) from equa-

tion (15). Given Hj(k), and by using equations (8)–(11), T is obtained by

numerically solving equation (6), while the estimated value of the hit ratio is

eventually computed using equation (7).

4 Simulation results

A population of N = 1000 objects, whose popularity follows a Zipf-like dis-

tribution with skewness parameter a = .8, is considered. The request arrival

process follows the model described in Section 2. Two different values of the
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history length h (h = 10 and h = 50) are used, while the wi’s follow a Zipf-like

distribution with skewness parameter ah = .2.

Figures 1 and 2 illustrate the simulation results as well as the derived upper

bound and estimations for the hit ratio (HR) as a function of the capacity of

the cache, for h = 10 and h = 50, respectively. In each figure, the results for

four different values of β are depicted. In Figure 3, the capacity of the cache is

set equal to C = 50, while the history length h is let to vary. The estimations

for the hit ratio are in good agreement with the results obtained through

simulations. For relatively larger values of β relatively smaller deviations are

observed.

By comparing Figures 1 and 2, it can be observed that the obtained results for

C ≥ 50, that is for values of the cache size that are greater than the maximum

value of h that is used, are (almost) identical. This is an indication that the

performance of LRU is insensitive to the exact length of the history h as long

as h ≤ C and depends mainly on β. This is also observed in Figure 3 where

it can be seen that for each value of β the hit ratio remains approximately

constant for h ≤ C.

These results are intuitively expected. This is because if the requested object

“is in the memory of the process”(one of the h most recently requested objects)

it is also located in the cache, as long as the memory of the process is less

than the capacity of the cache (h ≤ C), independently of the exact length of

the memory of the process. This means that two different processes with the

same value of β (same probability that the requested object “is in the memory

of the process”) but with different history lengths (that are, however, both

less than the capacity of the cache) are expected to approximately lead to the
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Fig. 1. Estimations, upper bound and simulation results for the hit ratio as a function

of the cache size for four different values of β and h = 10.

same hit ratio for LRU.

Based on the above observations, one could apply the analysis only for a single

value of h lower than the capacity of the cache in order to approximately

predict the hit ratio for any value of h ≤ C. (For simplicity, the analysis for

h = 1 is preferable and is applied in the sequel.)

4.1 Case: h ≤ C

In order to investigate the idea that the analysis for h = 1, which is quoted

in the Appendix (see equations (29) and (30)), can be used for the prediction

of the hit ratio for any value of h ≤ C, the analytical results for the hit
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Fig. 2. Estimations, upper bound and simulation results for the hit ratio as a function

of the cache size for four different values of β and h = 50.

ratio are compared with simulation results for several values of h (and several

combinations of the involved parameters).

Table 1 summarizes the parameters used in the simulations. A population

of N = 1000 objects is considered. For the relative cache size (RCS), which

is equal to C/N , since all the objects are assumed to be of unit size, five

different values (1%, 2%, 5%, 10%, and 20%) are used and five different values

for the skewness parameter of the popularity distribution (0,.2,.4,.8,1.2) are

considered 6 . For the request arrival model, five different values are used for

6 The value of a = 0 was used to illustrate the case when the objects have an

equal probability to be requested (the popularities are uniformly distributed). As

it was shown, the results are similar with the case illustrated in this work (a = .8)
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Fig. 3. Estimations, upper bound and simulation results for the hit ratio as a function

of the history length h for four different values of β and C = 50.

β (.05,.25,.5,.75,.95) and eight different values are used for h (corresponding

to a fraction of the cache size equal to .1,.5,.9,1,1.1,1.3,1.5,2). The wi’s (1 ≤

i ≤ h) are assumed to follow a Zipf-like distribution (wi = Kw

iah
, 1 ≤ i ≤ h,

Kw =
(∑h

k=1
1

iah

)−1
) and five different values are used for ah (0,.2,.4,.8,1.2)

(for ah = 0, the wi’s are equal). All the combinations of the aforementioned

parameters have been considered.

For all the values of h/C ≤ 1 and all the combinations of the other parameters,

the maximum relative error between the simulation and the analytical results

for h = 1 is less than 1.7%. Figure 4 illustrates the results for a = .8 and

indicating that the conclusions drawn are not limited to only covering the Zipf-like

popularity model.
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Table 1

Summary of the parameters used in the simulations.

Parameter Value(s)

N 1000

Relative Cache Size (RCS) .01,.02,.05,.1,.2

a 0,.2,.4,.8,1.2

h/C .1,.5,.9,1,1.1,1.3,1.5,2

β .05,.25,.5,.75,.95

ah 0,.2,.4,.8,1.2

RCS = .02. (The results for the other combinations of these parameters are

similar.) In several cases the HR remains approximately constant even for

values of h/C > 1.

Table 2 summarizes the comparison between simulation results reported in

[12] with the analytical results obtained from equations (30) and (29). (In [12],

N = 10000, C = 1000, h = 100 and ah = .5 are used for the simulations and,

thus, h ≤ C holds.) As it may be seen, the relative error between the values

derived from the analysis and those from simulations is rather negligible.

Moreover, we experimented with real Web-traces from the National Labora-

tory for Applied Network Research (NLANR) ([1]). Two different traces are

used here from the RTP site (referred to as Trace 1 and 2), which are the

longest 7 directly available in NLNAR and concern the 9th and 10th of Jan-

7 We selected the longest traces in order to validate the analysis for a large number

of unique objects (of the order of 105), since our simulations refer to an order of 103
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Table 2

Comparison between simulation results reported in [12] and analytical results for

h = 1.

β = .5 β = .75 β = .95

[12], simulations 59.01% 38.55% 22.20%

analysis,h = 1 59.04% 38.56% 22.17%

Relative error .051% .026% .135%

uary 2007.

Table 3 includes the parameters β and h of the request arrival model that are

inferred by the traces along with the hit ratio derived through simulations and

and the ones reported in [12] of 104.
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Table 3

Characteristics of the real Web-traces used.

Trace 1 Trace 2

Number of requests 858337 782412

Number of unique objects 152090 164120

β 0.766 0.7403

h 2500 2000

HR for C = 2h (Simulations) 45.48 42.01

HR for C = 2h (Analysis for h = 1) 45.45 43.9

HR for C = 5h (Simulations) 58.54 53.48

HR for C = 5h (Analysis for h = 1) 57.96 54.45

the analysis for h = 1 (for a cache capacity equal to two and five times the

history length of the request arrival process, respectively). Figure 5 illustrates

the corresponding results concerning Trace 1 for the range from C = h to

C = 6h.(For Trace 2, the results are similar.)

As it may be seen, the analysis matches the results derived from the real Web-

traces. The relative errors comparing with that for synthetic traces are larger

for h ≈ C but they become negligible when the capacity of the cache is clearly

larger than the history length.
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1.

5 Conclusions

In this paper, an approximate analysis of LRU is derived under the assumption

that the request generation process follows a model that captures short term

correlations among the requests. More specifically, an upper bound as well

as estimations for the hit ratio have been derived. The results indicate that

LRU is insensitive to the exact length of the memory of the request generation

process as long as the length of the memory is less than the capacity of the

cache (which is a rather realistic condition). The analytically derived results

are in very good agreement with those obtained for synthetic as well as for

real Web-traces.
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6 Appendix

6.1 Proof of Lemma 1

In [12], the following alternative interpretation of the request generation model

is provided: “At each time slot, toss an (h+ 1)-sided, biased coin to decide the

value of Rn. Let Vn be a random variable indicating the outcome of the toss

at time n > h. Then, P (Vn = i) = wi for 1 ≤ i ≤ h and P (Vn = h + 1) = β.

Using this notation, the model is described by the following equation: Rn =

22



∑h
i=1Rn−i1{Vn=i} + Yn1{Vn=h+1}.” Thus,

cj(i) = P (Rn+i = j|Rn = j) = P (Rn = Rn−i|Rn−i = j)

= P (Vn = h+ 1, Yn = j) +
h∑

k=1

P (Vn = k,Rn−k = Rn−i|Rn−i = j)

= βqj + wi +
h∑

k=1,k 6=i

wkcj(|i− k|). (25)

6.2 Proof of Lemma 2

It can be easily concluded that

Hj(k) ≤ Ĥj(k),∀k ≥ 1. (26)

More specifically, Hj(k) = Ĥj(k),∀k > h by definition, and, for k ≤ h, (26)

is derived directly by observing equations (15) and (16), since it holds that

cj(k,m) ≤ cj(0,m) = cj(m) (by definition).

The proof is made by induction on x. By definition, Hj(1) = Ĥj(1) and thus

the Lemma holds for x = 1, since Fj(1) = Gj(1) = Hj(1) = Ĥj(1) = Ĝj(1) =

F̂j(1). Now assume that the Lemma holds for x − 1, that is assume that

Fj(x− 1) ≤ F̂j(x− 1). It must be shown that Fj(x) ≤ F̂j(x). By definition 8 ,

F̂j(x) = F̂j(x− 1) + (1− F̂j(x− 1))Ĥj(x), (27)

Fj(x) = Fj(x− 1) + (1− Fj(x− 1))Hj(x), (28)

8 Based on equations (9) and (11), it holds that Fj(x) = Fj(x − 1) + (1 − Fj(x −

1))Hj(x).
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and, thus,

F̂j(x)− Fj(x) = (F̂j(x− 1)− Fj(x− 1))(1− Ĥj(x))

+(1− Fj(x− 1))(Ĥj(x)−Hj(x)) ≥ 0.

6.3 Derivation of the hit ratio for h = 1

In the special case where h = 1, Hj(k) (see equation (15)) is given by

Hj(k) =


w1 + βqj, k = 1;

βqj, k > 1,

where w1 +β = 1. Since it holds that Fj(x) = Fj(x−1)+(1−Fj(x−1))Hj(x)

and Fj(1) = Gj(1) = Hj(1) = w1 + βqj = 1 − β(1 − qj), it can be easily

obtained that Fj(x) = 1− (1−βqj)x−1β(1−qj), x ≥ 1 and (from equation (8))

F (x) =
∑N

j=1 qj−
∑N

j=1(1−βqj)x−1βqj(1−qj) = 1−∑N
j=1(1−βqj)x−1βqj(1−qj),

x ≥ 1. Thus, for h = 1, equations (6) and (7) may be written as

C ≈ s(T ) =
T−1∑
z=0

(1− F (z)) = 1 +
T−1∑
z=1

N∑
j=1

(1− βqj)z−1βqj(1− qj)

= 1 +
N∑

j=1

T−1∑
z=1

(1− βqj)z−1βqj(1− qj) = 1 +
N∑

j=1

(1− qj)(1− (1− βqj)T−1)

= N −
N∑

j=1

(1− qj)(1− βqj)T−1, (29)

HR ≈ F (T ) = 1−
N∑

j=1

(1− βqj)T−1βqj(1− qj). (30)
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