
1

Scalable Communication Cost Reduction: The
Chord Case

Konstantinos Oikonomou, Spyros Sioutas, and Ioannis Stavrakakis,

Abstract— In peer-to-peer (P2P) network system design a main
focus is on efficient service discovery schemes, most frequently
assuming permanent (or long-term stationary) positions for
service facilities, neglecting communication costs due to the actual
locations of the facilities. Since the problem of communication
cost minimization is a large optimization problem (NP-hard) and
requires global information (i.e., not scalable), in this paper the
service migration philosophy is adopted which permits service
facility movements and yields smaller communication cost in
a scalable manner (i.e., based on local information). Service
migration is incorporated in the Chord P2P system, imposing
certain changes (e.g., the extension of the service discovery
scheme of Chord) and introducing an extra system overhead (i.e.,
update messages) for the efficient operation of the (enhanced)
system. As it is demonstrated here using simulation results, the
communication cost corresponding to the extra system overhead
is significantly small and more than enough compensated for
by the communication cost reduction due to the introduction of
service migration. As long as the network remains unchanged,
the former communication cost is paid only once while the latter
communication cost reduction is permanent.

I. INTRODUCTION

Peer-to-Peer (P2P) overlay networks are widely employed
and used in modern large-scale and dynamic network environ-
ments providing for a new networking paradigm in which the
offered service (e.g., content) is distributed among the network
peers. Following the pioneering example of Napster in 1999,
[1], several P2P systems have been proposed, [2], the most
popular among them being Pastry, [3], Tapestry, [4], Chord,
[5], Gnutella, [6].

P2P networks are usually categorized as structured (e.g., [3],
[4], [5]) or unstructured (e.g., [6]) depending on the particulars
of the implementation, [2]. In unstructured P2P networks, the
service offered to the users can be located under no or loose
rules, whereas in structured P2P networks the offered service
is placed at specific locations in a way that facilitates its
subsequent discovery.

A basic difference between unstructured and structured P2P
systems amounts to the increased overhead induced by the
latter ones, that is compensated for by the efficiency of its

This work has been supported in part by the project Autonomic Network
Architecture (ANA) (IST-27489) which is funded by IST FET Program of the
European Commission.

Konstantinos Oikonomou and Spyros Sioutas are with the Department of
Informatics, Ionian University, Greece. Address: Tsirigori Square 7, 49100
Corfu, Greece. Phone: +30 26610 {87708,87706}, Fax: +30 26610 48491,
E-mail: {okon,sioutas}@ionio.gr.

Ioannis Stavrakakis is with the Department of Informatics and Telecommu-
nications, National and Kapodistrian University of Athens, Greece. Address:
Panepistimiopolis, Ilissia, 157 84, Athens, Greece. Phone: +30 210 7275315,
Fax: +30 210 7275333, E-mail: ioannis@di.uoa.gr.

service discovery process, especially for rare items. In partic-
ular, in structured P2P systems distributed hash tables (DHTs)
are used for scalable storage and retrieval of information (e.g.,
the location of a service facility) at the overlay (or peer) nodes.
Whenever a request for the location of a service is applied, the
DHT-based service discovery scheme is capable of identifying
the overlay node responsible for the service and thus, retrieve
the service facility locations. Due to the structured nature,
arrivals, departures or movements of the offered services are
costly in general (further details provided in the sequel in
Section II) in structured P2P systems.

The particular locations of service facilities are frequently
the source of some – often neglected – cost that corresponds
to the communication cost between the particular facility node
and the user being served. The derivation of the optimal
facility locations in a network (i.e., locations yielding the
minimum communication cost) is a problem that requires
global information and is NP-hard in the general case, [7].
Even though nowadays network nodes are capable enough
to host a large variety of service facilities (e.g., ftp servers)
– almost unthinkable a decade before – the requirement for
global information is prohibitive as well as the recalculation
of the large (NP-hard) optimization problem in response to
changes of the particular dynamic and large-scale network
environment.

Distributed approaches have been proposed lately, (e.g., [9],
[10], [11], [12], [13], [14], [15]) trying to avoid the aforemen-
tioned large optimization problem based on local information,
[16]. With the exception of the service migration approach in
[12], these approaches introduce a certain overhead, [16], apart
from the modifications required to efficiently incorporate each
of them in an existing P2P system. Service migration is an
exception since it allows for a single service facility to move
to neighbor nodes and reduce the overall communication cost
based on a pathetic monitoring mechanism requiring no more
information than that already available at the facility node,
[16]. However, changes to the P2P system – in which service
migration is to be incorporated – are still necessary.

In the work presented here, service migration – as proposed
in [12] – is assumed for moving service facilities in a (large-
scale and dynamic) structured (DHT-based) P2P network in
order to reduce the communication cost. Chord has been
chosen as a case study since it is a well-known and widely
spread P2P system. Note that the ideas proposed here may be
utilized in other structured DHT-based P2P networks.

In order to accomplish the goal of reducing the communi-
cation cost in Chord using service migration, the traditional
environment (of stationary service facilities) is reconsidered

2

allowing facilities to move from node to (neighbor) node.
Furthermore, the (DHT-based) service discovery scheme of
Chord is enhanced and extended to accomodate migrating
service facilities. Despite the almost negligible overhead of
service migration, its incorporation into Chord requires some
modifications and extensions that introduce some extra sys-
tem overhead (e.g., for keeping updated the Chord specific
structures regarding the current position of the service facility)
that are investigated and evaluated in this paper through
simulations. As it is shown here, this extra system overhead is
sufficiently compensated for by the benefit of the overall com-
munication cost reduction. The first cost paid only once while
the latter benefit is enjoyed for as long as the environment
remains roughly unchanged. Another contribution of this paper
is the proof that communication cost reduction is achievable
for any (connected) network topology for any number of
service facilities providing a given service (as opposed to the
one service facility case studied in [12]).

The rest of this paper is organized as follows. Background
information about Chord and service migration is given in
Section II. In Section III the proposed enhanced scheme is
presented and a discussion about the introduced overhead
is included in Section IV. Simulation results, presented in
Section V, reveal the fact that the induced extra system
overhead – when service migration is employed – is almost
negligible when compared to the communication cost savings.
The conclusions are drawn in Section VI. In the Appendix
a proof is given on the efficiency of service migration in
reducing the communication cost in the case of multiple
service facilities in the network.

II. CHORD P2P AND SERVICE MIGRATION

The basic elements of Chord and service migration –
needed later in this paper to describe the enhanced scheme for
communication cost reduction – are briefly presented next.

Chord bases its operation on a set of network nodes that
being arranged in a virtual overlay circle (see Figure 1) have
certain capabilities and perform certain operations (lookup,
join, departure, etc.), [5]. The number of nodes n in the overlay
network is normally of the order O(log N), where N is the
total number of nodes in the network, [5].

A basic component of Chord is the finger table. Each
overlay node maintains information about (at most) m other
neighbors, called fingers, in a finger table. The i-th finger node
is the first overlay node on the overlay circle that succeeds
the current node by at least 2i−1 nodes, where 1 ≤ i ≤ m.
In other words, a finger is equal to the successor of the
operation (nodeID + 2i−1) mod 2m, where 1 ≤ i ≤ m
(m = O(log n)).

Finger tables are extensively used for the Chord overlay
operation and the management of node joins, departures, and
failures. For example when a node wants to join the overlay
network, it has to know at least one node that is already in
the network. The joining node chooses an identifier (e.g., the
node’s IP address) from the identifier space (0 to 2m − 1) and
sends a join message with this identifier to the node it knows
in the network. The join message is routed across the overlay

network until it reaches the node that is the successor of the
new node based on its chosen identifier. The joining node is
inserted into the overlay network at this point and takes on
part of the successor node’s load. The new node constructs
its finger table and the direct neighbor entries to its successor
and predecessor nodes. It also updates the finger tables of other
nodes in the system that should point to itself. The cost for a
node joining the network is O(log2 n) overlay messages (an
overlay message may correspond to more than one messages
since neighbor nodes in the overlay network are not necessarily
neighbors in the original network).

Similarly, when a node leaves the system, the finger tables
of nodes that have entries pointing to the leaving node have
to be updated. The cost for updating these tables is O(log 2 n)
overlay messages (the same as the cost of a join). When a
node fails, the finger tables that have entries pointing to the
failed node will be incorrect. In order to maintain correct finger
tables, each node periodically runs a stabilization algorithm
where it chooses a random entry in its finger table and updates
it.

The service migration philosophy, as described in [12], is
adopted in this paper to propose (in the following section)
an enhancement to the Chord P2P system. Let K t be the
set of service facility nodes associated with a given service
at time t. For the rest of this paper t will be referring to
facility movements under the adopted service migration policy.
Assuming a single service facility in the network (located
at the facility node) the corresponding data of the nodes’
service demands are forwarded between the served nodes and
the facility node over some shortest path. For a (connected)
network topology represented by a graph G(V, E), where V is
the set of nodes (N = |V |) and E the set of links, let d(u, v)
denote the distance between node u and node v over a shortest
path in the network (i.e., the summation of the individual
link weights over the particular shortest path). It is assumed
that d(u, v) > 0, for any u �= v. Let λu correspond to the
service demands of node u. Assuming the service facility is
located at some node x, the mean communication cost incurred
for serving node u is given by the product λud(u, x), [7].
Eventually, the average communication cost C t(x) incurred
when a single service facility is located at some node x at
some time t is given by, [7],

Ct(x) =
∑

∀u∈V

λud(u, x). (1)

For the case of more than one service facilities, the over-
all communication cost Ct at time t is given by Ct =∑

∀x∈Kt
Ct(x). The identification of the particular set of

facility nodes for which the overall communication cost is
minimized is an NP-hard problem in the general case (for
example in trees and for one service facility, the complexity
of the problem is O(N 2), [8]) and requires global information.

Instead of solving this large optimization problem that
requires global information, service migration assumes that
the facility nodes are capable of monitoring the aggregate
service demands – incoming and outgoing – that are forwarded
over each link connecting the particular facility node and its
neighbor nodes. Based on the relative values of these aggregate

3

service demands (as shown next) service migration is capable
of moving a service facility to neighbor nodes, so as to yield a
smaller communication cost. Let Sx denote the set of neighbor
nodes of node x. Assuming x to be a facility node, each
node y ∈ Sx forwards (incoming and outgoing) data packets
corresponding to aggregate service demands denoted by Λ t(y).
Based on these definitions, the Migration Policy, proposed in
[12] and adopted here, is the following.

The Migration Policy: The service is moved from node
x to the neighbor node y at time t, y ∈ Sx, iff λx +∑

∀u∈Sx\{y} Λt(u) < Λt(y).
According to the analysis presented in [12], it is ensured

that for a service facility movement under Migration Policy
at time t from node x to neighbor node y, C t+1(y) < Ct(x).
This is also valid for more than one service facilities as it is
shown in the Appendix (Theorem 1).

In view of the Migration Policy two interesting observations
are possible regarding the difference in the cost when the
service is located at neighbor nodes. First, the difference
does not depend on the weights of the links of the network.
Second, it depends on the difference of the aggregate service
demands. Consequently, it is evident that global knowledge
of the network (i.e., knowledge of the weights of each link
and the service demands of each node in the network) is not
necessary in order to determine differences in costs associated
with neighboring service nodes and, eventually, determine the
service node that induces the lowest cost among neighboring
nodes. What is actually required is information regarding the
aggregate service demands (e.g., Λt(y)) at the facility node
(e.g., node x), facilitated by a suitable monitoring mecha-
nisms, as already mentioned. Furthermore, service facilities
are inherently adapting their movements towards directions of
further cost reduction after changes in the topology and/or
service demands due to the dynamic idiosyncracy of the
considered network environment. These interesting properties
of the Migration Policy are exploited in the sequel to propose
an enhancement to the Chord P2P system.

III. THE PROPOSED SCHEME

In this section, the proposed enhanced Chord-based system
is presented. As already mentioned, the motivation behind the
proposed scheme is to exploit the migration philosophy that
yields small overhead in the established Chord environment in
order to allow for overall communication cost reduction.

It is assumed that services have unique IDs and are mapped
to overlay nodes based on their IDs. A service is mapped to
the first overlay node whose ID is equal to or follows its key.
Let the corresponding overlay node be the particular overlay
node at which a search query for a certain service ID will
eventually end up. The corresponding overlay node maintains
a service facility table containing entries for the location of the
service facilities for the particular service ID. For example, as
depicted in Figure 1, if node u hosts a certain service facility
of some service ID, then the corresponding overlay node (i.e.,
node w) maintains a corresponding entry in its service facility
table. When a search query is launched, it contains a service
ID and the overlay is responsible for locating the particular

corresponding overlay node (by consuming O(log n) overlay
messages).

Assume now that there is a single service facility in the
network at time t = 0 located at some node u (i.e., K0 = {u}).
This node hosting the service facility may or may not be a node
of the overlay (Chord) network. In any case, the corresponding
overlay node (i.e., node w), after receiving a query for the
particular service ID, consults its service facility table, and
replies, accordingly (i.e., points to node u).

Under service migration, the facilities are expected to move
from node to node attempting to reduce the overall cost,
as already described in the previous section. Assume that
a service facility movement took place and at time t = 1
the particular service facility is located at node u ′ (i.e.,
K1 = {u′}). This change of the facility location should be
communicated to the corresponding overlay node w in order
to update its service facility table entry (u ′ replaces u). For
this purpose, a special message is sent by node u to node w
as soon as the service facility is decided to move to neighbor
node u′.

Such an example is depicted in Figure 1. In Figure 1.a the
overlay node w is depicted as part of the overlay network,
connected to various other network nodes. Node u hosts the
particular service (which the overlay node w is responsible
for), depicted by a dotted hexagonal around node u. The
service facility table of node w is also shown, highlighting
the table entry corresponding to the particular service ID and
the corresponding node u. In Figure 1.b, the service facility
has moved to node u′ (the dotted hexagonal now around node
u) and node u has sent a special message to inform the
corresponding overlay node w. As it is illustrated, the service
facility table becomes updated (entry u is replaced by entry
u′).

Chord Overlay
Network

u

u’

w

…
service ID u

…

……

Chord Overlay
Network

u

u’

w

…
service ID u’

…

…… New
Entry

a. b.

Fig. 1. Example of Chord overlay network and update after service migration.
The dense arrows represent messages sent from node u to inform the overlay
node w about the service facility movement to node u′. The service facility
is depicted by a dotted hexagonal around the node that is located at.

This transition phase due to facility movements, may cause
problems to nodes (or users) that have applied search queries
shortly before the particular movement. These nodes may have
already received a reply from the overlay node w that the node
offering the particular service is node u and they may try to
use this service by contacting node u. Node u will probably
drop these (justified) requests for service unless some care is
taken to redirect them and inform accordingly the particular
nodes about the new location of the service. The same applies
for those nodes that were using the facility (e.g., exchanging
data) when it was located at node u and continue to use it –
preferably uninterrupted – when it moves to node u ′.

4

Finally, note that a single service facility has been con-
sidered so far to simplify the presentation of the proposed
enhanced Chord scheme. If more than one facilities are em-
ployed in the network for a particular service, the previously
presented scheme can still be used, apart from some minor
changes. For example, the service facility table maintained
at the corresponding overlay node contains additional fields
regarding the locations of all existing facilities of the particular
service in the network.

IV. REQUIREMENTS AND OVERHEAD

The efficient incorporation of service migration in the Chord
P2P system – in order to allow for communication cost
reduction – requires certain enhancements and introduces in
itself some overhead which can be categorized as being due to
(a) nodes’ capabilities; (b) overlay nodes’ capabilities; and (c)
the update messages after service facility movements. These
three categories are discussed next.

Service migration assumes that all network nodes are ca-
pable of hosting a facility of a certain service. This is true in
most of the cases due to the widespread powerful machines,
even considering small devices like mobile phones. On the
other hand, some services (e.g., updates of operating systems,
antivirus updates) may not be allowed to be hosted by nodes
other than those qualified by the service provider. However,
in P2P networks the latter is rarely the case and the majority
of the provided services fall in the first category.

In addition, service migration requires a monitoring mecha-
nism to provide for estimates of the aggregate traffic for each
link of the facility node. Note that light software for capturing
data packets is nowadays in common use even in everyday
personal computer machines. The fact that estimations about
aggregate services demands are needed – and not about each
individual node using the service – allows for faster and more
efficient estimations, [12].

Note that these requirements regarding nodes’ capabilities
are not exclusive for the accommodation of service migration
in Chord or any DHT-based P2P system, but apply for all
cases. More specific to Chord is the overhead due to the extra
functionality that should be supported by the overlay nodes,
presented next.

As already described in the previous section, in order for
Chord to be able to reply to search queries regarding a certain
service ID, a new table is introduced (i.e., service facility table)
in order for the particular corresponding overlay node to be
able to retrieve the location of the service facilities and reply
accordingly (or negatively in the case that there is no service
facility entry available).

Apart from the memory required for the support of the
aforementioned table, the applied search queries – and the
subsequent replies – also introduce some overhead due to the
exchanged messages (O(log n) overlay messages). However,
this particular overhead is not due to the introduction of service
migration (it is due to the support of service lookups inside
the Chord overlay network).

Apart from the node capabilities (for both overlay and
non-overlay nodes) required to support service migration, the

Chord P2P system employes a certain DHT-based mechanism
and requires certain update messages to be sent in order for
this mechanism to remain operational after facility movements.
This is clearly illustrated in the example presented in Figure 1
(update messages are sent after a facility movement to inform
the corresponding overlay node about the new position of
the particular service facility). These (update) messages intro-
duce some extra system overhead corresponding to a certain
communication cost (depending on the distance between the
particular service facility and the corresponding overlay node)
that it is compensated (as shown in the simulations section)
for by the reduction in the communication cost due to service
migration.

As already mentioned, the transition phase – i.e., before the
corresponding overlay node is updated – is a possible source
(a) for denial of service (e.g., a query is applied when the entry
in the service facility table is outdated as it is the case after
a service facility movement and before the update message
is arrived to the corresponding overlay node); or even (b)
for disruption of already ongoing service transactions (as it
is the case when the service facility moves and some nodes
still assume the previous location as the facility node). One
possible solution – in both cases – would be to have the
previous facility node send update messages regarding the new
facility nodes to any node attempting to use the particular
service facility. With respect to the first case, the introduced
overhead is due to the service requests that have received a
reply within the transition phase period. Depending on the case
(i.e., the number of queries), this particular overhead may be
significant (i.e., large number of queries within the transition
phase period) or negligible (i.e., small number of queries).
Regarding the second case, the induced overhead increases as
the number of nodes (or users) using the particular service
facility increases. Clearly, the more popular a certain service
facility, the more messages are sent to inform nodes about
the new facility location after a facility movement. However,
this overhead may be suppressed for this particular case,
by piggybacking suitable control information in normal data
packets still exchanged between the facility and the any other
node being served by the facility.

The following section presents simulations results show-
ing the reduction of the communication cost due to service
migration and its comparison with the enhanced additional
system overhead. Since the study of a service’s “popularity”
– and consequently, the distribution of applied queries within
the transition phase – is an issue with insignificant impact
compared to the simulation scenarios presented next, the focus
is on the overhead introduced by the update messages in
comparison to the communication cost savings due to service
migration.

V. SIMULATION RESULTS

A simulation environment in programming language C is
developed for creating network topologies of 10000 nodes
(specifically, trees and grids) and implementing the Migration
Policy within the Chord P2P system. Each node is randomly
assigned a value with respect to service demands. The goal

5

of the simulation results is twofold: to illustrate the overall
communication cost reduction and to illustrate the communi-
cation cost due to the extra system overhead. For this reason,
the results presented here are not averaged values but results
of individual simulation experiments. Averaging would have
given a macroscopic view failing to give microscopic details
about the idiosyncrasies of the migration policies.

The initial position for the facilities is randomly chosen as
well as their corresponding overlay node. One, two or three
facilities were considered depending on the presented case.
All figures on the left (i.e., Figure 2.a and Figure 3.a) present
results with respect to the cost ratio (i.e., the fraction of the
current communication cost over the initial communication
cost before the services moved) (y-axis), as a function of time
t (x-axis). All figures on the right (i.e., Figure 2.b and Figure
3.b) present results with respect to the overhead ratio (i.e.,
the fraction of the cost due to the extra system overhead over
the initial communication cost before the services moved) (y-
axis), as a function of time t (x-axis). Time t corresponds to
facility movements and starts at time t = 1 for each case.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Cost Ratio

Time

1 facility
2 facilities
3 facilities

0

5e-005

0.0001

0.00015

0.0002

0.00025

0.0003

1 2 3 4 5 6 7 8 9 10

Overhead Ratio

Time

1 facility
2 facilities
3 facilities

a. b.

Fig. 2. Tree Topology of 10000 nodes.

As it is depicted in Figure 2.a, the overall communication
cost monotonically decreases after each facility movement.
This is in accordance with the results in [12] for the case of one
facility and in accordance with Theorem 1 (see Appendix) for
the case of more than one service facilities. Note that the cost
ratio drops below 60% of its initial value. This corresponds
to more than 40% (100% − 60% = 40%) cost savings is
permanent in the network as long as the topology and/or
service demands do not change (i.e., static environment).
If they change, then the service facilities will adapt their
movement towards more effective positions, [12].

Figure 2.b depicts the correponding overhead ratio for the
service facility movements presented in Figure 2.a. As it is
obvious, the overhead ratio increases with the number of
service movement (as expected, the larger the number of
movements, the more the messages need to be sent to update
the service facility table of the corresponded overlay node).
This extra system overhead is small (i.e., less than 0.03%)
when compared to the initial cost (before the service facility
started to move) and it is paid once (assuming the previously
mentioned static environment), while the benefit of the cost
reduction (as mentioned before) is permanent.

Tree topologies is a good example with respect to service
migration, since there are no cycles to prohibit facility move-
ments to more effective positions, [12]. For example, in tree
topologies and for a single service facility in the network, it
is ensured that the facility will eventually arrive at the optimal

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

Cost Ratio

Time

1 facility
2 facilities
3 facilities

0

5e-005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0 5 10 15 20 25 30 35 40 45 50

Overhead Ratio

Time

1 facility
2 facilities
3 facilities

a. b.

Fig. 3. Grid Topology of 100 × 100 nodes.

position (yielding for communication cost minimization) under
the Migration Policy. On the other hand, topologies with cycles
in some cases may not allow for a service facility to move
even if cost reduction would have been achieved, thus the
overall communication cost reduction may not be as much
as it may be the case in tree topologies. In order to further
illustrate the effectiveness of the proposed scheme in this
work, grid topologies are also considered, as it is the case
depicted in Figure 3.a. For the case of one service facility,
cost savings of about 15% is achieved and the introduced
overhead (depicted in Figure 3.b) is about 0.005%. For the case
of two service facilities, the extra system overhead is increased
(about 0.015%) due to the increased facility movements, but
the communication cost reduction is higher (about 30%). Even
for the case of three facilities – where the overhead ratio is
increased (about 0.035%) – the corresponding savings of the
overall cost (i.e., about 35%) compensates more than enough.

Eventually, the overhead paid for updating the service
facility tables of the corresponding overlay node is signifi-
cantly smaller than the reduction of the communication cost.
Assuming a static environment, this overhead is paid only
once, while the benefits of the overall communication cost
reduction are permanent in the system.

VI. CONCLUSIONS

In this paper the Chord P2P system and service migration
were both considered in an enhanced new DHT-based P2P
scheme that permits service facility movements under the
service migration philosophy in an attempt to reduce com-
munication costs. The proposed scheme is not applicable only
specifically to Chord but can be applied for any DHT-based
system; future work aims at other P2P systems, like Pastry,
Tapestry, etc. Several applications may be defined, especially
in the area of mobile ad hoc networks when service discovery
increasingly becomes a issue.

The efficient introduction of service migration requires
certain changes of the Chord P2P system (e.g., service facility
tables, update messages) in order for the (enhanced) P2P sys-
tem to remain functional. In particular, when a service facility
moves in the network, update messages need to be sent to
inform the corresponding overlay node about the new facility
node. These update messages introduce some extra system
overhead corresponding to a certain communication cost. As
it was shown using simulation results, the communication cost
corresponding to the extra system overhead is more than com-
pensated for by the communication cost reduction achieved
by the employment of service migration (e.g., 0.003% against

6

35%). Note that the former communication cost is paid only
once while the second is permanent as lond as the network
remains unchanged. Finally, another contribution of this paper
is the proof (included in the Appendix) that service migration
allows for communication cost reduction even for the case of
more than one service facilities. The presented simulations are
in accordance with the analytical findings.

REFERENCES

[1] Napster. [Online]. Available: http://www.napster.com/
[2] Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey

and Comparison of Peer-to-Peer Overlay Network Schemes. In: IEEE
Communications Survey and Tutorial, March (2004).

[3] Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In: Proceedings of the
Middleware, (2001).

[4] Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Ku-
biatowicz, J.D.: Tapestry: A resilient global-scale overlay for service
deployment. In: IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 4153, January 2004, (2004).

[5] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup protocol for internet applications.
In : IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17 32
(2003).

[6] Gnutella. Gnutella rfc. http://rfc-gnutella.sourceforge.
net/, 2002.

[7] Mirchandani, P.B., Francis, R.L.: Discrete Location Theory. In: John
Wiley and Sons, 1990.

[8] Tamir , A.: An O(pn2) algorithm for p-median and related problems
on tree graphs. In: Operations Research Letters, 19 (1996), 59–64.

[9] Yamamoto, L., G. Leduc, G.: Autonomous reflectors over active
networks: towards seamless group communication. In: AISB journal,
special issue on agent technology, 1(1):125–146, December (2001).

[10] Li, B., Wang, K.H.: NonStop: Continuous Multimedia Streaming in
Wireless Ad Hoc Networks with Node Mobility. In: IEEE Journal on
Selected Areas in Communications, 21(10):1627-1641, Dec. (2003).

[11] Moscibroda, T., Wattenhofer, R.: Facility Location: Distributed Ap-
proximation. In: 24th ACM Symp. on the Principles of Distributed
Computing, Las Vegas, USA, July (2005).

[12] Oikonomou, K., Stavrakakis, I.: Scalable Service Migration: The Tree
Topology Case. In: The Fifth Annual Mediterranean Ad Hoc Network-
ing Workshop (Med-Hoc-Net 2006), Lipari, Italy, June 14-17, (2006)

[13] Krivitski, D., Schiuster, A., Wolff, R.: A Local Facility Location
Algorithm for Large-Scale Distributed Systems. In: Journal of Grid
Computing, Volume 5, Number 4 / December, 2007, pp. 361–378,
(2007).

[14] Laoutaris, N., Smaragdakis, G., Oikonomou, K., Stavrakakis, I.,
Bestavros, A.: Distributed Placement of Service Facilities in Large-
Scale Networks. In: IEEE INFOCOM’07, May 6-12, 2007, Anchorage,
Alaska (2007).

[15] Frank, C., K. Römer, K.: Distributed Facility Location Algorithms for
Flexible Configuration of Wireless Sensor Networks. In: 3rd IEEE Intl.
Conf. on Distributed Computing in Sensor Systems, Santa Fe, USA,
June (2007).

[16] Wittenburg, G., Schiller, J.: A Survey of Current Directions in Ser-
vice Placement in Mobile Ad-hoc Networks. In: Proceedings of the
Sixth Annual IEEE International Conference on Pervasive Computing
and Communications (PerCom ’08), 2008, Hong Kong, 17-21 March
(2008).

APPENDIX

Theorem 1: In a network of more than one service facilities,
if a facility – located at node x at time t – under Migration
Policy moves to some neighbor node y, then C t+1 < Ct.

Proof: Suppose there are more than one facilities in the
network (i.e., |Kt| = c, for some constant integer value c > 1
for any t) employing the Migration Policy. Assume also that at
least one facility movement has taken place (i.e., K t+1 �= Kt)
between time t and time t + 1. Let ft(v) denote the facility

node corresponding to any network node v at time t. Let set
Z denote a set of nodes that at time t + 1 are served by a
facility different than the one they were served at instance t,
or Z = {z : ∀z ∈ V and ft+1(v) �= ft(v)}. The sequel
of this proof is based on the fact that some nodes choose to
be served by different facilities – after a facility movement
– because of smaller distance than before, thus yielding for
smaller contribution to the overall cost.

The case that no node changed its corresponding facility or
Z = ∅, is trivial, and the results of the analysis presented in
[12] can be reused. Assume, now, the case that there some
changes of facilities nodes, or Z �= ∅. Let C ′

t+1 represent a
hypothetical cost at time t + 1 assuming all nodes v ∈ Z
forced to continue to be served by the same facilities of time
t (i.e., Kt instead of Kt+1). Given that a service movement
has already taken place under Migration Policy, C t > C′

t+1

is satisfied. However, Ct+1 = C′
t+1 + ∆, where ∆ is the cost

difference contributed by those nodes v ∈ Z (cost contributed
using the new facilities minus the cost contributed using
the previous facilities), or ∆ =

∑
∀v∈Z λvd(v, ft+1(v)) −∑

∀v∈Z λvd(v, ft(v)), or ∆ =
∑

∀v∈Z λv

(
d(v, ft+1(v)) −

d(v, ft(v))
)
. However, d(v, ft(v)) > d(v, ft+1(v)), which

is the actual reason for nodes v ∈ Z to change facilities.
Therefore, ∆ < 0 and consequently, Ct+1 < C′

t+1. Eventually,
Ct+1 < Ct, and the theorem follows.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

