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Abstract— The effectiveness of service provisioning in large-
scale networks is highly dependent on the number and location
of service facilities deployed at various hosts. The classical
centralized approach to determining the latter would amount
to formulating and solving the uncapacitated k-median (UKM)
problem (if the requested number of facilities is fixed), or the
uncapacitated facility location (UFL) problem (if the number
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with the typically voluminousand bursty demand — both
in terms of overall load and geographical distribution of th

'sources of demand — due to recently observed flash-crowd

phenomena. To deploy such services, decisions must be made
on: (1) the location, and optionally, (2) the number of noftes
hosting infrastructures) used to deliver the service. Tvedl-w

of facilities is also to be optimized). Clearly, such centralized known formulations of classi€acility Location Theory[7]

approaches require knowledge of global topological and demand

information, and thus do not scale and are not practical for large

networks. The key question posed and answered in this paper

is the following: “How can we determine in a distributed and
scalable manner thenumber and location of service facilities?”
We propose an innovative approach in which topology and
demand information is limited to neighborhoods, or balls of small
radius around selected facilities, whereas demand information is
captured implicitly for the remaining (remote) clients outside

can be used as starting points for addressing decisionsidl) a
(2), respectively: Thencapacitated:-median (UKM)problem
prescribes the locations for instantiating a fixed number of
service facilities so as to minimize the distance betweemnsus
and the closest facility capable of delivering the service.
the uncapacitated facility location (UFLproblem, the number

of facilities is not fixed, butjointly derived along with the

these neighborhoodsv by mappmg them to clients on the edge 0f|00ati0ns as pal’t Of a SO|uti0n that minimizes the Combined

the neighborhood; the ball radius regulates the trade-off betwen
scalability and performance. We develop a scalable, distributed
approach that answers our key question through an iterative re
optimization of the location and the number of facilities within
such balls. We show that even for small values of the radius
(1 or 2), our distributed approach achieves performance under
various synthetic and real Internet topologies and workloads
that is comparable to that of optimal, centralized approaches
requiring full topology and demand information.

Index Terms— Server migration, resource allocation, facility
location, service deployment.

I. INTRODUCTION

service hosting and access costs.

Limitations of existing approaches:Even though it provides

a solid basis for analyzing the fundamental issues invoimed
the deployment of network services, facility location theo

is not without its limitations. First and foremost, propdse
solutions for UKM and UFL are centralized, so they require
the gathering and the transmission of the entire topolbgita
demand information to a central point, which is not possible
(not to mention practical) for large networks. Second, such
solutions are not adaptive in the sense that they do not allow
for easy reconfiguration in response to changes in the tggolo
and the intensity of the demand for service. To address these

Motivation: Imagine a large-scale bandwidth/processindimitations we propose distributed versions of UKM and UFL,

intensive service such as the real-time distribution ofveare

which we use as means of constructing an automatic service

updates and patches [2], a distributed data-center [3joudcl deployment scheme. _ .
computing platform [4], [5], [6]etc. Such services must copeA scalable approach to automatic service deployment:
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We develop a scheme in which an initial set of service
facilities are allowed to migrate adaptively to the bestoek
locations, and optionally to increase/decrease in number s
as to best service the current demand. Our scheme is based
on developing distributed versions of the UKM problem (for
the case in which the total number of facilities must remain
fixed) and the UFL problem (when additional facilities can
be acquired at a price or some of them be closed down).
Both problems are combined under a common framework with
the following characteristics: An existing facility gatisethe
fopology of its immediate surrounding area, which is defined
by anr-ball of neighbors — nodes that are withimadius of r
hops from the facility. The facility also monitors the derdan
that it receives from the nodes that have it as closest ffiacili

It keeps an exact representation of demand from withim-its
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ball, and an approximate representation for all the nodes 8ervice providers, hosts, and clients:We envision the
the ring of its r-ball (nodes outside the-ball that receive availability of a set of network hosts upon which specific
service from it). In the latter case, the demand of nodes fumctionalities may be installed and instantiated on dedman
the “skin” of the r-ball is increased proportionally to accounWe use the term “Generic Service Host” (GSH) to refer to
for the aggregate demand that flows in from outsiderthall the software and hardware infrastructure necessary to host
through that node. When multipteballs intersect, they join a service. For instance, a GSH could be a well-provisioned
to form more complex-shapes The observed topology andLinux server, a virtual machine (VM) slice similar to that
demand information is then used to re-optimize the curremsed in Planet Ldb or that envisioned in GENI, or a set
location (and optionally the number of) facilities by solgi of resources in a Cloud Computing platforend, an Amazon
the UKM (or the UFL) problem in the vicinity of the-shape. Machine Image (AMI) in the context of EC2).

The trade-off between scalability and performance Reduc- A GSH may be in Working (W) or Stand-By (SB) mode.
ing the radius- decreases the amount of topological informan W mode, the GSH constitutes a service facility that is able
tion that needs to be gathered and processed centrally at tihyespond to client requests for service, whereas in SB mode
point (i.e., at facilities that re-optimize their posite)n This is the GSH does not offer the actual service, but is ready to
a plus for scalability. On the other hand, reducingarms the switch to W if it is so directed. Thus the set of facilities
overall performance as compared to centralized solutibas tused to deliver a service is precisely the set of GSHs in W
consider the entire topological information. This is a nsinumode. By switching back and forth between W mode and SB
for performance. We examine this trade-off experimentalipode, thenumberas well as thdocation of facilities used to
using synthetic (Erds-Renyi [8] and Barahsi-Albert [9]) and deliver the service could be controlled in a distributedhias.

real (AS-level [10]) topologies. We show that even for verin particular, a GSH in W mode.€., a facility) monitors the
small radii,e.g, r = 1 (i.e., facility migration is allowed only topology and the corresponding demand in its vicinity and is
to first-hop neighbors), or = 2 (i.e, facility migration is thus capable of re-optimizing the location of the facility.
allowed only up to second-hop neighbors), the performarice o Third-party Autonomous Systems (AS) may host the GSHs
the distributed approach tracks closely that of the cemerdl of service providers, possibly for a féeln particular, the
one. Thus, increasingmuch more is not necessary for perforhosting AS may charge the service provider for the assets
mance, and might also be infeasible since even for relgtivét dedicates to the GSHSs, including the software/hardware
smallr, the number of nodes contained iniashape increases infrastructure supporting the GSHs as well as the bandwidth
very fast (owing to the small, typicallg)(log n), diameter of used to carry the traffic to/from GSHs in W mode.

most networks, including the aforementioned ones). The implementation of the above-sketched scenarios re-
A case study — large-scale timely distribution of cus- quires each GSH to be able to construct its surrounding AS-
tomized software: Consider a large scale software updatievel topology up to a radius. This can be achieved through
system, similar to that used fodicrosoft Windows Update  standard topology discovery protocblsAlso, it requires a
Such a system not only delivers terabytes of data to millafns client to be able to locate the facility closest to it, and it
users, but also it has to incorporate complex decision pgase requires a GSH to be able to inform potential clients of the
for customizing the delivered updates to the peculiaritiés service regarding its W or SB status. Both of these could be
different clients [2] with respect to localization, preugly- achieved through standard resource discovery mechanisens |
installed updates, compatibilities, and optional commimie DNS re-direction [12], [13] (appropriate for applicatitevel
among others. This complex process goes beyond the dissé@alizations of our distributed facility location approaoor
ination of a single large file, where a peer-to-peer appraschproximity-based anycast routing [14] (appropriate forwark

an obvious solution [11]. Moreover, it is unlikely that seéire layer realizations). Furthermore, we show in Section VII-C
providers will be willing to trust intermediaries with suchthat the performance of our scheme degrades gracefully as
processes. Rather, we believe that such applicationskalg li re-direction becomes more imprecise.

to rely on dedicated or virtual hosts,g, servers offered for Outline: The remainder of this paper is structured as follows.
lease through third-party overlay networksada Akamai or Section Il provides a brief background on facility location
Planet Lab, or the newest breed of Cloud Computing platfornsection Il presents our distributed facility location apach
(e.g, Amazon EC2). To that end, we believe that the use ofo automatic service deployment. Section IV examines @naly
our distributed facility location approach presents digant ically issues of convergence and accuracy due to approgimat
advantages in terms of optimizing the operational cost afepresentation of the demand of nodes outsiddapes. Sec-
efficiency of deploying such applications, and improve eriibn V evaluates the performance of our schemes on synthetic
user experiencé. In the remainder of this section, we providgopologies. Section VI presents results on real-world (AS-
a mapping from the aforementioned software distribution

) 4 htp: .
service to our abstract UKM and UFL problems. http://www.planet-lab.org

5 http://www.geni.net/ GDD/GDD-06-08.pdf
6 Switching to W might involve the transfer of executable andfiguration
1 http://update.microsoft.com files for the service from other GSHs or from the service piewi
2 http://laws.amazon.com/ec2 7 Notice that each AS (or a smaller organizational unit thérisnalso a
3|t is important to note that the large-scale timely distribntof customized client of the service, with demand proportional to the agategqumber of
content is hardly unique to the dissemination of softwareatgs] as it could requests originating from its end-useesq, number of downloads of a service
be equally instrumental for “Virtual Product Placement” imelicontent as pack).
well as in video-on-demand services, to mention two examples. 8 http://www.caida.org/tools/measurement/skitter
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level) topologies. Section VIl looks at the effects of nonA. Definitions

stationary demand and imperfect redirection. Section VIl ywe make use of the following definitions, most of which are
presents previous related work. Section IX concludes tpepasyperscripted byn, the ordinal number of the current iteration.

with a summary of findings and on-going work. Let F(™) C V denote the set of facility nodes at theth
iteration. LetV,"™ denote ther-ball of facility node ;, i.e.

. ring of facility node v;, i.e., the set of nodes not contained

Let G = (V,E) represent a network defined by a nod v,™), but are being served by facility;, or equivalently,
setV = {v1,v2,...,v,} and an undirected edge sBt Let the nodes that have; as their closest facility. Thelomain
d(vi,v;) denote the length of a shortest path betweeand 1y (™) — (™) | 7{™ of a facility node consists of its-ball
v;, ands(v;) the (user) service demand originating from nodgng the surrounding ring.
vj. Let I/ C V' denote a set of facility nodesi-e, nodes on  From the previous definitions it is easy to see that=
WhI.C.h the service is instantiated. If th(.a. number of gvaéablv(m) YU™, where V) = UWEF(M) ‘/i(m)' (m)
facilities k = |F| is given, then the specification of their exacEJ )
locations amounts to solving the following uncapacitated ~v:€F™ i -
median problem: B. The Distributed Algorithm

_Definition 1: (UKM) Given a node set” with pair-wise o gistributed algorithm starts with an arbitrary initial
distance functiond and service demands(v;), Yv; € V., paieh of facilities, which are then refined iteratively thgh
select up tok nodes to act as medians (facilities) so as tQqcation and duplication until a (locally) optimal sobut is
minimize the service cost'(V, s, k): reached. It includes the following steps:

_ N , Initialization: Pick randomly an initial setF(®) C V of
CVisik)= 3 stos)d(vs, m(vy)), @) ko = |F©| nodes to act as facilities. Lef = F(©) denote
a temporary variable containing the “unprocessed” faedit
wherem(v;) € F' is the median that is closer tg. from the current batch. Also, 6k~ = F() denote a variable
On the other hand, if instead @f one is given the costs containing this current batch of facilities.
f(v;) for setting up a facility at node;, then the specifi- Iteration m: Pick a facilityv; € F and process it by executing
cation of the facility setf” amounts to solving the following the following steps:

Vv, eV

uncapacitated facility location problem: 1) Construct the topology of its surroundingball by
Definition 2: (UFL) Given a node set/ with pair-wise using an appropriate neighborhood discovery protocol
distance functiond and service demands(v;) and facility (see [20] for such an example).
costsf(v;), Yv; € V, select a set of nodes to act as facilities 2) Test whether its-ball can be merged with theballs of
so as to minimize the joint cost'(V, s, f) of acquiring the other nearby facilities. We say that two or more facilities
facilities and servicing the demand: can be merged (to actually mean that theipalls can
be merged), when their-balls intersecti.e., when there
C\V,s, f) = Z flv;) + Z s(v;)d(vy, m(vy)), (2) exists at least one node that is within distandeom all
Vo, €F Vo eV the facilities . Let/ C F(™) denote a set composed@qf
_ - _ and the facilities that can be merged witH it/ induces
wherem(v;) € F is the facility that is closer t@;. anr-shapeG; = (V;, E;), defined as the sub-graph of

For general graphs, both UKM and UFL are NP-hard G composed of the facilities of, their neighbors up to
problems [15]. A variety of approximation algorithms have  djistancer, and the edges between them. We can place
been developed under metric distance using a plethora of constraints on the maximal size okhapes to guarantee
techniques, including rounding of linear programs [16}dlb that it is always much smaller tha\(n).
search [17], [18], and primal-dual methods [19]. 3) Re-optimize ther-shapeG . If the original problem
is UKM, solve the|J|-median within ther-shape —
this can produce new locations for thé| facilities. If
the original problem is UFL, solve the UFL within the
r-shape — this can produce new locations as well as

In this section we develop distributed versions of UKM change the number of facilities (make it smaller or larger
and UFL by utilizing a natural limited horizon approach in than|.J|). In both cases the re-optimization is conducted
which facilities have exact knowledge of the topology ofithe by using a centralized algorithH. The details regarding
r-ball (surrounding topology up te-hop neighbors), exact the optimization ofr-shapes are given in Section IlI-C.
knowledge of the demand of each node in theball and . o . - ,

. The merging operation is recursive. When an initidball merges with
approximate knowledge of the aggregate demand from nod€second one, then additional facilities that can merge \highsecond one
on the ring surrounding theit-ball. Our distributed approach merge as well, and so on.

will be based on an iterative method in which the location and'° The numerical results presented in Sections V and VI are ridaby
using Integer Linear Programming (ILP) formulations [7] anddesearch

the numbgr of .faCi”tieS (in the case of UFL only) may Changl?euristics [18] for solving UKM and UFL withim-shapes. Since both perform
between iterations. very closely in all our experiments, we don't discriminatevietn the two.

I11. AL IMITED HORIZON APPROACH TODISTRIBUTED
FACILITY LOCATION
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4) Remove processed facilities, both the origimaland a node in the corresponding ring, having the property that
the ones merged with it, from the set of unprocessesl v;'s closest facility. Letv;, denote a node on the skin of
facilities of the latest batch.e., set7 = F\ (J(\F~). G, having the property that is included in a shortest path
Also updateF"™ with the new locations of the facilities from v; to v;. To take into consideration the demand fram
after the re-optimization. while optimizing ther-shapeG ;, we map that demand onto

5) Test for convergence. I # () then some facilities the demand ofy, i.e., we set:s(vy) = s(vg) + s(vj).
from the latest batch have not yet been processed, so
perform another iteration. Otherwise, if the configurationlV. A M ORE DETAILED EXAMINATION OF DISTRIBUTED
of facilities changed with respect to the initial one for FACILITY LOCATION

the latest batchi.e, Fm) o F~, then form a new  The previous section has provided an overview of the basic
batch by setting? = F (m) and F~ = FU™, and characteristics of the proposed distributed facility tma
perform another iteration. Else (f("™) = F~), then approach. The section goes beyond that to look closer at some

no beneficial relocation or elimination is possible, sgnportant albeit more complex properties of the proposed
terminate by returning the (locally) optimal solutiongg|ytion.

FOm),
A. Convergence of the lterative Method

) ) . ) We start with the issue of convergence. First we show
_ As discussed in Section II, the input of a UKM problemnat the iterative algorithm of Section II-B converges in a
is defined completely by a tupl&V, s, k), containing the finite number of iterations. Then we show how to control the

topology, the demand, and the number of allowed mediangvergence speed so as to adapt it to the requirements of
A UFL problem is defined by a tupl€V,s, f), similar to practical systems.

the previous one, but with facility creation costs instedd 0 proposition 1: The iterative local search approach for dis-
a fixed constraint on the number of allowed facilities. Fa thyipyted facility location converges in a finite number of

C. Optimizingr-shapes

optimization of anr-shape, we set: iterations.
« V=V; and Proof: Since the solution space is finite, it suffices to
o k = |J|, for the case of UKM, orf = {f(v;) : Yv; € show that there cannot be loop. repeated visits to the
Vy}, for the case of UFL. same configuration of facilities. A sufficient condition fiis

Regarding service demand, a straightforward approaishthat the cost (either Eq. (1) or (2) depending on whether we
would be to sets = {s(v;) : Yv; € Vy}, i.e, retain in are considering distributed UKM or UFL) be monotonically
the re-optimization of the-shape the original demand of thedecreasing between successive iteratiaes, (™ > ¢(m+1),
nodes of ther-shape. Such an approach would, nonetheleg€elow, we show that this is the case for the UKM applied
be inaccurate since the facilities within arshape service the to r-shapes with a single facility. The cases of UKM applied
demand of the nodes of theshape,as well as those in the to r-shapes with multiple facilities, and of UFL follow from
corresponding ring of the r-shapé&ince there are typically straightforward generalizations of the same proof.

a few facilities, each one has to service a potentially large Suppose that during iteration + 1 facility vy is processed
number of nodese(g, of order O(n)), and thus the rings and that between iteration andm + 1, vy is located at node
are typically much larger than the correspondinghapes! z, whereas after iteratiom + 1, vy is located at node. If
Re-optimizing the arrangement of facilities within arshape = = y, thenc(™ = ¢+ For the case that # y, we need
without considering the demand that flows-in from the rintp prove thatc("™) > ¢(m+1),

would, therefore, amount to disregarding too much infoliiotat  For the case in WhicIWG(m) = W(,(mﬂ), it is easy to show
(as compared to the information considered by a centralizedat ¢ > ¢(m+1) Indeed, since the facility moves from
solution) Including the nodes of the ring into the optimizatiorr to y it must have been that this reduces the cost of the
is, of course, not an option, as the ring can be arbitrariomain of vg, i.e., c(We(m)) > c(Wg(m“)), which implies
large O(n)) and, therefore, considering its topology would(™) > ¢(m+1) since no other domain is affected.
contradict our prime objective — to perform facility locati The case in whicH/Vg(m) #* We(m“) is somewhat more
in a scalable, distributed manner. involved. It implies that there exist sets of nodés B: AU

Our solution for this issue is taonsider the demand of B £ (), A = {z € V : 2 ¢ Wg(m),z c Wém“)} and B =
the ring implicitly by mapping it into the local demand of{z cV:zc Wém)’z ¢ We(m+1)}. A is actually the set of
the nodes that constitute trekin of the r-shape The skin nodes that were not served by facility before them + 1
consists of nodes on the border (or edge) of thehape, iteration and are served after the+ 1 iteration. Similarly, B
i.e, nodes of ther-shape that have direct links to nodes ofs the set of nodes that were served by facititybefore the
the ring. This intermediate approach bridges the gap betweg | 1 jteration and are not served after the-+ 1 iteration.
absolute disregard for the ring, and full considerationtef ij gt ¢ — {(zeV:ze Wa("”,z c Wé7”+1)} be the set
exact topology. The details of the mapping are as follows. Lgf nodes that remained in the domain «of after its move
v; denote a facility inside an-shapeG ;. Letv; € U denote from 2 to y (Fig. 1 depicts the aforementioned sets). Since

(m) _ i _antimizati
11 Notice thatr is intentionally kept small to limit the size of the individual WF)(m) = BUC (B, C disjoint) and th? re-optimization of
re-optimizations. W, moved the facilityvy from z to y, it must be that:
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B here® =¥ =~

W9m+1)

Fig. 1. Depiction of the move of a facility from X to Y and of thets A, Fig. 2. Example of a possible facility movement from nageto nodew;
B, and C. with respect to a particular node € U;.

given by the number of facilities. Since we are interested in
¢(B,x) 4+ ¢(C,x) > ¢(B,y) + ¢(C,y) (3) asymptotic complexity we can disregard this and focuslfn

N For m < M we have required that™ > (1 4 «a)c(™+1),
where c(B,l_') den(_)t(_a_s the cost of servicing the nodesidf equivalently,c© > (14 a)™c™). Thus when the iteration
from z (similar definitions forc(C, x), ¢(C, y)). converges we have:

Let @ denote the set of facilities that used to service the

nodes ofA4 before they entered the domain af at m + 1. 0> 14 a)MeM =
Similarly, let & denote the set of facilities that get to service ©) ©)
H C C
the nodes otB_ after th.eylleavg the domain af at m + 1. M <log,,, 55 < 10g) 0 — )
From the previous definitions it follows that: ¢ ¢
Given the definition of the cost and the fact that node service
c(A,y) <c(4,P) 4)

demands {(v)’s) are constants with respect to the size of the
c(B,y) > (B, V) (5) input (n), it is easy to see that® can be upper bounded by
. . . O(n?) and c* be lower bounded by2(n). This leads to an
U Eq. (5 Eqg. (3 btain:
sing Eq. (5) in Eq. (3) we obtain O(n) upper bound forcéz). Substituting in Eqg. (7) gives the
claimed upper bound for the number of iterations. |

c(B,z)+c(C,x) > c(B,¥)+¢(C,y) (6)

Applying Egs (6) and (4) to the differene&™ — ¢(™+1) we

can now show the following: B. The Mapping Error and its Effect on Local Re-

Optimizations
(m) _ (m+1) _

¢ In this section we discuss an important difference between

(c(B,z:) + ¢(C, x)+c(A,<I>)) - (c(A,y)+c(C,y) +c(B,\If)) = solving a centralized version of UKM or UFL (Defs 1, 2)
applied to the entire network and our case where these
(c(B,x) +¢(C,x) — ¢(B, V) — ¢(C, y)> + (c(A, ®) — c(A, y)) ~ o problems are solved within anshape based on the demand
that results from a fixed mapping of the ring demand onto the
skin. In the centralized case, the amount of demand gewkerate
which proves the claim also for thWH(m) #* W(,(mH) case, by a node is not affected by the particular configuration ef th
thus completing the proof. B facilities within the graph, since all nodes in the network a
We can control the convergence speed by requiring each timoluded and considered with their original service demand
to reduce the cost by a factor of, in order for the turn to In our case, however, the amount of demand generated by
be accepted and continue the optimizing process;accept a skin node can be affected by the particular configuration
the outcome from the re-optimization of anshape at the of facilities within the r-shape. In Fig. 2 we illustrate why
mth iteration, only ifc(™) > (1 + a)c™+1. In this case, the this is the case. Node on the ring has a shortest path to
following proposition describes the convergence speed. facility node v; that intersects the skin af;'s r-ball at point
Proposition 2: The iterative local search approach for disB, thereby increasing the demand of a local nodB &ty s(u).
tributed facility location converges i@ (log,  , n) steps. As the locations of the facilities may change during theoiasi
Proof: Let (@, ¢(M) ¢* denote the initial cost, a locally steps of the local optimizing process.d. the facility moves
minimum cost obtained at the lasb/th) iteration, and the from C to D, Fig. 2), the skin node along the shortest path
minimum cost of a (globally) optimal solution, respectivel betweenu and the new location of the facility may change
Here we considelM to be the number of “effective” iterations, (node/point £ in Fig. 2). Consequently, a demamdapping
i.e,, ones that reduce the cost by the required factor. The totattor is introduced by keeping the mapping fixed (as initially
number of iterations can be a multiple &f up to a constant determined) throughout the location optimization procéss$
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A;(r,j,u) denote the amount of mapping error attributed to ER
ring nodew with respect to a move of the facility from,; ‘ ‘ ‘
to v; under the aforementioned fixed mapping and raeius 08t
Then thetotal mapping errorintroduced in domairi¥; under
radiusr is given by:

Ai(r) = Z Z Ai(r7 Js u) (8)

vj €Vi u€U;vj#v; 0.2 r
ViV

0.6

0.4

coverage

The mapping error in Eq. (8) could be eliminated by re- 1 2
computing the skin mapping at each stage of the optimizing radius r
processi(e., for each new intermediate facility configuration). BA
Such an approach not only would add to the computational
cost but — most important — would be practically extremely 08 ¢
difficult to implement as it would require the collection of
demand statistics under each new facility placement, deday
the optimization process and inducing substantial ovethea
Instead of trying to eliminate the mapping error one could

0.6

coverage

04

0.2

try to assess its magnitude (and potential impact) on the | nggggg §
effectiveness of the distributed UKM/UFL. This is explored o s e s . o s

next. radius r

The example depicted in Fig. 2 helps derive an expressibig. 3. Average coverage of a node for different size of ER BAdyraphs.
for the mapping errof\;(r, j, u), assuming a two-dimensional
plane where nodes are scattered in a uniform and continuous
manner over the depicted domaify,(r, j,u) corresponds to any two nodes. We maintain the default values of BRITE
the length difference of the two different routes betweedeno = 0.15, 3 = 0.2 combined with an incremental model

u (point A) and nodev; (point D). Therefore, in which each node connects tea = 2 other nodes. For
) BA graphs we also use incremental growth with = 2.
Ai(r,j,u) = |AB| +|BD[ - [AD|. ©)  This parametrization creates graphs in which the number of
Note that for those cases in which the angléetweendC  (undirected) Iin_ks is almost double the number of.verticas (
and CD, is 0 or w, |AB| + |BD| = |AD|, and therefore, 8IS0 observed in real AS traces that we use later in the paper)

A;(r, j,u) = 0. For any other value op, AB, BD and AD
correspond to the edges of the same triangle and therefgfe,Node Coverage with Radius
|AB|+ |BD| —|AD| > 0 or A(r,j,u) > 0. . . . :
Based on Eg. (9), it is possible to derive an upper bound F'% 3 depkl]ctz 'Fhehfractlotn Sf th? total nodte .popu(ljatlgn It;?at
regarding the total mapping errak;(r) for this particular cag Bireac he n opst_slar 'C\? r?rTicer ain no d%;%
environment. In Appendix |, we prove that, and BA grapns, respectively. Ve piot the mean an .
, confidence interval of each node under different networé&ssiz
Ai(r) < 223 (R? — 1?), (10) = = 400, 600, 800, 1000, representing typical populations
of core ASes on the Internet as argued later on. The figures
show that a node can reach a substantial fraction of the total
node population by using a relatively smallin ER graphs,
r = 2 covers2% — 10% of the nodes, whereas= 3 increases
the coverage td0% — 32%, depending on network size. The
coverage is even higher in BA graphs, where= 2 covers
Therefore, a small radiusin addition to being preferable for 4%—15%, Wh.erea? =3 coversQO%—E)O%, depepdmg again
. ... on network size. These observations are explained by the fac
scalability reasons has the added advantage of facilitatia o
. . . : tQat larger networks exhibit longer shortest paths and diara
use of a simple and practical mapping with small error an d also b h . heir highlv skewed
expected performance penalty and also because BA graphs, owing to their highly skewe
' (power-law) degree distribution, possess shorter shapshs
and diameters than corresponding ER graphs of the same link
density.

where R is the radius of the particular domail/; (for
simplicity we assume that the domain is also a circle).
According to Eq. (10), the upper bound fdy;(r) is close
to 0, whenr — 0 or r — R. We are interested in those case
where ther-ball is small. This corresponds to small values- of
for the particular (two-dimensional continuous) enviramh

V. SYNTHETIC RESULTS ONER AND BA GRAPHS

In this section we evaluate our distributed facility looati
approach on synthetic Ed-Renyi (ER) [8] and Barahsi- o
Albert (BA) [9] graphs generated using the BRITE generd: Performance of distributed UKM
tor [21]. For ER graphs, BRITE uses the Waxman model [22] In this section we examine the performance of our dis-
in which the probability that two nodes have a direct link iributed UKM of radiusr, hereafter referred to as dUKM)
P(u,v) = a-e 4L whered is the Euclidean distancewhen compared to the centralized UKM utilizing full knowl-
betweenu and v, and L is the maximum distance betweeredge. We fix the network size ta = 400 (matching
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dUKM - ER n=400 dUKM, iterations - ER n=400 dUFL - ER dUFL - BA
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dUKM - BA n=400 dUKM, iterations - BA n=400 Fig. 5. Cost comparison between dUF).@nd UFL, forr =1 andr = 2,
4 KNGO —n- 80 doy = and different network sizes under ER and BA graphs and dewaeed facility
S 135} c(dUKM(2))/c(UKM) & 70 | dUKM(2) & _ A1
£ cost f(v;) = d(v;)1Tec.
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pot S
8 125 gso b
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) £ - 2600 [ dUFL(2) -~-& 1800 | dUFL(2) &
g 11} 220} s 2400 | UFL UFL ——
8 105t w0l g 1 2200
1 A 2 4 2000 |-
0 5 10 15 20 8 1800 -
k k 1600 |
Fig. 4. The relative performance between dUkiland UKM, and the i‘z‘gg o
number of iterations for the convergence of the formeryfer 1 andr = 2, 1000
and different facility densitie&/n = 0.1%,0.5%, 1%, 2%, and 5% under 800 L 600 e
ER and BA graphs. 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
n n

Fig. 6. Cost comparison between dUF)@nd UFL, forr = 1 andr = 2,
and different network sizes under ER and BA graphs and umiftacility

measurement data on core Internet ASes that we use &8

on) and assume that all nodes generate the same amount of

service demand(v)_: 1,Vv € V To ensure scalability, we ~ o rtormance of distributed UFL

don't want our distributed solution to encounteshapes that

involve more thatl0% of the total nodes, and for this we In order to evaluate the performance of dUF).(we need
limit the radius tor = 1 andr = 2, as suggested by the nodd® decide how to set the facility acquisition cosf$v;),
coverage results of the previous section. We let the fracti/hich constitute part of the input of a UFL problem (see
of nodes that are able to act as facilitiés( service hosts) Definition 2). This is a non-trivial task, essentially a jmig
take values:/n = 0.1%, 0.5%, 1%, 2%, and5%. We perform problem for network services. Although pricing is cleariyto

each experiment 10 times to reduce the uncertainty due to ffescope for this paper, we need to use some fornf(ef;)'s
initial random placement of thé facilities. to demonstrate our point that, as with UKM, the performance

&f the distributed version of UFL tracks closely that of the

The plots on the left-hand-side of Fig. 4 depict the cost . .
b g P ntralized one. To that end, we use two types of facilitysos

out dUKM(T) approach normalized over that of the centralize niform, where all facilities cost the same independently of
UKM, with the plot on top for ER graphs and the plot orfJ cation (e, f(v;) = f, Yo, € V) and, non-uniform where
the bottom for BA graphs. For both ER and BA graphs, th i gl T ' .
performance of our distributed solution tracks closelyt thia t fethC;tS;c?;: ?ﬁgltl):n?fto?mglgsgt rrlr?gge(lj?sp?‘r?:rz Orglg\]/Zr:?(\;var:f:
the centralized one, with the difference diminishing fast Y )

r and k are increased. The normalized performance for BK]E domlntﬁnt costis ;hat of se:tmgéjpl t'he serwcelon thte hr? st
graphs converges fasteirg(, at smallerk for a givenr) to whereas the non-unitorm cost model IS more reievant when

ratios that approach 1. This owes to the existence of highlh-e dqminant CTOSt I that of ope_rating the facil_ity (_iT"p'@’i”
connected nodes (the so call “hubs”) in BA graphs — buildin at this operating cost is proportional to the desirabit the

facilities in few of the hubs is sufficient for approximatin ost, which depends on topological location). The latett cos

closely the performance of the centralized UKM. The thq,OdeI is gengral enough to capture the congestion assiciate
plots on the right-hand-side of Fig. 4 depict the number (W'tl? eaﬁh facility. i il he followi le-
iterations needed for dUKM} to converge. A smaller value or.t € non-uniform case we wi use.F € toliowing rule:
of r requires more iterations as it leads to the creation of ¥ will make the cost of acquiring a facility proportional to

large number of small sub-problems (re-optimizations ofiyna its degree,i.e., proportional to the number of direct links it

smallr-shapes). BA graphs converge in fewer iterations, sin0@s o other nodes.. The intgition behind this is that a highly
for the same value of BA graphs induce larger-shape¥ connected node will most likely attract more demand from
and, thus, fewer re-optimizations clients, as more shortest-paths will go through it and, ,thus

building a facility there will create a bigger hot-spot, and
therefore the node should charge more for hosting a setvice.

12 pgain it is the hubs that create largeshapes. Even under a smalla
hub will be close to the facility that re-optimizes its locatj and this will 13 As sketched in the introduction, a node may correspond to anhas
bring many of the hub’s immediate neighbors into thshape. charges for allowing network services to be installed ordtal GSH.
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In [23],[24] the authors showed that the “coverage” of a node a0y L cosumer ASes forapeer AS
increases super-linearly with its degree (or alternatjveie

number of shortest paths that go through it). We, therefore, 1000
use as facility costf(v;) = d(v;)'**c, whered(v;) is the
degree of node; € V andag is the skewness of the degree
distribution of the graphG. In order to estimate the value

100

# costumer ASes

10

of ag, we use the Hill estimatord,(ﬁHn"L”) = 1/% m, Where:
Ak = %Zle log X)(if;‘)l) , X(;) denotes the-th largest value Ly 0 200 2000

rank of peer-AS

in the sampleXy, ..., X,,. We prefer the Hill estimator since o7 Number of ASec 1 o AS i d i
A H H H e _ 1g. /. umber of customer es Tor each peer- In decreasiagr o
it is less biased than linear regression for fitting powaer IaaCCOrding 1 rank.
exponents.

In Fig. 5 we plot the cost of dUFL(1), dUFL(2), and cen-
tralized UFL, in ER and BA graphs under the aforementioned  re|ationship is modeled using a directed link from the
degree-based facility cost. For dUFL, we present threesline  provider to the customer.

of facilities used in the iterative algorithm of Section-Bl and have mutual agreements for carrying each other’s

We useko = 0.5- F, F, and2 - F', where F denotes the traffic. Peer-peer relationships are modeled using undi-
number of facilities opened by the corresponding centdliz rected links.

UFL. As evident from the results, the cost of dUFL is close Overall the dataset includes 12,779 unique ASes, 1,076
to that of UFL (around 5-15% for both types of graphs). Afﬁeers and 11,703 customers, con’nected through 26,,38,7 di-

\t’;"tg dL:KMI,B;he perrl‘ormanc:ttah|mpr0\|/es vt\{mha_ndsls Stl.'ghtl\};Bected and 1,336 undirected links. Since this AS graph is
etter tor graphs (see the explanation in Section V- é‘aot connected, we chose to present results based on its

Also we observe a tendency for lower costs when starting t ?gest connected componéfit,which we found to include

distributed algorithm with a higher number of initial fatigs. ; .
. substantial part of the total AS topology at the peer level:
Under the non-uniform (degree-based) cost model, both dU%b? peer ASes connected with 1,012 undirected links; we

anthFL openl facilities in 2-8% of the total nodes, dependlr{%rified that this component contains all the 20 largest peer
Onvf/ € (Iaxamp T' h ; ¢ dUFL und i ASes reported in [10]. Since it would be very difficult to
V€ aiso eva uate t € performance o UFL under Unitorihyain the real complex routing policies of all these neksor

facility cost f; the cost is _s_e_t at a value that leads '_[O bundmgle did not consider policy-based routing, but rather assume
the same number of faC|I|_t|e§ as the correspo_ndmg degr%?fortest—path routing based on the aforementioned cogohect
based example. Both the distributed and centralized UFd bqumponent

Fhe same number of faC|I|t!es, and the pe_rformance-of d.UFLWe exploit the relationships between ASes in order to derive
is very close to the centralized one, as is illustrated in Big a more realistic (non-uniform) service demand for the peer

Again, we empha§|ze that our goal here is not to evalue}&%es that we consider. Our approach is to count for each peer
performance under different pricing scheme, but rathehtWs Ag the number of customer ASes that have it as provider,

that the performance of distributed UFL tracks well thathef t either directly or through other intermediary ASes. We then

centralized, optimal approach. set the service demand of a peer AS to be proportional to
this number. In Fig. 7 we plot the demand profile of peer
VI. RESULTS FORREAL AS-LEVEL TOPOLOGIES ASes (in decreasing order using Log-Log scale). As evident

To further investigate the performance of our distributefiom this plot, the profile is power-law like (with slight
approach, as well as better support our sketched appﬁcatﬁ)ev'at'qn Fowards the tail), meaning that few core ASesycarr
scenario described in the introduction, we include in thif® majority of the demand that flows from client ASes. In

section performance results on real AS-level maps under ndfi¢ Seduel we present performance results in which nodes
uniform service demand from different clients. correspond to peer ASs that generate demand that follows the

aforementioned power-law like profile. We seek to identifg t

peer ASes for building service facilities.
A. Description of the AS-level Dataset

We use the relation-based AS map of the Internet fro Distributed UKM on the AS-level Dataset
December 200% obtained using the measurement method-

. . ) . The plots on the left-hand-side of Fig. 8 show the cost
?elz?gt?/o:;?igslbggh/:/r;e[ioiszge dataset includes two kinds %ff dUKM(1), dUKM(2), and the centralized UKM, under

o i ) the AS-level graph. Clearly, even for small values »nf
« Customer-Provider: The customer is typically a small§fe performance of our distributed approaches track glosel
AS that pays a larger AS for providing it with accesgat of the centralized approach. Regarding the number of

to the rest of the Internet. The provider may, in turn, bgaaiions needed for convergence, the same observatiphs a
a customer of an even larger AS. A customer-provider

15There are smaller connected componefits ASes) that are formed by
14 http:/iIwww.cc.gatech.eds/mihail/ASdata.html small regional ISPs with peering relationships.



DISTRIBUTED SERVER MIGRATION FOR SCALABLE INTERNET SERVICE DEPDOMMENT 9

dUKM - AS-level dUKM, iterations - AS-level Non-stationary demand, number of downloads Non-stationary demand, number of downloads, most popular AS
45000 — 120 8000 280
I AUKM(L) - dUKM(1) ="
40000 | dUKM(2) & dUKM(2) &

UKM —*— 100

~
a
o
1<)

35000 [t

©
S

% 30000 -
Q
S
= 25000 -
©

7000 -

& 20000 |

IS
S

number of iterations
D
o

o
o
=]
=3

15000 -
10000 -

5000 0 6000 141
0 5 10 15 20 25 0 5 10 15 20 25 16:00 24:00 08:00 16:00 24:00 08:00 16:00 24:00 08:00 16:00 24:00 08:00

k k time (GMT) time (GMT)
Fig. 8. The cost of dUKM() and UKM, and the number of iterations for Fig. 9. The number of concurrent downloads from all ASes aoich fthe most
the convergence of the former, for= 1 andr = 2, and different facility popular AS in the torrent of an on-line multi-player game atemeasurement

number of downloads
number of downloads

200 5 a 1

densitiesk/n = 0.1%, 0.5%, 1%, 2%, and 5% under the AS graph. point.
cost ratio dUFL(1)/UFL|| cost ratio dUFL(2)/UFL ! ) o
mean median mean median Non-stationary demand, churn Non-stationary demand, dUFL(1), migration of facilities
0.12 0.06
degree-based| 1.22 1.20 1.04 1.03
uniform 1.01 1.01 1.01 1.01 o1y 0.05
0.08 | 0.04
TABLE |

churn

0.06
COST RATIO BETWEEN DUFL(r) AND UFL IN THE AS-LEVEL TOPOLOGY.

migration ratio
o
o
@

0 0 AL L i, .t
16:00 24:00 08:00 16:00 24:00 08:00 16:00 24:.00 08:00 16:00 24:00 08:

as with the synthetic topologieise., they increase with smaller time (GMT) time (GMT)
radii. The substantial benefit from knowledge of only locatig. 10. Churn evolution in the ASFig. 11. Migration ratio of dUFL(1)
neighborhood topologies (“neighbors of neighbor”) hasmeilel in the torrent of a popular onin the torrent of a popular on-line
. . . . [ine multi-player game at each meaaulti-player game at each measure-
observed for a number of applications, including [20] whick,rement point. ment point.
has also investigated and quantified implementation oeerhe
in an Internet setting.
o which is possible to do due to the use of BitTorrent, we can

C. Distributed UFL on the AS-level Dataset obtain a rough idea about the demographics of the load put on

Table | presents the performance of dUFL on the AShe game servers, to which we do not have direct access. We
level dataset. Again, it is verified that dUFL is very clos¢hen use this workload to quantify the benefits of instaimiat
in performance to UFL, even for small valuesrofwithin 4% game servers dynamically according to dUFL.

for » = 2, under both examined facility cost models). More specifically, we connected periodically at 30-minute
intervals to the tracker serving this torrent, over a totabtion
VII. N ON-STATIONARY DEMAND AND IMPERFECT of 42 hours. At each 30-minute interval, we got all the IPs of
REDIRECTION participating downloaders by issuing to the tracker mistip

Up to now, our performance study has been based tgruests for neighbors until we got all distinct downloader
assuming (1) stationary demand, and (2) perfect redinectiat this point in timé’. In Fig. 9 (left) we plot the number
of each client to its closest facility node. The stationargf concurrent downloads at each measurement point. Oyerall
demand assumption is not justified for relatively large timave were able to capture a sufficient view of the activity of the
scales (hours or days), and perfect redirection can bereitb@rent and detect expected profiles, e.g., diurnal variasiver
too costly to implement or too difficult to enforce due tdhe course of a day. In total, we saw 34,669 unique users and
faults or excessive load. In this section we look at thdae population varied from 6,000 to 8,000 concurrent users,
performance of distributed facility location when dropgpine i.e. the population variance was close to 25%.
aforementioned assumptions. First, we present a measaremeMoving on, we used Routeviews to map each logged IP
study for obtaining the non-stationary demand correspandiaddress to an AS. The variance in the number of concurrent
to a multi-player on-line game and then use this workload tesers from a particular AS was even higher. Focusing on the
derive a performance comparison between dUFL and URmost popular AS, we found out that the variance in the number
Then, we assume that mapping a client to its closest facilibf concurrent users was as high as 50%, as it is shown in Fig. 9
node has to incur some time lag and study the performancight). Last, we looked at churn at the AS level by counting
implications of such an imperfect redirection scheme. the number of new ASes joining and existing ASes leaving

the torrent over time [25]. Formally, we definetlurn(t) =

A. Measuring the demand of a popular multi-player game

We used the Mininova web-site to track all requests for 17 Tracker is a server that maintains the set of distinct dowddos of
a torrent. Upon a neighbor set request, the tracker repliés avrandom

Joining a torrent correspondlng to a popular on-line mums'ubset of the distinct downloaders set. We requested tleeasithe distinct
player game. By tracking the downloads of the game clieriywnloaders set, and then we repeatedly requested for a aighbor set
until we reach the same number of distinct IPs.
16 http://www.mininova.org 18 http://www.routeviews.org



10 REVISION SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING JUNEO¥2009

%, whereU, is the set of ASes at timg andS

is the set difference operator. In Fig. 10 we plot the evohuti
of churn. One can observe that AS-level churn is quite high,
ranging from 6% to 11%, with no specific pattern. This serves
our purpose which is to study the performance of dUFL under
non-stationary demand.

Non-stationary demand, performance comparison
140000

120000 f

B. Distributed UFL under non-stationary demand 100000
We consider a distributed server migration scheme given, 80000

by dUFL with radiusr = 1. The pricing model for starting 3

a server at an AS is the aforementioned degree-based one of 60000

Section V-C. The evaluation assumes an AS-level topology Sstz;[::cr:]nal?( ,,,,,,,,,,,,, PR PN
obtained from Routeviews. The demand originating from each ;5590 | dUFL(1) —— f _
AS at each particular point in time is set equal to the value UFL —— oo R
we obtained from measuring the downloads going to the 55000 | e |
torrent of the game client. We compare the cost of UFL, eSS e
dUFL(1), static-min, and static-max. Static-min is a siepl 16:00 24:00 08:00 16:00 24:00 08:00
heuristic that maintains the same placement across time. Th time (GMT)

number of maintained facilities is equal to the minimum
number of facilities that UFL opened in the duration of th€ig. 12. Average cost of static-min, static-max, dUFL(1) anéLUn the
experiment. This is used as a baseline for the performari@gent of a popular on-line multi-player game at each measurepuint.
of an under-provisioned static placement of servers aaogrd
to minimum load. Static-max captures the cost of an over-
provisioned placement according to peek load. Obviously, Non-stationary demand, effect of lag
static-max suffers from a high purchase cost of buying a ol
maximum number of servers (in this case 100), whereas static
min suffers from high communication cost to reach the few
bought servers (in this case 70).
We report the average cost in the duration of the experiment
(42 hours) for each one of the aforementioned policies. For ‘ ‘ :
each policy we repeated the experiment 100 times to remove ° ° ot * ©
the effect of the initial random opening of facilities. IgFIL2  Fig. 13. Normalized cost of static-min, static-max and dUFIvith respect
we plot the resulting average costs along otk percentile to the cost of UFL in the torrent of a popular on-line multiye#a game under
confidence intervals. One can see that dUFL(1) achieves'#ous levels of lag.
to 7 times lower cost compared to static-min and static-max.
Looking at the close-up, it can also be seen that dUFL(1) is
actually pretty close, within 10-20%, of the performance dfplies that there are no performance penalties for thentalue
the centralized UFL computed at each point in time. Takegrver migrations. In many cases it has been shown thatperfe
together, these results indicate that dUFL(1) vields a higgdirection is indeed feasible using route triangulatiord a
performance also under non-stationary demand. DNS [13]. In this section, however, we relax this assumption
Next, we quantify the number of server migrations requirednd study the effects of imperfect redirection. We do so to
by dUFL(1), between two consecutive intervals, to trackover cases in which perfect redirection is either too gastl
the offered non-stationary demand. In Fig. 11 we plot tHEplement, or exists, but performs sub-optimally due tdtfau
percentage of servers that are migrated, henceforth egfexs Or excessive load.
migration ratio, along witl95t" percentile confidence intervals To this end, we assume that there exists a certain amount of
based on 100 runs. Evidently, migrations are rather rateg between the time a server migrates to a new node and the
typically 0%-3%, after the servers stabilize from theirtiadi time that the migration is communicated to the affectechtsie
random positions, to where dUFL(1) will have them at eadBuring this time interval, a client might be receiving seevi
point in time. These results suggest that dUFL(1) is rediiv from its previously closest facility which, however, mayka
robust to demand changes and can typically address thegased to be optimal due to one or several migrations. Since
without massive numbers of migrations that are of cour§ee assume that migrations occur at fixed time intervals, we
costly in terms of bandwidth, etc. Of course, the number ofieasure the lag in terms of number of such intervals (1 fgcili
migrations can be reduced further by trading performandle wimigration at each interval). Notice that under the existeof

static-min —s—
4 [static-max ——
dUFL(1) ——

normalized cost
=)

2|

laziness in triggering a migration. lag, even with stationary demand, the optimization is n@én
o guaranteed to be loop-free (as in Section IV-A). We solvs thi
C. The Effect of Imperfect Redirection by stopping the iterative re-optimization if it reaches aaie

We now move on to dropping the assumption that clients apégh number of iterations.
always redirected to their closest facility, which prettych In Fig. 13 we plot the cost ratio between dUFL(1) and dUFL
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and thed5?" percentile confidence interval under various levekhe scalability limitations of classic centralized apprioes

of lag that range from 0 up to 20 (which means that clients bfy re-optimizing the locations and the number of facilities
facility + hear about’s migration afteri+lag has completed through local optimizations which are refined in severat-ite
its migration). As expected, lag puts a performance permlty ations. Re-optimizations are based on exact topologicdl an
dUFL. The degradation, however, is quite smooth, while tldemand information from nodes in the immediate vicinity
performance always remains superior to static-min andcstatof a facility, assisted by concise approximate represemtat

max.

of demand information from neighboring nodes in the wider

domain of the facility. Using extensive synthetic and trace

VIII. RELATED WORK

driven simulations we demonstrate that our distributed ap-

There is a huge literature on facility location theory. ilit proach is able to scale by utilization limited local infortioa
results are surveyed in the book by Mirchandani and Franeiithout making serious performance sacrifices as compared
[7]. A large number of subsequent works focused on develofe- centralized optimal solutions. We also demonstrate dbat

ing centralized approximation algorithms [16], [17], [1B]9].

distributed approach yields a high performance under non-

The authors of [26] have proposed an alternative approach &ationary demand and imperfect redirection.

approximating facility location problems based on a contin Our future research agenda includes the study of the capac-
uous “high-density” model. Recently, generalizations loé t itated version of our scheme and the version that allows-spli
classical centralized facility location problem have agpe table demands where service demand can be simultaneously

in [27], [28]. The first mention of distributed facility lotian

satisfied by more than one facility. The latter can improve

seems to have been from Jain and Vazirani [19] while cor®DNs and virtual data centers efficiency.

menting on their primal-dual approximation method, butythe
do not pursue the matter further. To the best of our knowledge
the only work in which distributed facility location has lree
the focal point seems to be the recent work of Moscibrod&!
and Wattenhofer [29]. This work, however, is mostly focused
on deriving worst-case performance bounds for distributed
facility location. It is based on primal-dual techniquesitth
are amenable to such analysis, but which are too complicated
for practical implementation purposes, as compared to ou?l
work. Furthermore, [29] does not include any experimental
results or implementation guidelines of practical purgo3tie [
online version of facility location, in which request aegiv
one at a time according to an arbitrary pattern, has been
studied by Meyerson [30] that gave a randomized online
O(1)-competitive algorithm for the case that requests arrivédl
randomly and a0 (log n)-competitive algorithm for the case (6]
that arrival order is selected by an adversary. Oikonomal an
Stavrakakis [31] have proposed a fully distributed appinoac
for service migration — their results, however, are limited
to a single facility (representing a unique service poimt)l a
assume tree topologies. [8]
Several application-oriented approaches to distributrd s ]
vice deployment have appeared in the literatuzay, Ya-
mamoto and Leduc [32] (deployment of multicast reflectorg),o]
Rabinovich and Aggarwal [33] (deployment of mirrored web-
content), Chambers et al. [34] (on-line multi-player netwo 11
games), Cronin et al. [35] (constrained mirror placemeanty
Krishnan et al. [36] (cache placement). The aforemention(fl(%]
works are strongly tied to their specific applications and do
not have the underlying generality offered by the distrlout
facility location approach adopted in our work. Relevant t83!
our work are also the works of Oppenheimer et al. [37] on
systems aspects of a distributed shared platform for servjc4)
deployment, and Loukopoulos et al. [38] on the overheads of
updating replica placements under non-stationary demand.[15]

(7]

IX. CONCLUSION

We have described a distributed approach for the problem[(l)f?J
placing service facilities in large-scale networks. Werowvene
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APPENDIX I . .
, < 2. <
DERIVATION OF AN UPPERBOUND FORA;(r) Ai(r,j,u) < 2y. Given thaty < r,
For the rest, a two-dimensional space is considered over Ai(r, j,u) < 2r. (14)

which nodes are scattered in a uniform and continuous mannef, order to derive A, (r,j), according to Eq. (11),
Ther-ball is considered as a circle with radiugnd the entire an analytlcal expression has to be derived for the inte-
domain also as a circle with radius (see Fig. 2). f (r J w)du. Note that0 < Ai(r,ju) < 2r
Suppose that a nodec U; is served by its closest facility f U ’ - ! -
nodew;. This case is depicted in Fig. 2 wheuds located at Y
point A and the corresponding facility node is located at
point C. Note that lineAC intersects with the periphery (skin) Ai(r, §) < 2mr(R? — r?), (15)

(r y, du g fUi 2rdu and R corresponds to the radius
of the U; U V; area (note thak > r). Eventually,
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since the area of the ring; is 7(R? — r?).

In order to deriveA,(r), according to Eq. (12), an analytical
expression has to be derived for the integfgil Ai(r,j)dj.
Note that0 < A;(r,j) < 27r(R* —r?) and [i, Ai(r, j)dj <
Jy, 2mr(R? — r*)dj. Eventually,

Ai(r) < 271'27‘3(R2 — 7“2), (16)
since ther-ball area istr2.
APPENDIXII
DERIVATION OF AN ANALYTICAL EXPRESSION FOR
Ai(’r)ja U)

When one of the angles of a triangl@) (is known as well
as the length of both adjacent edgesa(dy), then the length
of the third edge is possible to be derived as a function
é,r,y. Two different cases may be distinguished with respe
to the triangle’s particular form, as depicted in Fig. 14.

A Y2

a.

Fig. 14.  The two distinguished cases studied to derive thalytical
expression forA;(r, j, u).

For the case depicted in Fig. 1d.es¢ = “. Since

Yy Y1+ Y2, F{ED = Y —-n Yy — (cosq?). Further-
more, sing = 2L and [AD| = rsing. It holds that

|AC|? = |AD|? + y3, or |AC| = /|AD|? + y3, or |AC| =
r2sin® ¢ + y2 + 72 cos2 ¢ — 2yr cos ¢. Eventually,

|AC| = £/ r2 + y? — 2yr cos qAb a7)

The same result is also derived for the case depict
in Fig. 14.b, whered T — ¢. For this case,AC]
VIADJ2 4 (y + ¢/)2. However, |AD| = rsinf and ¢/
rcosf. Since,sinf sinqAS and cosf = —coquS, |AD|
rsing andy’ = —rcos ¢. Eventually, Eq. (17) holds for this
case as well.
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