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Abstract—This paper explores how the degree of similarity
within a social group can be exploited in order to dictate the
behavior of the individual nodes, so as to best accommodate
the typically non-coinciding individual and social benefit maxi-
mization. More specifically, this paper investigates the impact of
social similarity on the effectiveness of content dissemination,
as implemented through three classes representing well the
spectrum of behavior-shaped content storage strategies: the
selfish, the self-aware cooperative and the optimally altruistic
ones. This study shows that when the social group is tight (high
degree of similarity), the optimally altruistic behavior yields the
best performance for both the entire group (by definition) and
the individual nodes (contrary to typical expectations). When the
group is made up of foreigners with almost no similarity, altruism
or cooperation cannot bring much benefits to either the group or
the individuals and thus, a selfish behavior would make sense
due to its simplicity. Finally, the self-aware cooperative behavior
could be adopted as an easy to implement distributed scheme
– compared to the optimally altruistic one – that has close to
the optimal performance for tight social groups, and has the
additional advantage of not allowing mistreatment to any node
(i.e., the content retrieval cost become larger compared to the
cost of the selfish strategy).

I. INTRODUCTION

Today’s networks can be highly personalized, in the sense

that their structure and usage are shaped by the personal

interests and behavior in general of the participating nodes.

Nodes in such networks – referred to as social networks –

are typically well connected, develop reciprocal trust relations,

and have some common features, such as the content they are

interested in and the places they tend to visit. Groups of such

nodes are called social groups [11].

In this paper, we consider a group of (networked) nodes

with common interests in content – more generally: objects;

in computer science objects of interest are usually information

objects, such as files and software. It is assumed that nodes

of this social group store objects in their limited local storage

to retrieve them when desired at minimum cost. If the nodes

do not possess a desired object, they can fetch it either from

a node in the group at some low-medium cost or – if not

available in the group – from a node outside the group at

higher cost. The low-medium cost associated with fetching
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an object from within the group may reflect actual or virtual

price, access delay due to the locality of the fetching process

or level of connectivity, and level of trust and cooperation.

As the local storage is assumed to be limited when com-

pared with the plethora of objects possibly desired, an in-

herently selfish node would tend to store locally objects of

higher personal interest. Our past work in [8] has shown

that this is not the best content placement strategy for a

node in a distributed group with the three levels of content

access cost considered here. Instead, a cooperative content

placement strategy has been devised based on game-theoretic

arguments. The cooperative strategy determines which objects

each node should store locally, so that the total content access

cost for each and every node is no more than (and typically

much lower than) that induced under the selfish strategy. The

latter property implies that the content placement strategy is

mistreatment-free: no node will lose by participating in the

group, compared to acting selfishly. Hereafter we will refer to

this placement strategy as the self-aware cooperative strategy,

due to its mistreatment-free property and cooperative nature.

Mistreatment-free strategies are key to the sustainability

of such distributed selfish groups, as they motivate users to

participate in the group and share objects with others. The

social benefit (i.e., the average benefit over all nodes) induced

by the self-aware cooperative strategy is not optimal. The

strategy that implements a content assignment that maximizes

the social benefit will be referred to hereafter as the optimally

altruistic strategy; this (optimal) content assignment can be

derived by solving an optimization problem (as done, for

instance, in [9]). The implementation of the optimally altruistic

strategy would require the exchange of richer information

among the nodes in the group (local demand distributions),

whereas the self-aware cooperative strategy requires the ex-

change of some limited information among the nodes in the

group (indices of content stored locally). Finally, note that to

maximize the total benefit, some of the nodes may end up

gaining too much and others being mistreated.

Focus of this paper: It is, therefore, evident that a node

participating in a distributed group may face a dilemma as

to which strategy, to follow. In this paper the characteristics

of the social group are exploited in order to help address

the above dilemma. We propose an innovative approach to



characterizing the similarity of the social group nodes with

respect to content interests and introduce a group tightness

metric. The dependence of the induced social and individual

node benefits on the level of tightness of the social group

is clearly established for all three aforementioned content

placement strategies, which reflect general patterns of social

behavior. Our results let us draw important conclusions and

guidelines for the content placement strategy a node should

adopt for a given level of tightness in the social group.

Related work:The exploitation of social characteristics for

data dissemination in autonomic and opportunistic networks

has been considered from various aspects, in the literature.

In [1], the authors construct a dynamic learning algorithm

where nodes from various social communities opt for a utility-

maximizing content placement strategy based on their encoun-

ters with other nodes. [14] studies the impact of different

"levels of altruism" of nodes involved in the dissemination

process. In a more abstract setting, the effect that a node’s

relational position in the group has on content dissemination

has been considered in [4]. The importance of designing

socially-aware opportunistic networks is also demonstrated in

[2], [5], [7]. Finally, for a review of data dissemination in the

general context of opportunistic networks, readers are referred

to [3].

This study applies to social networks with interactions

between computer devices having limited memory resources.

These are typically encountered in mobile opportunistic net-

works that are additionally “socially aware”, meaning that

either the nodes or their human users are aware of the

formation of social groups and the potential benefits from

participation in such a group.

In Section II we formulate the problem and introduce the

tightness metric capturing the degree of similarity of interests

within a social group. In Section III the three strategies for

content placement are briefly described. These strategies are

compared to eachother in section IV, under different tightness

values, with respect to the induced content retrieval cost at

both the individual node and entire group level. Finally, we

summarize the major conclusions of the paper in Section V

and point to interesting problems for future work.

II. PROBLEM FORMULATION AND TIGHTNESS METRIC

We assume that there are N nodes in a social group and

each node has its own probability distribution of interest in M
information objects (preferences). Let M = {1, 2, ...,M} be

the set of objects, N = {1, 2, ..., N} be the set of nodes and

Fn be the interest distribution of node n over the objects. Fn
m

can also be viewed as the request rate of node n, (n = 1, ..., N )

for object m, (m = 1, ...,M ). All objects are assumed to be

unit-sized. Node n has a storage capacity of Cn units.

Let Pn denote the placement of node n, defined to be the set

of objects stored locally at this node. Without loss of general-

ity, we take |Pn| = Cn since a node can always gain by saving

objects of interest locally in its storage than having to retrieve

them from a distant source. Let P = {P1, P2, . . . , PN} denote

the global placement for the social group and P−n = P \ Pn

the set that contains the placements of all nodes in the group

except for node n.

Assume that the cost for accessing an object from a node’s

local storage is tl, from another remote node in the group tr
and from another node in another group ts, with tl < tr < ts.

These values are assumed to be the same for all nodes in order

to simplify the analysis. In reality, the three cost types may be

different for each node; yet the costs for different node pairs

within a social group are expected to be similar.

Given an object placement P , the mean access cost per unit

time for node n is given by:

Cn(P ) =
∑

m∈Pn

Fn
mtl +

∑

m/∈Pn,
m∈P−n

Fn
mtr +

∑

m/∈Pn,
m/∈P−n

Fn
mts .

(1)

The first summation corresponds to the mean cost of accessing

objects locally; the second term refers to the mean cost of

accessing them from nodes within the social group; and the

third sum accounts for the mean cost of accessing objects not

stored anywhere in the group, i.e., from a node external to the

group.

To define tightness as a measure of similarity between the

nodes’ preferences for objects, we used the Kullback- Leibler

(K-L) divergence [6], a well-known metric capturing the

divergence between two distributions. The Kullback-Leibler

divergence of distribution Q from S is defined as:

DS,Q =
∑

i

S(i)log
S(i)

Q(i)
.

Besides being always non-negative, K-L has some desirable

properties in the considered context of the paper that favor

it over other well-known (dis)similarity metrics, such as the

Kolmogorov-Smirnov distance Spearman’s rank correlation

coefficient, proportional similarity, and total variation distance

[10], [13]. As opposed to the Kolmogorov-Smirnov distance

which takes the supremum of the differences over all elements

of a distribution, in the K-L divergence all differences con-

tribute to the calculation. Thus, the number of preferences

that two nodes have into account is also implicitly considered.

Spearman’s rank correlation coefficient describes the degree

of association in the ranking of the distribution elements;

hence, it would not provide us with insights when the ranking

of interest in objects is the same between two nodes but

the actual distribution values are different. Finally, the K-L

divergence permits our metric of tightness to take a broader

range of values compared to the proportional similarity or total

variation distance. Our comparative evaluations suggest that

K-L is more sensitive to changes of distribution values, and

thus can more accurately depict differences in interest profiles.

K-L is not a measure of distance since DS,Q 6= DQ,S . To

come up with one, we invoke the symmetrized divergence,

which is defined as:

DS,Q = DQ,S = DS,Q +DQ,S .

Hence, we can define DF i,F j as the distance of preference

distributions of nodes i and j (to be referred to hereafter
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as the preference distance between i and j). Notice that the

preference distance is always non-negative, DF i,F j ≥ 0 [6].

The average preference distance of the group is then defined

as the average of the pairwise preference distances, computed

over all N(N − 1)/2 node pairs in the group:

D̂F =

∑

(i,j) DF i,F j

N(N − 1)/2
,

Finally, we define tightness T to be the inverse of the average

preference distance of the group:

T =
1

D̂F

. (2)

Tightness expresses the similarity of interests among nodes

of the social group and is always greater or equal to zero.

T → ∞ when the interests of nodes for the objects coincide,

whereas T → 0 implies that the nodes have completely

different preferences. As T is an average metric of interest

“closeness” among the nodes of a social group, it is clear that

a given value of T may arise under different sets of interest

distributions of the nodes. In order to draw more insightful

conclusions in the current study, we consider the following

two cases of dissimilarity in the nodes’ interest distributions:

• Case 1: The order (rank) of the objects remains the

same for all nodes (i.e., the first-ranked object for all

nodes is the same, the second-ranked object is the same,

etc). However, the interest distributions are different:

they become more concentrated around the most popular

objects as the node index n increases.

• Case 2: The interest distributions are identical for all

nodes but the ranking of a given object may change for

different nodes (e.g., nodes do not necessarily have the

same object as their kth-ranked one).

In the numerical examples in this paper N = 5 nodes (to

better illustrate the results), the capacity C = 10 objects, the

object population is M = 50 objects and tl = 0, tr = 10
and ts = 20 cost units. All preference distributions in the test

cases that follow are Zipf distributions. The Zipf distribution

has been shown to be a good model for the popularity of web

objects [12], which could also constitute the bulk of traffic in

our scenario. Moreover, it is remarkably flexible in capturing

a wide range of distributions, from the uniform (for skewness

parameter s = 0) to much more heavy-tail distributions with

higher skewness values (s > 0).

A. Case 1

The request rates Fn
m of node n over the objects m =

1, 2, ...,M are drawn from a Zipf distribution with different

exponent s for each node. We consider that Node 1 has

uniform interest distribution, i.e., s = 0 for this node. Then,

for node n, n = 2, 3..., N , s is increased by p(n− 1), where

p ∈ R is the increment parameter. For example, when p = 0.2,

s = 0.2 for Node 2, s = 0.4 for Node 3, and so on. The request

rate of node n for object m is given by:

Fn
m = f(m; s,M) =

1/ms

∑M

l=1 1/l
s
. (3)

Table I
EXAMPLE TIGHTNESS VALUES

(a) T when increased by different values of p

Increment parameter (p) Tightness (T)
0.0 ∞

0.2 2.0861
0.4 0.4614
0.6 0.2398
0.8 0.1697
1.0 0.1362

(b) T when shifted by different values of k

Shift parameter (k) Tightness (T)
0 ∞

1 0.3688
2 0.2674
3 0.2294
4 0.2089
5 0.1962
6 0.1876

10 0.0012

A preference ranking of the M objects is determined by this

distribution – which are accordingly ranked as [1, 2, ...,M ]
– and is the same for all nodes. As s increases, a node’s

distribution becomes more concentrated in the first objects.

Table I(a) shows the value of tightness when the interest

distributions are derived as outlined above, for different values

of the increment parameter p. Notice that tightness decreases

as p increases. This is because as p increases, the pairwise

distances between any two node distributions increase (the

difference in their s parameter is higher).

B. Case 2

The request rates Fn
m are drawn from a Zipf distribution

with exponent s with s = 1 for all nodes, which is given by

(3). If the rank of objects is the same for all nodes, we derive

from (2) that T → ∞.

In order to establish dissimilarity in the nodes’ interests, we

create a different rank of objects for each node. To this end,

Node 1 is assigned the rank of objects [1, 2...,M ] and this rank

is shifted to the left by different positions for each of the other

nodes. We consider different values of the shift parameter. In

general, the rank of objects of node n, n = 1, . . . , N is shifted

by k(n−1) positions, where k ∈ N is the shift parameter. For

example, when k = 1, the ranking of Node 1 is [1, 2, ...,M ],
the ranking of Node 2 is [2, 3, ...,M, 1], the ranking of Node

3 is [3, 4, ...,M, 1, 2], and so on. Table I(b) shows the value of

tightness when the interest distributions are shifted by various

positions, as described above. Notice that tightness decreases

as the shift parameter increases. This is because the average

absolute difference of the distributions (for the same object)

between any two nodes increases, as k increases. Generally,

numerical values of tightness are close to zero, and increase

abruptly as distributions become more similar.

III. CONTENT PLACEMENT STRATEGIES

In this section we describe the object placement strategies

that we consider in this paper. Under the Optimally altruistic
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strategy the objects are stored in such a way that the total

access cost for all nodes in the social group is minimized (i.e.,

minimize
∑N

n=1 Cn(P )). This problem can be transformed

into a 0-1 integer programming problem.

Let Xn
m =

{

1, if m ∈ Pn;

0, otherwise
and

Y n
m =

{

1, if m /∈ Pn and m ∈ P−n;

0, otherwise.

The objective is to minimize the function of the total access

cost:

N
∑

n=1

M
∑

m=1

Xn
mFn

mtl + Y n
mFn

mtr + (1−Xn
m)(1 − Y n

m)Fn
mts,

where

Y n
m = (1−Xn

m)(1−
N
∏

j=1

j 6=n

(1−Xj
m)).

This is a quadratic programming problem, whose solution

is very difficult. A re-formulation of the above to a linear

problem is derived in [9].

Under the Selfish strategy, or greedy local strategy as

referred to [8], the nodes only store their most preferable

objects. Each node n ranks the objects in a decreasing order

[1, 2, ...,M ] such that Fn
1 ≥ Fn

2 ≥ ... ≥ Fn
M and selects to

store the first Cn ones. Thus, Pn = [1, 2, ..., Cn].
Finally, under the Self-aware cooperative strategy each node

first stores its Cn most preferable objects and then makes

replacements based on the placements of the other nodes

in order to improve its placement [8]. Thus, a node may

decide to evict an object that exists in some other node in

the group in order to insert a new object, if this incurs an

access cost reduction in (1). As the nodes play sequentially,

each replacement made by a node may negatively affect the

access cost of other nodes. It is proved in [8] that this

strategy is mistreatment-free, i.e., for any node n, it holds

that CC
n (P ) ≤ CS

n (P ), where CC
n (P ) denotes the access cost

of node n for all the objects under the self-aware cooperative

strategy and CS
n (P ) denotes its access cost under the selfish

one. Thus, the final access cost of a node is at most as high

as its access cost under the selfish strategy.

It was shown in [8] that only objects not already included

in the group can be inserted during a replacement step,

evicting only objects which are present elsewhere in the

group (duplicates). Due to these properties (and as the results

followed have shown) the performance of the self-aware

cooperative strategy can be very close to the optimally (social-

cost minimizing) altruistic one. In Section IV we explore under

which conditions this performance is achieved.

On a more practical note, an optimally altruistic behavior

requires complete knowledge of the group’s characteristics

(demand patterns of all nodes in the group) and a solution

to the global optimization problem. This can be solved by

a central authority that dictates its placement decisions to

the nodes, or in a distributed fashion, in which each node

solves the global optimization problem and then all nodes

negotiate their placements (there are multiple solutions to

the global optimization problem). The self-aware cooperative

strategy requires less information; more implementation details

can be found in [8]. The selfish strategy has the smallest

implementation cost, since each node does not need to be

aware of the group’s interests.

IV. NUMERICAL EVALUATION

In this section we present some numerical examples to

illustrate the impact of tightness on the access cost under

the three behavior-based content placement strategies. The

conclusions drawn from these results can help establish clear

guidelines as to which strategy would be beneficial to the

individual nodes and/or the entire group, and under which

tightness conditions in the group.

Fig. 1 and 2 show the individual node and total (i.e., for the

entire group) access cost under the different content placement

strategies and for different values of tightness. Both scenarios

for the interest distribution dissimilarity are considered (Case

1 and Case 2, Section II).

A. Social groups with infinite or very high tightness

The results show that the optimally altruistic strategy is the

best performing one regarding both the individual cost for any

node (Fig. 1(a)), as well as the cost for the entire group (Fig. 2,

T = ∞), for both Cases 1 and 2. Consequently, the optimally

altruistic behavior is the clear winner-behavior for any node

in a very tight social group.

Notice that under very high tightness, the individual and

total access cost induced by the self-aware cooperative strategy

is (a) very close to (slightly higher than) that under the opti-

mally altruistic and (b) is always lower than that under the self-

ish strategy. In other words, the self-aware cooperative strategy

induces no node mistreatment while yielding performance

close to the optimal. Thus, given its lower implementation

complexity compared to the optimally altruistic (see Section

III), it may be selected as an easier to implement and similarly

performing alternative to the optimally altruistic strategy in

very tight social groups.

To this end, the larger the tightness of the social group, the

greater the group’s benefits when nodes are either cooperative

or optimally altruistic, compared to being selfish.

B. Social groups with very low tightness

While it was shown that under very high tightness both

the individual nodes and the entire group will benefit by

having the nodes adopt the optimally altruistic or the self-

aware cooperative strategies (compared to the selfish one), Fig.

1(d) and 2 (for T ' 0) show that this is not the case under

low or very low tightness of the social group.

Although the optimally altruistic strategy (always) brings

the maximum benefits for the group, it mistreats individual

nodes under such group tightness conditions. (e.g., Node 5 in

Fig. 1(d), for both Cases 1 and 2). Furthermore, the benefits to

the group are about the same as under the selfish strategy or
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Figure 1. Individual access cost under different strategies for different values of tightness T , under Case 1 (figures on the left) and Case 2 (figures on the
right)
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Figure 2. Total access cost under different strategies for different values of tightness T, under Case 1 (figure on the left) and 2 (figure on the right)

only slightly greater (Fig. 2(b), T ' 0 or Fig. 2(a), T = 0.14).

Since a) the implementation of the optimally altruistic strategy

is considerably more complex than the selfish one (see Section

III); b) it does not avoid mistreating certain nodes, threatening

the stability of the social group; and c) it only brings small

benefit to the group compared to the selfish one, it may be

concluded that the selfish strategy should be preferred against

the optimally altruistic.

Finally, it should be noted that both the self-aware cooper-

ative and selfish strategies are mistreatment-free. From Fig. 2

it is clear that the self-aware cooperative strategy will bring

negligible benefits if any (the same (Fig. 2(b), T ' 0) or

only slightly larger (Fig. 2(a), T = 0.14)) to the social group

compared to the selfish one. Thus, given that the complexity

of the self-aware cooperative strategy, requiring information

exchange among the nodes, is substantially larger than that

under the selfish one, requiring no information exchange and

lower computational complexity, it may be concluded that,

under low tightness, the selfish strategy should be preferred

against the self-aware cooperative.

V. CONCLUSION AND FUTURE WORK

In this paper we investigated how the commonality in

the social interests of nodes in a social group affect the

performance of content storage strategies. Three such strate-

gies capturing a broad spectrum of behavior-shaped content

storage were considered: the selfish, self-aware cooperative

and optimally altruistic one. We first proposed a new metric

for measuring the commonality in interests (social similarity),

called tightness, based on the mean value of the Kullback-

Leibler divergence of nodes’ preferences. We then varied

tightness across its value range and compared the three content

storage strategies, with respect to the individual and total

access costs they achieve.

Given the coherence of the obtained results for two different

cases of dissimilarity in the interest distributions (Case 1 and

2), it appears that tightness is an effective metric for deciding

which behavior (or strategy) a node should adopt.

More specifically, altruism is a win-win virtue or behavior

only in tight social groups (if the implementation cost is not

an issue): both the group’s benefit and individual’s benefits

exceed those under a self-aware cooperative or a selfish

behavior. As tightness decreases, smaller group benefits can

be induced either through altruism or a self-aware cooperative

behavior, while mistreatment may incur under altruism. Thus,

in this case, acting selfishly ensures no mistreatment and no

significant loss to the group’s benefit.

A possible line of future work is to collect user preference

data from a real social network, in order to fit these more

accurately to Zipf-like distributions. Further, we plan to study

the impact of group size on the global and individual access

cost, as a function of the preference distributions.
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