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Abstract—As social networking sites provide increasingly
richer context, user-centric service development is expected to
explode following the example of User-Generated Content. A
major challenge for this emerging paradigm is how to make these
exploding in numbers, yet individually of vanishing demand,
services available in a cost-effective manner; central to this task
is the determination of the optimal service host location. We
formulate this problem as a facility location problem and devise
a distributed and highly scalable heuristic to solve it. Key to
our approach is the introduction of a novel centrality metric.
Wherever the service is generated, this metric helps to a) identify
a small subgraph of candidate service host nodes with high
service demand concentration capacity; b) project on them a
reduced yet accurate view of the global demand distribution;
and, ultimately, c) pave the service migration path towards the
location that minimizes its aggregate access cost over the whole
network. The proposed iterative service migration algorithm,
called cDSMA, is extensively evaluated over both synthetic and
real-world network topologies. In all cases, it achieves remarkable
accuracy and robustness, clearly outperforming typical local-
search heuristics for service migration. Finally, we outline a
realistic cDSMA protocol implementation with complexity up to
two orders of magnitude lower than that of centralized solutions.

I. INTRODUCTION

A major change in the emerging networking landscape

concerns the role of end-user, who is no more only con-

tent consumer but also generator. Web2.0 technologies have

enabled this shift towards more user-centric paradigms, as

evidenced in the User-Generated Content (UGC) wave in

online social networks, blogs, and video distribution sites

(e.g., YouTube). This trend has even motivated the rethinking

of the Internet architecture [1], [2] and is more recently

being spread towards the service domain [3] with the User-

Generated Service (UGS) paradigm, whereby end-users are

themselves engaged in the generation and distribution of

service facilities [4]. Some recent efforts to enable end-user

programming [5] typically involve mashup creation tools that

extract data from web pages and create new applications [6].

Besides user-friendly interfaces [4], the UGS paradigm

necessitates scalable distributed mechanisms for publishing,

discovering, and moving service facilities within the network.

In the case of next-generation networks, in particular, these

mechanisms should conform to their self-organization prop-

erties. Our work addresses the problem of optimally placing
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service facilities within the network to minimize the cost of

accessing them. This is an instance of the facility location

problems, typically formulated as 1- or generally k-median

problems if facility replication is feasible [7]. Most of the

proposed solutions to the problem are centralized (e.g., [8]):

the optimal service location is determined by a single entity

possessing global information for both the network topol-

ogy and distribution of service demand across the network.

Centralized approaches assume the existence of some super

node that undertakes network-resources management tasks by

gathering all required information and bearing the exclusive

computation burden of the 1(k)-median problem solution [7].

Moreover, it is willing to repeat these tasks in response to

(even minor) user demand shifts or topology changes that may

alter the optimal service location. Clearly, these approaches are

neither scalable nor inline with the emerging self-organizing

and autonomic networking paradigms.

Our approach instead is distributed and scalable: it solves

locally much smaller-scale 1(k)-median optimization problems

and then moves the services towards their optimal location

traversing an access cost-decreasing path. Moreover, it is

innovative in the way it selects the nodes for the local

1(k)-median problem. State-of-the-art distributed approaches

(e.g., [9], [10]) recruit nodes from the immediate neighborhood

of the service host. On the contrary, we invest additional

effort on a more informed node selection, which promotes

the “correct" directions of migration towards the optimal

location. To achieve this, we devise a metric, called weighted

Conditional Betweenness Centrality (wCBC), that draws on

Complex Network Analysis (CNA) [11]. Inline with what is

reported elsewhere (e.g., [12]), the insights from CNA are

instrumental in accelerating the service migration and directing

it towards better locations.

In each service migration step, the metric serves two pur-

poses. Firstly, it identifies those nodes that contribute most

to the aggregate service access cost and pull the service

strongly in their direction; namely, nodes holding a central

position within the network topology and/or routing large

service demand amounts. Secondly, it correctly projects the

attraction forces these nodes exert to the service upon the

current service location and facilitates a migration step towards

the optimal location (fig. 1.a-b).

We detail the metric and our algorithm, called cDSMA, in

Sections III and IV, respectively. We demonstrate its accuracy
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Fig. 1. a,b)Selected nodes and pulling forces for local-search heuristics(a) and cDSMA(b). c)Two non-zero demand mapping terms (wmap(8; 7), wmap(11; 7))
for Gi

7
.

and convergence properties in Section V. We outline a protocol

implementation for cDSMA and its rough complexity analysis

in Section VI and conclude our paper in Section VII.

II. FACILITY LOCATION AND RELATED WORK

The optimal placement of service facilities within a network

has been typically tackled as an instance of the facility loca-

tion problems [7]. Given the network topology and demand

dynamics, the k-median problem prescribes the locations

for instantiating a fixed number of service facilities so as

to minimize the aggregate cost of accessing them over all

network users [7]. The facility location problem has been

shown to be NP-hard for general topologies [7], [13], moti-

vating various approximate solutions to it [8], [14]. Typically,

the proposed solutions are centralized and require detailed

global information about the network topology and service

demand, so that their applicability in large-scale networks is

undermined. Distributed approaches, on the other hand, have

received renewed attention [15], largely because of the wide

spread of mobile networks, where the network topology varies

dynamically. One recently initiated research thread relates

exactly to the approximability of distributed approaches to the

facility location problem. Moscibroda and Wattenhofer in [16]

draw on a primal-dual approach earlier devised by Jain and

Vazirani in [17], to derive a distributed algorithm that trades-

off the approximation ratio with the communication overhead

under the assumption of O(logn) bits message size, where n
the number of clients. More recently, Pandit and Pemmaraju

have derived an alternative distributed algorithm that compares

favorably with [16] in resolving the same trade-off [18].

Although the approximability studies can yield provable

bounds for the run time and quality of the solutions, they

are typically outperformed by less mathematically rigorous

yet practical heuristic solutions. Common to most of the

distributed facility location schemes is the iterative migration

of facilities from the generator host towards their optimal

location through a number of locally-determined hops de-

lineating a cost-decreasing path. Oikonomou and Stavrakakis

in [9] exploit the shortest-path tree structures that are induced

on the network graph by the routing protocol operation to

estimate upper bounds for the aggregate cost in case the

service migrates to the 1-hop neighbors. Migration hops are

therefore one physical hop long and this decelerates the

migration process, especially in larger networks. Closer to our

work is the upcoming paper of Smaragdakis et al. [10]. They

reduce the original k-median problem in multiple smaller-

scale 1-median problems solved within an area of r-hops from

the current location of each service. Our approach resolves

more efficiently the accuracy vs. convergence speed trade-off,

especially on real-world topologies (see V-B) and excels over

typical local-search oriented schemes (see V-C).

We focus on the single service facility scenario that matches

better the expectations about the User-Generated Service

paradigm, i.e., various services generated within the network

raising small-scale interest so that replication of their facilities

be less attractive. The network topology is represented by an

undirected connected graph G(V,E) of |V | nodes and |E|
edges. If w(n) denotes the aggregate demand generated by

node n for a specific service and d(k, n) denotes the minimum

cost path between nodes k and n, then the 1-median problem

formulation seeks to minimize the access cost of a service

located at node k ∈ V given by:

Cost(k) =
∑

n∈V

w(n) · d(k, n). (1)

Our heuristic employs Complex Network Analysis (CNA)

to cope with the high complexity and scalability requirements.

We introduce the wCBC metric, which assesses the value of

nodes as candidate service hosts. The top-wCBC nodes in-

duce a small subgraph on the original network, hereafter called

1-median subgraph, wherein a significantly smaller-scale opti-

mization problem is efficiently solved. Besides, the metric lets

us directly map the demand of the rest of the network nodes on

this subgraph and, thus, single-out a more informed 1-median

subgraph than what relevant local-search heuristics do. Similar

CNA insights have already been exploited for significantly

improving network protocols. Examples are [12] and [19] that

draw on CNA to derive improved DTN routing protocols.

III. WEIGHTED CONDITIONAL BETWEENNESS

CENTRALITY

Central to our distributed approach is the Weighted Con-

ditional Betweenness Centrality (wCBC) metric devised to

capture both topological and service demand information for

each node.



1) Capturing network topology: from BC to CBC. Between-

ness Centrality (BC), a common CNA metric, reflects to what

extent a node lies on the shortest paths linking other nodes.

Let σst denote the number of shortest paths between any two

nodes s and t in a connected graph G = (V,E). If σst(u) is

the number of shortest paths passing through the node u ∈V,

then the betweenness centrality of u is given by

BC(u) =

|V |∑

s=1

s−1∑

t=1

σst(u)

σst
(2)

BC(u) which captures the ability of a node u to control the

establishment of paths between pairs of nodes, is an average

value over all such node pairs. In [20] we proposed Condi-

tional BC (CBC), as a way to capture solely the topological

centrality of a random node with respect to a specific node t.
It is defined as

CBC(u; t) =
∑

s∈V,u6=t

σst(u)

σst
(3)

with σst(s) = 0. The summation is over all node pairs (x, t)
∀x ∈ V destined at node t rather than all possible pairs, as in

BC(u). Effectively, CBC assesses to what extent a node u
acts as a shortest path aggregator towards the current service

location t.

2) Capturing service demand: from CBC to wCBC. Gen-

erally, a high number of shortest paths through u does not

necessarily mean that equally high demand load stems from

the sources of those paths. Naturally, we need to enhance the

pure topology-aware CBC metric in a way that it takes into

account the service demand that will be eventually served by

the shortest paths routes towards the service location. To this

end, we introduce weighted conditional betweenness centrality

(wCBC), where the shortest path ratio is modulated by the

demand load generated by each node s.

wCBC(u; t) =
∑

s∈V,u6=t

w(s) ·
σst(u)

σst
. (4)

Since σut(u) = σut, the wCBC(u; t) value of each node u is

lower bounded by its own demand w(u). Therefore, wCBC
assesses to what extent a node can serve as demand load con-

centrator towards a given service location. When all network

nodes generate equal demand for a service (the uniform case),

wCBC metric degenerates to the CBC one, within a constant

factor. In [21] we derive analytical expressions for the wCBC
metric in regular topologies.

IV. THE CDSM ALGORITHM DESCRIPTION

Our centrality-driven Distributed Service Migration Algo-

rithm (cDSMA) steers the service towards its optimal location

via a finite number of steps.

Step 1: Initialization. The algorithm execution starts at

the node s that initially generates the service facility. The

service placement cost at node s is assigned an infinite value

(pseudocode line 3) to secure the first iteration (line 11).

Step 2: Metric computation and 1-median subgraph deriva-

tion. Next, the computation1 of wCBC(u; s) metric takes

place for every node u in the network graph G(V,E). Nodes

featuring the top α% wCBC values together with the Host
node currently hosting the service form the subgraph Gi

Host (i
enumerates the iterations), over which the 1-median problem

will be solved (lines 4− 5 and 14− 15). Clearly, the size of

this subgraph and the complexity in the problem solution are

directly affected by the choice of the parameter α.

Step 3: Mapping the demand of the remaining nodes on

the subgraph. By restricting the solution domain to the Gi
Host

subgraph, the contribution of the “outside world” to the service

provisioning cost would be totally neglected. To allow for

its inclusion, the demand for service from the G \ Gi
Host

nodes (i.e., the non-shaded nodes in fig. 1c) is mapped on

the Gi
Host ones. To capture the attraction forces due to the

service demand of the outside nodes correctly and with no

redundancy, the demand of some outside node z is credited

only to the first “entry” Gi
Host node encountered on each

shortest path from z towards the service host. Thus, the

weights w(n) in the access cost calculation for the nodes

n in the Gi
Host subgraph (see Section II) are replaced by

effective demands: weff (n;Host) = w(n) + wmap(n;Host),
where (assuming that Host is node t):

wmap(n; t) =
∑

z∈{G\Gi
Host

}

w(z)
σ′
zt(n)

σzt
(5)

σ′
zt(n) =

σzt∑

j=1

1I{n∈SPzt(j)
⋂

n= argmin
u∈SPzt(j)

d(z,u)}

with SPzt(j) standing for the jth element of the shortest path

set from node z to node t. For example, in fig. 1c the original

service demand of node, say, 16 is not mapped on all the

Gi
7 nodes lying on the shortest paths from 16 to the Host 7

(i.e., 11, 12 and 8), but only on 11.

Step 4: 1-median problem solution and service migration

to the new host node. Any centralized technique (e.g., [14])

may be used to solve this small-scale optimization problem

and determine the optimal location of the new Host among

the Gi nodes. We assign the value of this cost to Cnext; if it

is smaller than Ccurrent the service is moved to this node and

the algorithm iterates through steps 2-4, steering the service,

progressively, to the (globally) lowest-cost location.

We complete the description elaborating on the cDSMA

convergence. Lemma 1 serves as the basis for the proof of

the convergence proposition.

Lemma 1. A service facility following the migration pro-

cess of Algorithm 1 will visit at most one network node twice.

Proof. Assume that the service, initially deployed at some

node n ∈ G reaches the node b ∈ G twice. Right after its

first placement at b upon iteration, say, i− 1 we solve the 1-

median in the subgraph Gi
b formed by the nodes with the top

1For the actual wCBC computation, which involves solving the all-pairs
shortest path problem, we properly modified the scalable algorithm in [22]
for betweenness centrality computation, with runtime O(|V ||E|).



Algorithm 1 cDSMA in G(V,E)

1. choose randomly node s
2. place SERV ICE @ s
3. Ccurrent ←∞
4. for all u ∈ G do compute wCBC(u; s)
5. Go

s ← {α% of G with top wCBC values} ∪ {s}
6. for all u ∈ Go

s do
7. compute wmap(u; s)
8. weff (u; s)← wmap(u; s) +w(u)
9. Host ← 1-median solution in Go

s

10. Cnext ← C(Host), i← 1
11. while Cnext < Ccurrent do

12. move SERV ICE to Host
13. Ccurrent ← Cnext

14. for all u ∈ G do compute wCBC(u;Host)
15. Gi

Host
← {α% of G with top wCBC values} ∪ {Host}

16. for all u ∈ Gi
Host

do

17. compute wmap(u;Host)
18. weff (u;Host)← wmap(u;Host) +w(u)
19. NewHost← 1-median solution in Gi

Host
20. Host← NewHost, Cnext ← C(NewHost), i← i+ 1
21. end while

α% wCBC(u; b) values. Let the corresponding cost be Ci
b.

When the service returns to b at iteration, say, j given that the

network topology remains the same, the deterministic wCBC
criterion of eq. (4) singles out the same subgraph with the one

of the first visit, so we have that Gi
b = Gj

b , implying for the

costs that Ci
b = Cj

b ; the cost-decreasing condition of cDSMA

is then not fulfilled and, thus, the service locks at node n and

the migration process halts.

Proposition 1. cDSMA converges at some solution in

O(|V |) steps.

Proof. The solution derived from cDSMA is either the glob-

ally optimal or one locally anticipated as lowest-cost solution.

Given the Lemma 1 and since the number of network nodes is

finite, the migrating service will visit every node at most once

and only one of them, twice. This takes O(|V |+1) = O(|V |)
steps.

V. EVALUATION OF CDSMA

Clearly, both the network topology and service demand

distribution across the network affect the performance of

cDSMA. Network topological properties may give rise to or,

on the contrary, suppress strong service demand poles and

assist (resp. impede) the migration progress of the service fa-

cilities towards preferable locations. The accuracy of cDSMA

is measured by the average normalized excess cost, βalg (or

βalg(α) to capture the percentage of nodes included in the 1-

median subgraph), defined as the ratio of the service access

cost our algorithm achieves, over the cost achieved by the

optimal solution (derived by a brute-force centralized algo-

rithm assuming availability of global topology and demand

information), for some network topology G and service de-

mand distribution w; clearly, the error induced by our heuristic

decreases with α. Closely related to βalg(α) is the index αε,

corresponding to the minimum value of α for which the access

cost achieved by cDSMA falls within 100 · ε% of the optimal,

αε = argmin {α|βalg(α) ≤ (1 + ε)}. Moreover, we assess

the convergence speed of cDSMA through the migration hop

count, hm, reflecting how fast the algorithm converges to its

(sub)optimal solution. Small hm values imply fast service

deployment and less overhead involved to transport and service

set-up/shut-down tasks. For any chosen configuration of the

involved parameters, we repeat 20 simulation runs, choosing

each time randomly the service generation nodes, and plot

their means together with their 95% confidence intervals.

A. Experiments with synthetic topologies

Before assessing the cDSMA performance on real-world

networks, we seek to draw some insights2 from the inspection

of two synthetic topologies with very different structural prop-

erties, namely the Barabási-Albert3(B-A) [23] and the two-

dimensional (NxM ) rectangular grid graphs. B-A graphs form

probabilistically and exhibit highly skewed degree distribution.

Grids, on the other hand, have strictly regular structure with

constant node degree and diameter exponentially growing with

the network size. These topologies let us assess the algorithm

under extreme yet predictable conditions.

1) Uniform demand. Though non-realistic, uniform demand

patterns are insightful since they can isolate the impact of

network topology on cDSMA. Figures 2.a,b plot the average

normalized excess cost βalg for B-A and grid graphs of 100

nodes, respectively. The error induced by cDSMA decreases

monotonically with the 1-median subgraph size in both plots.

However, the behavior of cDSMA on the B-A graph is better

as the aggregate service access cost increase is within 2% of

the optimal, even when we include 10% of network nodes in

the 1-median subgraph. Similar accuracy for the grid would

require, on average, no less that 40% of the nodes. The

high-degree hub nodes of B-A graphs [23] appear to ease

the algorithm operation. Placing the service on, or nearby,

hub nodes suffices for getting a very good solution already

for small 1-median subgraphs. On the contrary, the regular

structure of grids does not favor the identification of cost-

effective locations. The service migration jumps within the

grid are clearly shorter than in B-A graphs, often restricted

to one-hop distance. Even worse, cDSMA gets more often

trapped and terminates prematurely in suboptimal locations.

In other words, the attraction force of the optimal location(s)

is not impelling enough to pull the migrating service all the

way to it.

This cDSMA performance differentiation over the two

graphs is amplified when the network size and diameter

grow. Table I lists the accuracy and migration hop count,

hm, against the network and 1-median subgraph size, N and

α, respectively. cDSMA’s trend to abort early the migration

process only deteriorates with the increase of network size

and diameter. This is reflected in both the higher βalg and

the slightly increasing yet overly low hm values in Table I.

The significantly higher variance in the convergence speed

2A comprehensive study of cDSMA on synthetic topologies appears in [21].
3The B-A network requirement of the node degree distribution exponent

being equal to 3 appears with network sizes of 1000 nodes or more. Therefore,
the employed scale-free networks of a few hundred nodes’ size are small to
be called B-A networks; this name is only kept for the sake of clarity.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.96

0.98

1

1.02

1.04

1.06

1.08

Percentage of participating nodes

  
β

a
lg

 (
α

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.95

1

1.05

1.1

1.15

Percentage of participating nodes

  
β

a
lg

 (
α

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.96

0.98

1

1.02

1.04

1.06

1.08

Percentage of participating nodes

  
β

a
lg

 (
α

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Percentage of participating nodes

  
β

a
lg

 (
α

)

a. B-A (s=0) b. Grid (s=0) c. B-A (s=1) d. Grid (s=1)

Fig. 2. Synthetic topologies of 100 nodes : cDSMA accuracy vs. 1-median subgraph size under uniform (a,b) and Zipf (c,d) demand distribution.

TABLE I
CDSMA PERFORMANCE ON B-A AND GRID NETWORKS UNDER UNIFORM DEMAND

B-A graph Grid network

Network size N βalg(0.1) hm(0.1) βalg(0.4) hm(0.4) βalg(0.1) hm(0.1) βalg(0.4) hm(0.4)
50 (25x2) 1.0453±0.0524 2.25±0.31 1.0125±0.0186 1.95±0.28 1.0074±0.0071 1.40±0.35 1.0086±0.0058 1.10±0.22

100 (25x4) 1.0134±0.0169 2.00±0.32 1.0070±0.0164 2.00±0.00 1.0569±0.0333 1.30±0.33 1.0006±0.0012 1.20±0.29

200 (40x5) 1.0216±0.0327 2.00±0.00 1.0028±0.0061 1.95±0.16 1.0636±0.0487 1.60±0.71 1.0013±0.0043 2.05±0.59

300 1.0125±0.0147 2.00±0.00 1.0032±0.0070 2.00±0.00

of the algorithm implies dependence on the service genera-

tion location, i.e., initial host. On the contrary, the cDSMA

performance over B-A graphs is scalable as: a) it maintains

practically the same accuracy as the network size grows; and

b) its convergence speed is not affected by the network size.

It reaches a near-optimal location within an average of two

migration hops.

2) Non-uniform demand. To assess cDSMA under the simul-

taneous influence of network topology and demand dynamics

we introduce asymmetry in the demand distribution. Mathe-

matically speaking, a Zipf distribution models the (spatially

random) preference w(n; s,N) of nodes n, n ∈ N to a given

service: w(n; s,N) = 1/ns

∑
N
l=1 1/ls

, practically corresponding

to the normalized service request rate. The relative hm and

α values under Zipf demand with s = 1 are depicted in

Table III. The accuracy of cDSMA for B-A graphs improves

further against the respective uniform demand values (shown

in fig. 2 as well). The demand asymmetry magnifies the

existing attraction forces and directs cDSMA towards the

globally optimal service location. On the other hand, cDSMA

requires far more nodes within the 1-median subgraph to yield

comparable accuracy over grids.

When spatial correlation of demands is involved (i.e., the

interest in the service is concentrated in a particular neighbor-

hood, as when the service has strongly local scope), a cluster

of nodes with high service demand appears in a random area

within the grid. Let K cluster nodes collectively represent

some percentage z% of the total demand for the service,

whereas the other N−K nodes share the remaining (100−z)%
of the demand. We call the ratio z/(100 − z) the demand

spatial contrast Csp. In 2D grids, clusters are formed by a

cluster head node together with its R-hop neighbors. The con-

trast can then be written as: Csp(R, s) =
∑K

n=1 w(n;s,N)
∑

N
n=K+1 w(n;s,N)

=
∑K

n=1 1/ns

∑
N
n=K+1 1/ns

and the average normalized excess cost becomes

a function of both α and the contrast value. The values of

βalg(α,Csp) under spatially random and correlated (R = 1)

distribution of demands are reported in Table II for a 10x10
grid topology. Having the top demand values stemming from a

TABLE II
IMPACT OF SPATIALLY CORRELATED SERVICE DEMANDS

skewness s Csp(1, s) βalg(0.1) βalg(0.1, Csp)
1 0.786 1.035±0.027 1.016±0.023
2 8.540 1.003±0.006 1.0±0.0

certain network neighborhood we actually “produce” a single

pole of strong attraction for the migrating service. cDSMA

now follows the demand gradient more effectively than before.

As the percentage of the total demand held by the cluster nodes

grows larger (i.e., higher Csp), the pole gets even stronger

driving the service firmly to the optimal location.

The above results suggest that the higher the asymmetry in

either the network topology or the service demand distribution,

the better the performance of our algorithm. In the sequence,

we investigate manifestations of this general rule in real-world

networks.

B. Experiments with real-world network topologies

The ultimate assessment of cDSMA is carried out over real-

world ISP network topologies which do not typically have

the predictable properties of B-A graphs and grids; still, we

show below that insightful analogies regarding the behavior

of cDSMA can be drawn between real-world and synthetic

topologies The dataset we consider has been recently made

available [24]. It includes numerous data files (corresponding

to Tier-1, Transit and stub level networks) that represent

snapshots of 14 ISP topologies. We focus on the larger Transit

and Tier-1 ISP datafiles4, with sizes up to approximately 1000
nodes and show results for a representative subset (see [21] for

further results) featuring adequate variance in size, diameter,

and connectivity degree statistics. Table IV summarizes the

performance of cDSMA over the real-world topologies. It

reports the minimum number of nodes |Gi| required to achieve

a solution that lies within 2.5% of the optimal and the average

migration hop count hm for different levels of service demand

asymmetry.

4Several files miss some edges resulting in more than one connected com-
ponents [24]. Thus, a pre-processing task using a linear-time algorithm [25],
is needed to retrieve the maximal connected component mCC.



TABLE III
CDSMA PERFORMANCE ON B-A AND GRID NETWORKS UNDER ZIPF DEMAND (s = 1)

B-A graph Grid network

Network size N βalg(0.1) hm(0.1) βalg(0.4) hm(0.4) βalg(0.1) hm(0.1) βalg(0.4) hm(0.4)
50 (25x2) 1.0156±0.0205 1.60±0.48 1.0014±0.0038 1.85±0.35 1.0083±0.0068 1.50±0.37 1.0062±0.0047 1.10±0.22

100 (25x4) 1.0070±0.0143 2.15±0.35 1.0015±0.0034 1.90±0.22 1.0553±0.0319 1.35±0.35 1.0025±0.0020 1.15±0.26

200 (40x5) 1.0016±0.0031 1.90±0.22 1.0003±0.0007 2.05±0.16 1.0510±0.0346 1.47±0.73 1.0031±0.0047 1.90±0.65

300 1.0029±0.0068 2.05±0.16 1.0000±0.0000 2.00±0.00

The α0.025 and |Gi| values show remarkable insensitivity

to both topological structure and service demand dynamics.

Although the considered ISP topologies differ significantly

in size and diameter, the required 1-median subgraph size

does not change. Around half a dozen nodes suffices to get

very good accuracy even under uniform demand distribution,

the least favorable scenario for cDSMA, as discussed in the

previous section. Likewise, α0.025 and |Gi| remain practically

invariable with the demand distribution skewness. Although

for larger values of s, few nodes become stronger attractors

for the algorithm, the added value for its accuracy is negligible.

This two-way insensitivity of cDSMA has important practical

implications: a) the computational complexity of the local 1-

median problem can be negligible and scales well with the size

and diameter of the network; b) the algorithm performance is

robust to possibly inaccurate estimates of the service demand

each node poses. The equally good algorithm behavior under

uniform demand distribution suggests that there is already

adequate topological structure in these real-world networks.

As their degree distribution shows (see [21]), there are high-

degree nodes and considerable variance in the nodes’ connect-

edness properties across the network. In fact, the high-degree

nodes serve similarly to the hub nodes in B-A graphs; they are

easily “identifiable” by cDSMA as low-cost hosts and, even

for small 1-median subgraph sizes, their attraction forces are

strong enough to pave a cost-effective service migration path.

C. cDSMA vs. locality-oriented service migration

The way cDSMA determines the service migration path

clearly differentiates from typical “local-search” approaches

such as the r-ball heuristic [10], which restricts a-priori their

search for a better service host to the neighborhood of the

current service location. On the contrary, cDSMA focuses

its search for the next service host in certain directions.

The resulting 1-median subgraph is spatially stretched across

that path -consisting of highly “central” nodes- and therefore

oversteps the local neighborhood “barriers”. This is clearly

illustrated in fig. 3 showing the hopcount distribution between

all 1-median subgraph nodes and the host node, for five

executions of cDSMA under Zipf demand with s=2.

To compare the two approaches, we have implemented a

Locality-Oriented Migration heuristic (LOM). With LOM we

solve the 1-median problem within the direct neighborhood of

r = 2 hops around the current host and apply the same demand

mapping mechanism (Section IV) to capture the demand from

nodes lying further than r hops away from the current service

host. The comparison between LOM and cDSMA, illustrated

in Table V, proceeds as follows. We first generate asymmetric

service demand (Zipf distribution with s = 1) across the

network. We compute the globally optimal service host node

and we select a fixed set of service generation nodes, at Dgen

hops away from the optimal location. We then calculate the

values of hm and βalg metrics 5 for the two approaches. For

cDSMA, we have set the parameter α = 3%, yielding 1-

median subgraphs of 6 to 12 nodes’ size (Table V).
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Fig. 3. Hopcount distribution of 1-median nodes from Host under cDSMA.

Since migration hops under LOM are spatially restricted

(i.e., Dgen/r hops to reach the optimal location), one would

expect that the latter approach needs more migration hops than

cDSMA. Interestingly enough, LOM combines high excess

costs with fewer migration hops, irrespective of the service

generation location or topology. Selecting “blindly” the r-hop

neighbors of the current service host as future candidate hosts,

LOM effectively introduces noise to the detection of the cost-

effective service migration direction; the 1-median subgraph

nodes are spread unidirectionally around the service host and

the mapping process projects more uniformly the demand of

the remaining nodes on them (see fig. 1.a-b). Consequently,

the migrating service gets easily trapped in local minima and

the process stops prematurely, resembling the behavior of

the cDSMA in grids under uniform demand. There it was

the topology of the network that induced a more local 1-

median subgraph and attenuated the attraction force towards

the optimal; with LOM, this locality is inherently imposed by

the method a-priori.

On the other hand, the cDSMA seeks to choose the most

“appropriate” candidate hosts to lead the service fast to cost-

minimizing locations, no matter what the shape/radius of

the emerging Gi neighborhood would be. Even when both

approaches are trapped in a suboptimal place, LOM needs

more hops to reach it than cDSMA, e.g., three vs. one hops

for Dataset 33 and Dgen=7. Moreover, facilitating longer

migration hops, cDSMA does not favor nodes according to

their proximity to the service demand and/or network topology

hot spots, inducing a notion of fairness in the performance that

different users get.

5The void entries are due to the fact that the most distant node to the global
minimum location, lies at some distance smaller than the Dgen value.



TABLE IV
MEAN VALUE OF αε FOR VARIOUS DATASETS UNDER DIFFERENT DEMAND DISTRIBUTIONS

s=0 s=1 s=2

ISP Dataset id/AS# mCC nodes Diameter <Degree> α0.025 d|Gi|e α0.025 d|Gi|e α0.025 d|Gi|e
type:Tier-1

Global Crossing 36/3549 76 10 3.71 0.047±0.001 4 0.047±0.002 4 0.046±0.001 4

-//- 35/3549 100 9 3.78 0.045±0.002 5 0.045±0.001 5 0.043±0.001 5

NTTC-Gin 33/2914 180 11 3.53 0.024±0.002 5 0.022±0.002 4 0.019±0.002 4

Sprint 23/1239 184 13 3.06 0.019±0.002 4 0.018±0.002 4 0.017±0.002 4

-//- 21/1239 216 12 3.07 0.016±0.002 4 0.016±0.002 4 0.014±0.003 4

Level-3 27/3356 339 24 3.98 0.018±0.002 7 0.017±0.002 6 0.014±0.003 5

-//- 13/3356 378 25 4.49 0.012±0.002 5 0.012±0.002 5 0.011±0.002 5

type:Transit

TDC 46/3292 71 9 3.30 0.033±0.003 3 0.027±0.004 2 0.026±0.003 2

DFN-IPX-Win 41/680 253 14 2.62 0.019±0.003 5 0.015±0.003 4 0.015±0.003 4

JanetUK 40/786 336 14 2.69 0.012±0.003 5 0.012±0.002 5 0.013±0.002 5

TABLE V
CONVERGENCE SPEED AND ACCURACY OF LOM AND CDSMA ON REAL-WORLD TOPOLOGIES

Dataset 23 Dataset 33 Dataset 27 Dataset 13

Dgen LOM cDSMA LOM cDSMA LOM cDSMA LOM cDSMA
hm βalg hm βalg(3%) hm βalg hm βalg(3%) hm βalg hm βalg(3%) hm βalg hm βalg(3%)

3 1 1.1050 2 1 1 1.0308 2 1 1 1.1109 1 1.0057 1 1.1054 1 1

4 1 1.1275 3 1 1 1.3206 2 1 1 1.2523 1 1.0057 1 1.2312 1 1

5 1 1.1632 2 1 1 1.2800 1 1.2800 2 1.1109 1 1 1 1.0434 2 1

7 1 1.6060 2 1 3 1.0308 1 1.0308 3 1.1763 1 1 1 1.4202 1 1

10 – – – – – – – – 1 1.7094 2 1 1 1.4604 2 1

13 – – – – – – – – 2 1.8579 1 1.0057 3 1.6887 1 1.1054

VI. A PROTOCOL IMPLEMENTATION FOR CDSMA

We now sketch a distributed protocol implementation for

cDSMA. Our implementation takes into account the con-

straints of self-organizing networks in that it draws on in-

formation locally available at network nodes and distributes

the computational load and decision-making task among the

nodes on the service migration path. In the same time, it keeps

to a minimum information dissemination overhead through

messages propagating in the network. We present the proposed

implementation in a step-by-step fashion together with a rough

analysis of time and message complexity:

Service host advertisement: Every time the service carries

out a cDSMA-driven migration hop, the new host initiates a

service advertisement phase (fig. 4.a) to inform all network

nodes about the current service location. This task may be

carried out by any efficient flooding scheme requiring O(|E|)
messages and O(D) time, where D is the network diameter.

Computation of nodes’ wCBC metrics: Our experiments

with real-world ISP topologies suggest high rank correlation

of centrality metrics (Section III) with their egocentric counter-

parts, as measured in the nodes’ ego-networks6 [27]. Table VI,

for example, reports the correlation values between node rank-

ings produced on the basis of the BC and ego-BC metrics,

respectively, on these topologies. The high rank correlation

suggests that the selection of the nodes with the highest cen-

trality metrics can be made with sufficient accuracy according

to their egocentric counterparts. Likewise, ego-wCBC can be

computed locally (fig. 4.b) by individual nodes in O(d2max),
(where dmax is network’s maximum node degree), assuming

they are aware of their neighbors’ service demands. These

6The ego-network structure of social studies comprises a person of interest
referred to as the “ego”, along with those having an affiliation with it, known
as “alters”. Alters may as well share relations with each other. The counterpart
of the ego network in graph-theoretic terms (shaded in fig. 4.b) is called
centered graph [26] and includes a given node plus its 1-hop neighbor nodes.

TABLE VI
CORRELATION STUDY BETWEEN BC-EGOBC ON ISP TOPOLOGIES

DataSet ISP (AS number) Spearman Correlation Coefficient

36 Global Crossing (3549) 0.9648
35 -//- 0.9690
33 NTTC-Gin (2914) 0.9209
21 Sprint (1239) 0.9718
41 DFN-IPX-Win (680) 0.9662
46 TDC (3292) 0.9934
40 JanetUK (786) 0.9714

values along with the individual service demands are then

communicated (in O(D) time) to the current service host

(alternatively, demands could be directly measured by the

current service host if the estimation delays can be tolerated).

These dedicated O(|V |) ego-info reporting messages should

include a field where all intermediate nodes on the shortest

path to the service host will be recorded.

Identification of top-wCBC nodes and mapping the resid-

ual demand on them: The current service host collects the

egoinfo-reporting messages and identifies the top-wCBC
nodes that form the Gi

Host (fig. 4.c). Moreover, the host can

carry out the residual demand mapping task. For each outside

node z, the host parses its report and adds its demand to

the firstly encountered top-wCBC node on the path from z
to itself. This demand mapping is clearly an approximation

of the nominal algorithm process, as described in step 3 of

section IV, in that the demand of each outside node is fully

credited to only one node in Gi
Host, even if node z has more

than one shortest paths to the host node going through other

Gi
Host nodes. The demand mapping step for each outside

node involves O(D) binary searches within the O(α|V |)-size

vector of Gi
Host nodes (shown in the subplot of fig. 4.c).

Therefore, the mapping of the demands of all outside nodes

takes O((1 − α)|V |D log(α|V |)) steps.

Solution of the 1-median problem within the Gi
Host sub-

graph: The service host notifies each of the the top-wCBC
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Fig. 4. cDSMA protocol implementation phases

nodes with unicast messages of which other nodes (co-players)

are included in the Gi
Host and queries them for their pairwise

distances. Each node determines its distance to the other co-

players via a mechanism such as the ping utility (O(α2|V |2)
steps, O(α2|V |2) messages), and communicates them (with

O(α|V |) messages) to the host. With the pairwise distances

of Gi
Host nodes and the demand mapping terms at hand, the

host is capable to solve the reduced 1-median problem and

determine the next-best service host.

The centralized brute-force solution of the problem by

a single super-node entity would require: a) collecting in-

formation about the global network topology and demand

distribution; b) solving an instance of the all-pairs shortest

paths problem, which requires O(|V |3) time (e.g., using the

Floyd-Warshall algorithm); c) exhaustively enumerating all

|V | possible service locations and comparing the costs related

to each one of them, involving O(|V |) multiplications, ad-

ditions, and comparisons. Therefore, the overall complexity

would be O(|V |3). Through the four cDSMA steps each host

totally takes O(α2|V |2) time to determine the optimal location

in the respective subgraph (of size α|V |). The full migra-

tion process includes hm(α) such computations resulting in

O(hm(α)α2|V |2) time complexity, where a << 1. However,

for typical network sizes the constants hm(α) and α drasti-

cally affect the emerging cost; our experiments (Section V)

suggest that the typically involved values (i.e., α = 3% and

hm(α) ≈ 3) lead to an apparently beneficial cost reduction of

one or more orders of magnitude.

VII. CONCLUSIONS

We have developed a scalable heuristic for placing service

facilities in distributed self-organizing environments. We have

introduced a CNA-driven metric (wCBC) and an algorithm

(cDSMA), which appropriately convert the original complex

global optimization problem into a few smaller ones; their

iterative solution directs the service migration towards cost-

effective locations. Experiments on real-world topologies have

shown that cDSMA provides excellent accuracy and scalabil-

ity, even when it runs its iterations with less than a dozen

nodes. Finally, we have outlined a realistic cDSMA protocol

implementation with drastically reduced complexity compared

to the typical centralized solution.
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