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Abstract

In this paper we explore the way the discovery of service can be facilitated or not
by utilizing service location information that is opportunistically disseminated
primarily by the service consumers themselves. We apply our study to the real-
world case of parking service in busy city areas. As the vehicles drive around the
area, they opportunistically collect and share with each other information on the
location and status of each parking spot they encounter. This opportunistically
assisted scenario is compared against one that implements a“blind”non-assisted
search and a centralized approach, where the allocation of parking spots is
managed by a central server with global knowledge about the parking space
availability.

Results obtained for both uniformly distributed travel destinations and a sin-
gle hotspot destination reveal that the relative performance of the three solutions
can vary significantly and not always inline with intuition. Under the hotspot
scenario, the opportunistic system is consistently outperformed by the central-
ized system, which yields the minimum times and distances at the expense of
more distant parking spot assignments; whereas, for uniformly distributed des-
tinations, the relative performance of all three schemes changes with the vehicle
volume, with the centralized approach gradually becoming the worst solution
and the opportunistic one emerging as the best scheme. We discuss how each
approach modulates the information dissemination process in space and time
and resolves the competition for the parking resources. We also outline models
providing analytical insights to the behavior of the centralized approach.
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1. Introduction

The efficient use of urban space has always been both a requirement and a
challenge in the process of city planning. It calls for several interventions in the
way cities are organized, including the efficient management of the car volumes
that daily visit the city center and other popular in-city destinations. Part
of this task is the effective operation of the sometimes minimal parking space.
The reduction of time that vehicles spend searching for parking places does not
alleviate only the traffic congestion problems but also the environmental burden.

The real dimensions of the parking place search problem depend on several
factors. The existence of popular destinations, personal parking preferences,
and the drivers’ unwillingness to park but only in close proximity to the des-
tination, aggravate the problem. Academic research but also public and/or
private initiatives have made a remarkable effort in the last years to solve the
problem through parking-assistance systems. Common feature of these systems
is the exploitation of wireless communications and information sensing technolo-
gies to collect and share information about the availability of parking space in
the search area. This information is then used to steer the parking choices of
drivers with the aim to reduce the effective competition over the parking space
and make the overall search process efficient.

In this paper, we systematically analyze the capacity of an opportunistic
system to assist the search for parking space. Vehicles searching themselves
for parking space are equipped with sensors, which allow them to sense the
location and status of parking spots as they move across the city area. This
information is subsequently shared upon encounters with other vehicles, using
medium-range radio communication technologies such as 802.11x. We explore
the performance dynamics of the opportunistic scheme by comparing it with
two other approaches. The first one is a centralized system. This time a central
server collects both the requests of vehicles for parking space allocation and
information about the status of individual parking spots. With this information
at hand, it assigns parking space to the vehicles, reserves it for them, and directs
them thereto. The second one is the current-practice parking search approach,
where vehicles wander in the area around their travel destination without any
external assistance.

We use both simulations and analysis to systematically compare the three
radically different paradigms for collection, sharing, and exploitation of service-
related information. Two scenarios drive our discussion. The first one involves
vehicles seeking parking space all over the city area (uniformly distributed des-
tinations). The second scenario features a single area that acts as an attraction
pole for vehicles (hotspot). We assess the effectiveness of the parking search
process through user-oriented performance metrics, such as the parking search
time and route length, and the proximity of the found/assigned parking spot
to the user travel destination, but also through system-oriented performance
metrics, such as the average utilization of parking spots.

Our results suggest that there is no one-size-fits-all solution; on the contrary,
the relative performance of the three schemes varies significantly, and not always



intuitively, with the operational conditions. In the hotspot scenario, the central-
ized system consistently yields the minimum search times and distances. With
global knowledge of parking space availability throughout the area, it can resolve
better the competition amongst the vehicles for the few parking places around
the common destinations. If the user is willing to park somehow further than
the destination, (s)he can reduce her/his search times significantly. On the con-
trary, the opportunistic system ends up recycling information that synchronizes
the movement patterns of the vehicles and intensifies their competition. Even
for moderate number of vehicles, the opportunistic scheme effectively “degener-
ates” to the non-assisted scheme. When user travel destinations are uniformly
distributed, the relative performance of the three schemes changes with the ve-
hicle volume. The initially optimal centralized approach gradually becomes the
worst solution since the reservation system ends up wasting part of the parking
capacity of the system at high load. The opportunistic scheme ranks top since
vehicles exploit the information they collect upon their encounters to make in-
formed searches and reach a vacant parking spot faster. The introduction of
dedicated mobile storage nodes that only assist the information diffusion with-
out adding competition for parking space, further benefits the system at small
vehicle volumes.

The three parking approaches are described in more detail in Section 2. We
define the performance metrics and present the simulation environment used for
our evaluations in Section 3. Queuing models for the analytical investigation
of the centralized system’s performance are introduced in Section 4. We then
comparatively evaluate the three approaches, discuss their tradeoffs, and vali-
date our analytical model in Section 5, while Section 6 provides further insights
to the sensitivity of the three approaches to different parameters. The possi-
ble performance enhancement of the opportunistic scheme when mobile static
nodes are introduced is also discussed therein. We outline related research on
the subject and position our work against it in Section 7 and conclude the paper
in Section 8 with a summary of our results and directions for future work.

2. Approaches to parking space search

We summarize three basic approaches to the parking space search problem.
Each one represents a distinct paradigm for localizing and occupying vacant
parking spots1. In the same time, they reflect existing or under development
systems; some of them are indicatively presented in Section 7. In all three cases,
there is a fixed set of parking spots P , with |P |=P, distributed across a city area
A, and a finite population of vehicles C, with |C|=C moving therein. Vehicles
drive towards their travel destinations and enter the parking search process as
soon as they approach them, i.e., enter the initial parking search area (Figure
1). The main differentiation factor among the three approaches is the way

1Note that current navigation systems can locate parking lots, yet they cannot provide
information about the availability of parking places therein.



users (i.e., vehicles) exploit, or do not exploit, information about the availability
of parking space within the search area. Each parking spot is equipped with
a sensor providing information about its occupancy status. Vehicles, properly
equipped with short-range wireless interfaces and adequate storage and pro-
cessing capacity, may collect information on the status of each parking spot
they encounter. Moreover, they may acquire and store additional global or par-
tial, accurate or imprecise, knowledge about the distribution of the free parking
space throughout the area A via communicating with other vehicles or a central
server.

Figure 1: Section of city area A showing the vehicle’s path towards a parking spot close to its
travel destination.

2.1. Non-assisted parking search (NAPS)

Usually, the parking space search process begins when the driver anticipates
that he has arrived in the proximity of his travel destination (initial parking
search area). This decision depends on the observed congestion level and the
driver’s ability to estimate the parking demand in his area of interest. Moreover,
he may take into account former experience and knowledge he has acquired
about the traffic flow and parking needs in the considered area.

According to the current common search strategy, drivers wander around
their travel destination and sequentially check the availability of the parking
spots they encounter. Typically, the radius of the search area grows progressively
as parking search time increases and indeed, its growth rate depends on the same
factors that determine the extend of the initial parking search area. The search
process terminates when drivers detect the first vacant parking spot. In other
words, it is assumed that no one would ever reject an available parking spot
located within the borders of his/her parking search area, under the expectation
of a closer-to-destination, yet non-guaranteed, parking option2.

2This is the basic NAPS approach. The interested reader is referred to [1] for comparisons
of basic NAPS with scheme variants that maintain memory about the location of parking
spots.



2.2. Opportunistically-assisted parking search (OAPS)

Information about the location and status of parking spots may become
available to vehicles with the opportunistically-assisted parking search (OAPS)
scheme. With OAPS, vehicles equipped with standard wireless interfaces such
as 802.11x in ad hoc mode, share with each other information they acquire in the
course of their search [2]. This information can be filtered in time (aging) and
space, if timestamps and the geographic addresses (e.g., via GPS) of individual
parking spots are stored.

With such information at hand, drivers can make more informed decisions
about their search. Rather than wandering randomly in the parking search area,
a vehicle can now move towards the parking spot that is stored as the closest
vacant one to its destination3. If it is actually vacant when it arrives at it, it
occupies it. However, if the spot is occupied, it has to repeat the whole search
process. In general, if a vehicle encounters a vacant parking spot within its
parking search area on its way to the selected ’target’ spot, it occupies it and
terminates the search.

The opportunistic information dissemination mechanism of OAPS does not
enforce global common knowledge about the availability of parking space. As
the status of parking spots changes in time, stored data are potentially out-
dated after some time interval. Therefore, the frequency of information updates
is critical for the effective operation of the scheme. The faster information cir-
culates across the wireless networking environment, the more accurate data will
be stored in the caches of vehicles. All the same, users should be cautious when
they consult their caches. Information should be filtered in order to determine
the outdated information (i.e., when the timestamp of a stored record is beyond
some threshold value).

On the other hand, depending on the travel destinations of the users, the fast
dissemination of information may synchronize the caches and, consequently, the
movement patterns of individual vehicles and aggravate the effective competition
for given parking spots. As we show in Section 5, how this trade off is resolved
for OAPS depends on several factors such as the number of vehicles moving
in the area A, their speed, travel preferences (destinations), and the road grid
structure.

2.2.1. Mobile storage node opportunistically-assisted parking search (msnOAPS)

The inflow of information to each vehicle may increase further through the
use of dedicated Mobile Storage Nodes (MSNs), e.g., city taxicabs. Like normal
vehicle nodes, MSNs are equipped with wireless interfaces that allow them to col-
lect parking information and share it with other mobile nodes, i.e., user-vehicles

3In the basic OAPS approach, any updates to driver’s storage are taken into account only
at the moment of decision, once he arrives in the proximity of his destination. [1] studies the
main variant of OAPS where the updates generate a continuous message flow to the driver,
raising distracting message fusion issues. Many works (e.g., [3]) are devoted to the design of
effective safety or infotainment applications.



and MSNs. These nodes act as relays, creating additional contact opportunities
between vehicles and, hence, space-time paths for the flow of parking informa-
tion.

Regarding the storage capability of these nodes, it is assumed that MSNs
can handle data about all considered parking places. As the occupancy status
of parking places changes with time, the accuracy of their stored information
tends to drop. Therefore, the information they disseminate is not always useful.

2.3. Centrally-assisted parking search (CAPS)

With CAPS, the full information processing and decision-making tasks lie
with a central processor (server). Vehicles and parking spot sensors are only
responsible for transmitting to the server parking requests and spot vacancy
information, respectively. The semi real-time two-way communication of the
server with the vehicles and the parking spot sensors calls for heavier network
infrastructure, both wired and wireless.

When submitting its parking request, each vehicle specifies its destination
to the centralized server. In a First-Come-First-Served (FCFS) manner4 the
server queues the requests and satisfies them, reserving for the vehicle that
parking spot amongst the vacant ones, which lies closest to its destination. The
user is then notified about the reservation, i.e., parking spot he should drive to.
Therefore, and contrary to NAPS and OAPS, the vehicle is directed towards a
guaranteed vacant parking spot. While waiting for the system assignment, the
user keeps on moving towards random directions within the area.

Two more remarks are worth making about the parking search approaches
and the way we investigate them in this work. Firstly, the structural difference
between distributed and centralized systems also differentiates their installation,
operational and maintenance costs. A fixed centralized infrastructure requires
not only a large amount of investment upfront but also an elaborated architec-
tural design for maintenance purposes. Furthermore, additional concerns are
related to the system scalability with the number of monitored parking places
and the burden of potentially re-dimensioning of the sensing web. On the con-
trary, vehicular networks emerge as a cost-effective networking platform that
exploits the powerful, in terms of energy and computational might, vehicular
nodes in favor of a wide range of applications. Reference [4] reports installation
and operating costs for fixed infrastructure, whereas [2], [4], and [5] highlight
the savings of an infrastructure-free system.

Secondly, throughout this study we assume that vehicular nodes are fully
cooperative. Partial or no cooperation of vehicles/drivers is a concern for both
the CAPS and OAPS approaches. Although the OAPS scheme has inherent

4Different scheduling disciplines are generally applicable when processing the parking re-
quests. Herein, we focus on the FCFS policy for exploring the relative performance of the
centralized paradigm for sharing and processing information and demonstrating the related
tradeoffs.



diversity, selfish and/or malicious behaviors can undermine its performance sig-
nificantly. Thereby, the detection and penalization of misbehaviors is really
challenging. On the other hand, considering that practical implementation of
the CAPS approach avail V2I communication infrastructure, supervisory mech-
anisms can consist a separate level in the overall system architecture. For in-
stance, these mechanisms could vouch for system robustness through either im-
plementing barrier-controlled metered parking spaces or enforcing penalties in a
pervasive sensing road platform. In the same notion, the established fixed sensor
network need to function not only to monitor the parking space availability but
also confirm the parking events (and thus support billing).

3. Performance Evaluation Methodology

3.1. Performance Metrics

1. Driver-level metrics: When someone moves towards a specific destination,
he aims for the shortest route and minimum travel time (these may not
be necessarily compatible objectives). When he needs to park, on top of
that, he prefers the nearest to the destination parking place (best parking
place). In the ideal case, someone will reach it travelling the shortest
possible route from his initial location to that parking place (best way).
Therefore, the metrics we consider for comparing the three approaches to
parking search are:

(a) Parking search time, Tps: Once the driver enters the initial parking
search area (Figure 1), he will start seeking for a parking place. This
time is highly dependent on the parking space density in the consid-
ered area, traffic congestion level, and competition for parking space
around the destination.

(b) Parking search route length, Rps: It refers to the distance a driver
travels till he parks his vehicle, measured from the moment he enters
the initial parking search area. The parking space density and the
demand for parking are the two factors that primarily affect Rps for
given city area and vehicle speeds. Besides expressing user satisfac-
tion, Rps and Tps also reflect social objectives in that more travelling
results in additional fuel consumption and environmental burden.

(c) Destination-parking spot distance, Dp: It expresses the geographical
distance of the two points and, contrary to Tps and Rps, it is exclu-
sively a measure of user satisfaction: the closest the parking spot lies
to the destination, the more attractive it is.

2. System-level metric: In order to capture the actual exploitation of the
road parking capacity, we employ the metric:

(a) Availability time, Ta: It measures the average time each parking spot
remains vacant.



3.2. Simulation environment

We have developed a simulation environment in the C programming language
that reproduces in adequate detail the three parking search approaches. We
briefly summarize it below:

Road grid: The simulator implements a grid of two-lane roads (one lane in
each direction) in a city environment; each road traverses the grid from the one
side to the other, as shown in Figure 2. Additionally, there are roundabouts in
every intersection, connecting up to four converging roads. Parking spots may
be located in either lane of the road and are equipped with sensors providing
information about their status (vacant vs. occupied).

Figure 2: Simulation environment: 1200×1200m2 road grid with randomly distributed parking
places.

Vehicle movement: Vehicles move within the bounds of this city environ-
ment along the horizontal and vertical roads. The vehicle mobility model comes
under the broad category of behavioral mobility models. One could identify two
levels of behavior: the global, determining how destinations are selected and the
way the vehicles chose the route towards them; and the local, determining how
the vehicle moves within the roads comprising the route.

At local level, in each simulation time step, the next position of every vehicle
depends on its current position and velocity. Every vehicle adapts its speed
according to its distance from: a) the front vehicle (they are not allowed to
overtake one another); b) the next intersection; and c) the nearest parking spot,
assuming that the car decelerates in every parking place it encounters in order
to stop in a vacant one. Moreover, they zero their speed when they get stuck in
traffic jam, enter a roundabout intersection, and park. Finally, the vehicles start
from zero speed and are not allowed to stop or move in the reverse direction of
the traffic flow.

Every time a vehicle frees a parking spot, it chooses a new destination (ge-
ographical coordinates within the bounds of the simulation area) and drives
towards it. Once it reaches the destination’s initial parking search area, the
parking search process is initiated. Its initial parking search area is a circular



area with the destination at its center and radius equal to half the distance
between two adjacent intersections (Figure 2).

Under the NAPS strategy, the vehicle will circulate randomly within its
initial parking search area. This random movement has been modelled by the
selection of random geographical coordinates that correspond to a point inside
the cyclic parking area. On the contrary, with OAPS the vehicles will filter the
stored records both temporally (to exclude information that is outdated) and
spatially (to consider only information about spots in the current search area).

Out of the remaining records, the user will pick up the one that refers to
the nearest-to-his-destination parking spot. If the spatiotemporal filtering step
does exclude all the stored data, the user chooses randomly one spot within the
parking search area and moves thereto, hoping that it may be vacated in the
meanwhile. Finally, under CAPS, the user moves randomly within the parking
search area till he is directed by the system to drive to the reserved parking spot.
The above procedure defines where the user should drive next. Upon arrival to
this location, the user faces two possibilities: a) the location corresponds to a
vacant parking spot. The user then occupies it for some time interval that may
follow different distributions. When this time interval expires, he vacates the
spot and selects another destination; b) the location does not correspond to a
parking spot or, if it does, it is occupied - both count as failures. The user then
determines whether his parking search area should grow or not. In particular,
this decision and more precisely the area’s growth rate (exponential or linear),
will depend on the number of driver’s failures in the current parking search area.
The exponential rate signals the persistent search in the proximity of the travel
destination, whereas the linear one is synonym of the less conservative search in
favor of Tps and against Dp.

3.3. Simulation set-up

For the simulations in this paper we consider a two-lane road grid with di-
mensions 1200 × 1200m2, as shown in Figure 2. The distance between two
adjacent intersections in the grid is 300m and parking places are uniformly dis-
tributed alongside road lanes. The numbers of vehicles and parking spots vary
to generate different vehicle and parking spot densities. The parking time of all
vehicles are i.i.d exponential RVs with means ranging from 300 to 3600s. We
assume an exponentially increasing rate for the search area and an increment
step fixed to the half of the distance between two adjacent intersections. The
duration of simulations is 105s, which is enough time to generate a significant
number of parking events in all runs. The maximum vehicle speed is set to
vmax=50km/h; note that the actual instantaneous vehicle velocity may range
anywhere in [0, vmax], as explained in Section 3.2. The vehicle-parking spot
sensor communication range is set to 15m, whereas the intra-vehicle communi-
cation range is 70m. In all graphs reported in Section 5, we plot the averages
of ten simulation runs together with their 95% confidence intervals.



4. Modelling the centralized approach

In this section, we present an analytical model for the centralized approach
to the search for parking space (CAPS) and use it to analytically derive its
main performance measures. The model is later validated in Section 5.3 against
simulation results.

Anytime, the C vehicles may find themselves in one of three states: a)
travelling towards their destination without yet having issued a parking request
to the system; b) driving within the parking search area having issued a parking
request and waiting for a parking assignment; and c) parked (or on the way to
the parking spot that is reserved for them by the system). The system can be
modelled by a finite-source G/G/r queue with r=P servers (parking spots).

G/G/r model input process. A vehicle enters the queueing system when it
submits a parking request, i.e., when it crosses the border of the initial parking
search area. Under uniform distribution of travel destinations and parking spots
in the area A, the time Tt that vehicles spend travelling, from the moment they
release a parking spot till the time they issue a new parking request, is a random
variable (RV) written as

Tt = Dt/v. (1)

In (1), v is the vehicle speed and Dt the random variable denoting the line
picking distance, whose probability distribution is known for various known
geometries such as circular, square, rectangular areas [6]. For example, for
square areas of unit side length, fDt

(x) is given by

fDt(x) =

{
2x(x2 − 4x+ π) for 0 ≤ x ≤ 1

2x[4
√
x2 − 1− (x2 + 2− π)− 4 tan−1

√
(x2 − 1)] for 1 ≤ x ≤

√
2

so that the probability distribution function of the travelling time within a
square area of side length l can be written

fTt(t) = v · fDt(vt/l)/l (2)
and its expected value and variance are

Tt =

∫ √
2l

0

tfTt(t)dt ≈ 0.52l/v = 1/λ

σ2
t =

∫ √
2l

0

(t2 − Tt)fTt(t)dt ≈ 0.06l2/v2. (3)

where λ denotes the rate at which each vehicle submits parking requests to
the system.

G/G/r model service time. The vehicle (requests) may stay in the queue for
variable time Tq, before they are processed, depending on the request backlog
and the order in which requests are treated. The service time, Ts, starts when the
vehicle is assigned with a parking spot and directed to drive there, and consists
of two components: the parking time spent in the reserved parking spot, Tp,
plus the travel time, Tf , spent on driving towards the reserved parking spot,
starting from its position at the moment the assignment was communicated to
it (final leg travel time).

Generally, the distribution of Tf depends on the proximity of the assigned
parking spot to the vehicle travel destination. Different policies may constrain



this distance; for instance, there may be an upper bound on how far from the
travel destination a car may park, beyond which vacant parking spots are not
considered eligible for a vehicle. The mean and variance of Ts are given by:

µ = Tp + Tf , σ2
s = σ2

p + σ2
f − 2Tp · Tf (4)

G/G/r performance measures. In assigning parking spots to vehicles, the
server effectively solves an instance of the machine interference problem (MIP),
also referred to as the machine repairman problem [7][8], with partially cross-
trained repairmen. In our problem, in particular, machines correspond to ve-
hicles and parking spots to cross-trained repairmen, who can serve more than
one machine but with variable efficiency, i.e., user satisfaction according to the
proximity of the spot to its travel destination. In the general case, the server has
to take two decisions: in what order will the requests be processed (sequencing
decision) and which parking spot should be assigned to which vehicle (loading
decision).

For the most common scheduling policy, i.e., First-Come-First-Served, the
derivation of the main performance measures can draw on the diffusion approx-
imations of Wang and Sivazlian in [9]. The probability distribution function of
the number of vehicles, Cis that are “in-system”, i.e., either parked or travelling
towards the reserved parking space or having submitted a parking request to
the system, is approximated by:

fCis(x) =

{
K1 · g1(x) for 0 ≤ x ≤ P
K2 · g2(x) for P ≤ x ≤ C

where g1(x) and g2(x) are functions of the means and variances of the vari-
ables Tt (1/λ, σt), and Ts (µ, σs), respectively, and the ratio ρ = λ \ µ:

g1(x) =

[ (C−x)ρλ2σ2
t+xµ2σ2

s

Cρλ2σ2
t

]β1

(C − x)ρλ2σ2
t + xµ2σ2

s

e
− 2(ρ+1)x

ρλ2σ2
t −µ2σ2

s , β1 =
2Cρ

[
1 +

(ρ+1)λ2σ2
t

µ2σ2
s−ρλ2σ2

t

]
µ2σ2

s − ρλ2σ2
t

g2(x) =

[ (C−x)ρλ2σ2
t+Pµ2σ2

s

(C−P )ρλ2σ2
t+Pµ2σ2

s

]β2

(C − x)ρλ2σ2
t + Pµ2σ2

s

e
2(x−P )

λ2σ2
t , β2 =

2P (1 +
λ2σ2

t

µ2σ2
s
)

ρλ2σ2
t

(5)

and K1, K2, constants given by the solution of the 2×2 system of equations

K1 · g1(P )−K2 · g2(P ) = 0

K1

∫ P

0

g1(x)dx+K2

∫ C

P

g2(x)dx = 1 (6)

It is then possible to estimate the expected number Cis of vehicles that are
being served or wait for their parking requests to be served, and the expected
number Ct of travelling vehicles, respectively, as

Cis =

∫ C

0

xfCis(x)dx, Ct = C − Cis (7)

whereas, the expected number of vehicles already parked or on their final leg
to a reserved parking spot, Cs, is

Cs = P −
∫ P

0

(P − x)K1g1(x)dx. (8)



The utilization of each parking spot, i.e., the percentage of time it is occupied
(or reserved) by a vehicle, is

Us = Cs/P (9)

Finally, the mean time vehicles spend on parking search, Tps, is the sum of
the expected time they wait for a parking assignment, Tq, and the expected final
leg travel time, Tf ; or, equivalently, the difference of the mean total time they
spend in the system, Tis minus the mean parking time (Figure 3), the former
being given by Little’s result [10].

Tps = Tq + Tf = Tis − Tp = Cis/λ(C − Cis)− Tp. (10)

Figure 3: The set of RVs relevant to the parking search process and their time dependence.

G/M/r model approximation. The analysis simplifies considerably when the
final leg travel time is negligible compared to the vehicle parking time (Tf ≪
Tp). In particular, when Tp is exponentially distributed, the main performance
measures of the centralized parking space assignment system can be given by
the detailed analysis of Sztrik for the G/M/r system, and resemble those of the
M/M/r system [11]. The (discrete) probability distribution for the in-system
number of vehicles is given by

pn =

{ (
C
n

)
ρnp0 for 0 ≤ n ≤ P(

C
n

)
n!

P !Pn−P p0 for P + 1 ≤ n ≤ C
with p0 = (1 + p1 + ...+ pC)

−1. The expected number of in-system vehicles
and queued parking requests are

Cis =
C∑
i=1

i · pi, Cq =
C−P∑
i=1

i · pi+P (11)

respectively, the time the parking requests are queued is

Tq =
Cq

λ(C − Cis)
(12)

and the expected parking search time is still given by Eq. (10).

5. Simulation results and analytical model validation

We show simulation results for all four metrics presented in Section 3.1; we
also use them to validate our analytical model. In all cases, the metric values
are averaged over all parking events and plotted against the number of vehicles,
for fixed number of parking spots.



5.1. Uniformly distributed destinations

General trends: Figure 4 compares the three approaches with respect to
all three metrics for a fixed number of parking spots, P=25. Intuitively, and for
all three approaches, the performance deteriorates with the number of vehicles
moving in the city area A. Even when the travel destinations of the vehicles
are uniformly spread over this area, their increase results in higher competition
for individual parking spots. For NAPS and OAPS, this means that the prob-
ability to encounter a vacant spot decreases. Table 1 lists the average number
of unsuccessful decisions per vehicle, i.e., how many times on average each ve-
hicle encounters an occupied parking spot while wandering (NAPS) or driving
towards a parking spot he became aware of from other vehicles (OAPS). For
CAPS, there are no unsuccessful decisions; what increases is the average wait-
ing time for the assignment of a parking spot by the central server. Moreover,
the higher competition does not only increase the search/waiting time and the
distances that vehicles travel till they eventually park (Figure 4(a) and Figure
4(b)); it also results in the assignment of “worse” parking spots, located further
away from the actual user travel destinations.

NAPS vs. OAPS: The benefits from information sharing and exploitation
become obvious when comparing NAPS with OAPS: the opportunistic system
consistently outperforms the non-assisted one for all three metrics, irrespective
of the number of vehicles. With NAPS, vehicles spend much of their time
wandering “blindly” without even encountering a parking spot, whether vacant
or occupied. Whereas with the opportunistic system, the search is more directed
and the parking spot encounters more frequent than with NAPS. Increase of the
vehicle population leads to: a) higher dissemination rates of information about
parking spots amongst the vehicles. The vehicles can therefore make more
informed choices as to where they should seek for (vacant) parking spots; b)
more competition for the parking spots. Chances are now higher that not only
the travel destinations of two or more vehicles are in close proximity but also
that vehicles share the same information and, depending on their destinations,
target the same parking spots. Many of the travels towards these spots prove, in
the end, to be useless due to belated arrivals and only add to the total parking
search time.

Looking at Figure 4(a) and Table 1, one can see that the tradeoff faster
information dissemination versus increased competition is resolved in favor of
the opportunistic scheme. With OAPS, the vehicles make much better use of
time than with NAPS. Within a given time window, they will discover more
parking spots. Some of them will be occupied and on average, as Table 1
suggests, they will end up failing more times than in NAPS. Nevertheless, their
persistent directed movement is compensated in that they manage to find vacant
parking spots faster than with NAPS.

CAPS: With the centralized approach, two distinct components comprise
the overall parking search time: (i) the waiting time, Tq, and (ii) the final leg
travel time, Tf (Figure 3). When the vehicles are fewer than or in the order of
the parking spots (∼ 30), Tf dominates the overall parking search time since
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(b) Parking search route length
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(c) Destination-parking spot distance
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Figure 4: Comparison of the NAPS, OAPS and CAPS approaches: uniformly distributed user
destinations, Tp = 1800s, P = 25.

there are always one or more vacant spots, where the user can be directed to. As
the cars tend to outnumber parking spots, the parking requests in the server’s
queue start piling up and Tq dominates the overall parking search time (Figure
7).

The second noteworthy remark about the CAPS approach is the tradeoff
between the achieved parking search time (route length) and attractiveness of
the assigned parking spots (Figure 4(c)). Leaving aside very small vehicle popu-
lations, the centralized system consistently assigns parking spots that lie further
away from the actual travel destinations, when compared to NAPS and OAPS.
For C > 35, all 25 parking spots are constantly reserved. Each vehicle is assigned
the first place that becomes vacant, which may be located anywhere within the
parking area A. Therefore, the average destination-parking spot distance Dp

eventually converges to the expected distance of two randomly selected points
within a square area; namely, the expected value of the square line picking prob-
lem, which is known to equal 0.52× l = 624m, where l denotes the length of the
square sides [6].

CAPS vs. OAPS and NAPS:More interesting is the way the performance
ranking of the three schemes evolves. As Figure 4(a) and Figure 4(b) suggest,
their relative performance with respect to parking search time and route length
changes twice. CAPS outperforms the two for C < 40, then gets worse than the
opportunistic scheme and for even higher number of vehicles C > 55 loses to
NAPS as well. The reason for this behavior is the combination of the reservation
mechanism of CAPS and the more random mobility patterns of the vehicles in



Parking Vehicle number
search Scenario 5 15 25 35 45 55

approach
NAPS Unif.Dis.Dest. 0.27 1.55 4.33 9.19 15.18 21.92
NAPS Hotspot 1.9 8.38 14.26 21.65 28.03 34.4
OAPS Unif.Dis.Dest. 0.39 2.39 6.04 15.03 26.85 40.22
OAPS Hotspot 5.6 18.74 31.71 42.46 51.51 63.4

Table 1: Average unsuccessful parking attempts per vehicle for NAPS and OAPS, Tp = 1800s,
P = 25.

NAPS and OAPS.
More specifically, the better (more intensively) the systems manage to use

the availability of parking spots, the better they score with respect to Tps and
Rps. For the centralized system, Figure 5 suggests that there is a hard bound as
to how efficiently this can be done in the light of the reservation system. As the
number of vehicles grows, the parking space availability drops. Eventually, they
are being reserved immediately after they are released. However, a reserved spot
does not necessarily accommodate a stationary vehicle. The final leg travel time,
during which the vehicle drives towards the reserved parking spots, is effectively
“wasted” for the system. Even worse, this time grows together with the final
leg length which converges to 0.52 × l for C > 35, as discussed earlier. On the
contrary, both the opportunistic and, for a higher number of vehicles, the NAPS
approach manage to benefit from their movement in the area and utilize almost
fully the parking space availability. In fact, the comparative performance of the
systems in this scenario is an argument in favor of self-organization, and rather
cooperative self-organization (OAPS).
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Figure 5: Average time each parking spot remains vacant: uniform distributed travel desti-
nations, Tp = 1800s, P=25.

5.2. Hotspot scenario

We consider exactly the same setting with Section 5.1, only now the user
travel destinations are concentrated within a particular (hotspot) road rather
than being distributed uniformly over the area A. In other words, we impose
higher correlation in the mobility patterns of individual vehicles and dramat-
ically increase the competition for certain parking spots (those located in the
proximity of the hotspot).

General trends: Two are the general remarks that can directly be made
when comparing the curves in Figure 6 with those in Figure 4. Firstly, the per-
formance of the non-assisted and opportunistic schemes deteriorates dramat-
ically, whereas the centralized system experiences minimal degradation. Sec-



ondly, and closely related to the first remark, the relative ranking of the schemes
changes: contrary to what we had when user travel destinations were uniformly
distributed, CAPS outperforms NAPS and OAPS throughout the vehicle popu-
lation range. Moreover, the opportunistic scheme only marginally outperforms
the “blind” non-assisted scheme.
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(b) Parking search route length
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(c) Destination-parking spot distance
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Figure 6: Comparison of the NAPS, OAPS and CAPS approaches: spatially concentrated
user destinations (hotspot scenario), Tp = 1800s, P = 25.

NAPS and OAPS: The correlation in the location of user travel desti-
nations does not affect all parking approaches in the same way. With NAPS,
vehicles still wander “blindly”, only now this wandering is bounded within a
given radius around the popular road. Since the competition for a parking spot
is much higher, they encounter more occupied parking spots, as can be seen
from the Table 1. Overall, the search time and the route length increase and
the vehicles need to compromise with more remote parking spots.

The synchronization artifacts are worse for the opportunistic system. With
all vehicles moving in the same area, information about parking spots dissemi-
nates even faster and all vehicles end up sharing similar information. And since
practically they are all interested in the same set of parking spots, the ranking
of parking spots is common for all of them. Therefore, they end up following
similar trajectories within the search area and often encounter occupied spots.
Even worse, the information they now share is of less “value”. Consider one
of those vehicles competing for a vacant parking spot in the area around the
popular road. The moment it finds one, it occupies it without communicating
this to another vehicle. In other words, vehicles share information about where



relevant parking spots are but less frequently do they become aware of vacant
parking spots through information exchanges with other vehicles. Eventually,
they may find a parking spot without real help from the system.

The vehicle concentration around the hotspot under NAPS and OAPS also
induces congestion. As can be seen in Figure 6(a) and Figure 6(b)5, when
the vehicles grow more, the relationship between the parking search time and
route length is no longer linear; vehicles break more often since they encounter
more cars ahead of them (ref. Section 3.2). Note that this is different than
with uniformly distributed travel destinations, as Figure 4(a) and Figure 4(b)
suggest.

CAPS: The centralized approach emerges as the winning approach in the
hotspot scenario. The existence of popular destinations has a different impact
on the two components of the overall parking search time (see discussion in
Section 5.1). The waiting time in the system queue Tq for the parking spot
assignment remains practically the same. The central server sees a similar load
of parking requests, irrespective of their destinations. Contrary to the other two
approaches, having global view over the status of parking spots over the whole
area A, it can better resolve competition amongst vehicles and make faster
parking space assignments to them. Only this comes at a penalty: the assigned
parking spots lie further away from the popular road. This is why the final leg
travel time, Tf , significantly exceeds its counterpart under uniformly distributed
travel destinations (Figure 7). Even if for high vehicle numbers, the destination-
parking spot distance converges to the same value, i.e., the expected value of the
square line picking problem. Higher destination-parking spot distances emerge
also for NAPS and OAPS, but the penalty is higher for the CAPS system.
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(a) Parking request waiting time
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Figure 7: Components of the overall parking search time under CAPS: Tp = 1800s, P=25.

5.3. Validation of the analytical model for the CAPS scheme

In this section, we compare the simulation results with the predictions of
the analytical model for the performance of the CAPS approach, as derived in
Section 4. We do this for various numbers of vehicles and different values of

5These findings for Tps and Rps are confirmed by the measurement of the average vehicle
velocity under both the first (v=10m/s) and the second scenario (v=9.5m/s).



the expected parking time Tp, for both parking space distribution scenarios-
uniformly distributed and hotspot. Figures 8(a)-8(d) plot the results for Ct, Cq,
Cs, i.e., the expected numbers of vehicles travelling towards their destination,
waiting for a parking assignment and parked or about-to-park (on their way to
occupy a reserved parking spot), respectively; whereas, Figures 8(e)-8(f) depict
the expected parking search Tps. Lines correspond to the model predictions in
equations (3)-(4) and (10)-(12), and “x”marks stand for the simulation results.
Confidence intervals are also plotted, but in most cases they are too tight to be
visible in the plots.

In all cases, the simulation results are in excellent agreement with the model
predictions suggesting that the model can give a much faster yet accurate esti-
mation of the centralized system performance. Since the existence of a popular
road does not practically affect these performance measures for C > P (ref.
Section 5.2), the model can also predict the performance of CAPS for a broad
range of parameters in the hotspot scenario.

6. Sensitivity analysis

The additional simulation runs in this section let us study the impact of two
parameters upon the performance of the parking search approaches, the mean
parking time, and number of parking spots. Moreover, for the OAPS scheme
only, we assess the possible performance benefits due to the introduction of
additional mobile storage nodes that further leverage the information exchange
among vehicles.

6.1. The impact of the average parking time on NAPS, OAPS and CAPS

As Figures 9(a), 9(c) and 9(e) suggest, the higher the average parking time
interval is, the more vehicles are found parked at each time instance. Vehicles
spend more time in search of a parking spot, since they encounter occupied
parking spots within their parking area of interest, more frequently.

In particular, the increase rate of the parking search time depends on the
redundancy of the available parking choices. For C < 25, there is always at
least one vacant parking spot so that the increase of the average parking time
affects only the location of the respective best parking spot (ref. Section 3.1),
for given destination coordinates. On the contrary, when vehicles outnumber

Parking Average Vehicle number
search parking 5 15 25 35 45 55

approach time
NAPS 300 0.16 0.63 1.22 1.95 2.81 3.73
OAPS 300 0.21 0.84 1.78 3.10 4.73 6.71
NAPS 600 0.19 0.94 2.04 3.58 5.35 7.42
OAPS 600 0.28 1.30 2.89 5.67 9.32 13.53
NAPS 3600 0.30 1.96 6.77 16.85 29.79 43.76
OAPS 3600 0.40 3.68 9.55 28.37 52.76 78.21

Table 2: Average unsuccessful parking attempts per vehicle for NAPS and OAPS: uniformly
distributed travel destinations, P = 25.
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(a) Expected vs. average number of
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25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

Number of vehicles, C

V
eh

ic
le

s

 

 

Cs

Cq

Ct

(b) Expected vs. average number of
vehicles in different states, Tp=600s

25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

Number of vehicles, C

V
eh

ic
le

s

 

 

Cs

Cq

Ct

(c) Expected vs. average number of
vehicles in different states, Tp=1800s

25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

Number of vehicles, C

V
eh

ic
le

s
 

 

Cs

Cq

Ct

(d) Expected vs. average number of
vehicles in different states, Tp=1800s

20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

Number of vehicles, C

T
im

e 
(s

)

 

 

Tp = 300s

Tp = 600s

Tp = 1800s

(e) Parking search time, Tps

20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

Number of vehicles, C

T
im

e 
(s

)

 

 

Tp = 300s

Tp = 600s

Tp = 1800s

(f) Parking search time, Tps

Figure 8: Comparison of the model predictions with the simulation results for CAPS: uni-
formly distributed user destinations (left) and hotspot scenario (right), P = 25.

parking spots, any additional increase in the average parking time decreases the
parking capacity levels at any time instance; and for high parking time values,
the first encounter of an empty parking place will delay significantly. Table
2 bears out the aforementioned assertion as it reveals the analogical relation
between average parking time and average unsuccessful attempts until parking.

Another noteworthy remark is the invariability of the performance ranking
of all three approaches (Figures 9(b), 9(d) and 9(f)). In particular, OAPS out-
performs NAPS irrespective of Tp. Indeed, the improvement factor gradually
grows as the Tp decreases. However, the intersection point of the three cor-
responding curves shifts to the left, since the centralized system deteriorates
faster with the parking time. Specifically, the increased parking time results
in further increase of the first component of the overall parking search time in
CAPS, i.e., the waiting time, Tq which presides over CAPS’s dramatic parking
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(a) Tp=300s: Average number of
parked vehicles
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(b) Tp=300s: Parking search time
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(c) Tp=600s: Average number of
parked vehicles
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(d) Tp=600s: Parking search time
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(e) Tp=3600s: Average number of
parked vehicles
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(f) Tp=3600s: Parking search time

Figure 9: Comparison of the NAPS, OAPS and CAPS approaches on different average parking
time values: uniformly distributed user destinations, P = 25.

search time deterioration. Specifically, any increase in the average parking time,
further delays the vacancy of the occupied parking spots and consequently the
serving of the parking requests in the server’s queue.

Finally, it is worth stressing that these results assume exhaustive parking
search attempts, i.e., attempts that are only terminated upon the detection of
an empty parking spot. Nevertheless, there is some evidence that the duration
of the parking search process is upper bounded by some time limit Tup. For
example, ref. [12] reports a Tup value equal to 15 minutes; otherwise, the drivers
resign from their effort to park, e.g., they might stop looking for a (cheaper or
free-of-cost) public parking spot and decide to visit a much more expensive
private parking lot. This would practically correspond to a “parking failure
event”. In our case, as Figure 9 suggests, the Tup-min threshold would introduce



several parking search failure events while reducing the search delays for those
users that are successfully “served”. More generally, Tup introduces a tradeoff
between number of parking search failures and average search delays of successful
parking searches.

6.2. The impact of mobile storage nodes

6.2.1. Uniformly distributed destinations

The introduction of MSNs increases the contact opportunities between vehi-
cles and thus the speed of information spread. These nodes act as vehicles that
travel constantly within the area A and are not interested in parking. Conse-
quently, the MSNs foster the information diffusion process without introducing
additional competition burden.

According to the plots in Figures 10(a)-10(b), even 5 MSNs improve the
overall performance, as long as there is some flexibility in the parking assign-
ment process (e.g., low competition). In particular, for C < 25, the MSNs
indicate potentially unknown to the users alternative parking choices or update
the already stored parking information. Indeed, Figure 10(b) suggests that the
exploitation of the data collected and transferred by MSNs directs users to more
attractive parking spots.

The growth of the MSNs’ population results in further increase of the fre-
quency of the user memory updates. However, the gain obtained from the
increased MSN number proves to be important only when the contact / com-
munication probability between vehicles is low. In particular, starting from an
improvement rate in the order of 20%, the parking search time improvement is
gradually minimized. Furthermore, the Figure 10 includes, additionally, a plot
regarding an ideal real time information scheme (plot opt OAPS) that maxi-
mizes the speed of information spread and thus the memory update frequency.
It emerges that even a few service cars result in time and distance gain compa-
rable to that achieved in the optimal approach.
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Figure 10: Study of the impact of the implementation of MSNs on the efficiency of OAPS:
uniformly distributed user destinations, Tp = 300s, P = 25.

6.2.2. Hotspot scenario

As MSNs circulate constantly, monitoring all parking places within the area
considered, they feed users new information that they usually ignore due to
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(b) Destination-parking spot distance

Figure 11: Study of the impact of the implementation of MSNs on the efficiency of OAPS:
spatially concentrated user destinations (hotspot scenario), Tp = 300s, P = 25.

their persistent movement along specific roads. Unlike the uniformly distributed
destination case, the improvement factor of the MSN activity over the parking
search time varies around a particular ratio (∼ 8%) irrespective of the vehicle
volume (Figure 11(a)). For C < P , the intensive competition among users for
a particular set of parking spots as well as the different movement patterns of
vehicles and MSNs diminishe the value of the enhanced information diffusion,
against the previous scenario. However, for C > P , the need for information is
higher now, since vehicles recycle information about only a limited subset of the
parking spots, upon their encounters with each other. Finally, as Figure 11(b)
suggests, any further increase in the update frequency of drivers’ memory does
not change the place they park.

6.2.3. Mobile storage nodes and number of parking places

In general, the higher the parking density is, the more alternatives exist for
parking space assignment. Since users can occupy an empty parking spot they
encounter on their way, the increment in parking places increases the encounter
possibility of an empty one, and thus decreases the search time needed (Figures
10(a), 12(a) and 13(a)). Moreover, since parking places and user destinations
follow the same uniform spatial distribution, it stands to reason that the in-
crease in the number of the alternative parking choices results in decrease of the
average destination-parking spot distance Dp (Figures 10(b), 12(b) and 13(b)).
Finally, concerning the msnOAPS approach, the implementation of MSNs nodes
is justified when many parking places are offered and the induced competition
is less (due to either lower number of parking demanders or less overlapping
preferences of parking space).

7. Related work

Various aspects of the broader parking space search problem have been ad-
dressed in the literature. A multimode system for parking information dis-
semination, including real-time dissemination through the radio, and non-real-
time through newspaper advertisements and leaflets, is considered in [13]. The
authors find that it influences considerably travelers’ decisions during parking
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Figure 12: Adding mobile static nodes to the OAPS scheme: uniformly distributed user
destinations, Tp = 300s, P = 10.

0 10 20 30 40 50
30

40

50

60

70

80

90

100

110

Number of vehicles, C

P
ar

ki
ng

 s
ea

rc
h 

tim
e,

 T
ps

(s
)

 

 

OAPS
msnOAPS − 5 MSNs
msnOAPS − 15 MSNs
opt OAPS

(a) Parking search time

0 10 20 30 40 50
80

90

100

110

120

130

140

Number of vehicles, C

D
es

tin
at

io
n−

pa
rk

in
g 

sp
ot

 d
is

ta
nc

e,
 D

p(
m

)

 

 

OAPS
msnOAPS − 5 MSNs
msnOAPS − 15 MSNs
opt OAPS

(b) Destination-parking spot distance

Figure 13: Adding mobile static nodes to the OAPS scheme: uniformly distributed user
destinations, Tp = 300s, P = 50.

search. The user behavior while searching for parking space is also studied in
[14], the focus being this time on its impact on traffic flows in urban environ-
ments. Closer to our work, a more sophisticated variant of our CAPS approach
is introduced in [15]. The scheme monitors and reserves parking places within
a city and is shown to better distribute the car traffic volume. Likewise, the
authors in [4] present, design, implement, and evaluate a system that gener-
ates a real-time map of parking space availability. The map is constructed at
a central server out of aggregate data about parking space occupancy, collected
by vehicles circulating in the considered area. In a study with broader scope
[16], Lu et al. propose SPARK for reducing the parking search delay. SPARK
consists of three distinct services, i.e., real-time parking navigation, intelligent
antitheft protection and friendly parking information dissemination, all making
use of a roadside infrastructure. A bandwidth efficient protocol for disseminating
parking information has been proposed in [5]. This protocol uses a topology-
independent scalable information dissemination algorithm for discovering vacant
parking spots and thus it could be paralleled with our OAPS approach. Finally,
in [17], a mathematical model for parking lot occupancy prediction, based on
disseminated parking data, proves to make considerably accurate a priori esti-
mates on the status of parking spots.

Regarding real-world developed systems, the simplest and most common
instances of parking space management are the counters placed at the entry



and exit points of parking garages, which keep account of the remaining spare
parking space [18]. This information is often displayed on electronic signs-boards
located near parking facilities or adjacent highways. Moreover, light parking
management systems have already been applied in airports and rail stations in
order to ease passengers’ parking [18][19].

Our study departs from earlier work in literature in two directions. Firstly,
we are interested in the fundamental properties and performance dynamics of
the three generic strategies for parking space search. We use both simulation
and analysis to compare them and gain additional insights to their advantages
and limitations. Secondly, we view them as three distinct paradigms of infor-
mation management and focus on the way they resolve the tradeoff between
information dissemination and competition. Note that this tradeoff is of wider
interest in a variety of opportunistic networking settings, where nodes mak-
ing up the information dissemination layer are also information consumers and
compete with each other.

8. Conclusions

We have looked closely into the capacity of vehicular sensor networks to as-
sist the provision of a real-world parking service discovery in city areas. We have
compared such an opportunistic system against a centralized scheme, where the
sole responsibility for collecting information on parking space availability and
deciding on its allocation to vehicles lies with a central server. The two schemes,
together with the current-practice unassisted scheme, represent distinct, some-
times even extreme, paradigms as to how spatially distributed and dynamically
changing information can be exploited to assist the parking search task.

Our results suggest that no parking search solution can always serve opti-
mally the users’ parking expectations. On the contrary, the particular driver
preferences, e.g., the distribution of travel destinations, and the density of traf-
fic may dramatically modulate the relative performance of the centralized and
opportunistic approaches and give rise to tradeoffs that only the user can resolve.

Specifically, when users (vehicles) tend to travel towards destinations ran-
domly spread in space, the cooperative opportunistic scheme leverages the vehi-
cle mobility and, for moderate-to-high traffic density, can collect and disseminate
fast information with broad spatial scope. The benefits from the information dif-
fusion across the vehicles outweigh the increased competition due to overlapping
interests in parking spots. On the contrary, the performance of the centralized
scheme deteriorates more quickly with the traffic intensity and its reservation
system appears to cancel the flexibility of more self-organizing schemes to make
use of the spatially distributed parking space resource. This relative perfor-
mance of the three parking strategies seems to be independent of the average
parking time. On the contrary, when traffic concentrates in a smaller section of
the area (e.g., a road), the user is faced with a harder tradeoff: either he goes
for shorter parking search times and routes and parks his vehicle further away
from his travel destination (centralized system); or he prefers to spend much
more time and fuel in favor of a parking spot closer to his travel destination



(opportunistic scheme). Notably, what he gets in the second case is marginally
better than he would achieve by randomly wandering around the area of interest
since the information circulated by the opportunistic scheme has highly local
scope and ends up leveraging the competition amongst the vehicles. One way to
strengthen the dissemination performance of the system without further aggra-
vating competition, is through the introduction of mobile storage nodes. At low
competition burden, these dedicated nodes further strengthen the information
dissemination overlay and result in more favorable parking space assignments.

We have also introduced an analytical model, drawing on the machine in-
terference problem, for the performance of the centralized parking assistance
system. The model yields excellent agreement with simulation results under a
wide range of operational scenarios. We are currently expanding this model to
scenarios catering for non-cooperative behaviors. Our intention is to repeat the
comparison of the two parking search approaches under a richer mix of user
behaviors, catering for various expressions of selfishness.
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