
On the Local Approximations of Node Centrality in

Internet Router-level Topologies ∗

Panagiotis Pantazopoulos, Merkourios Karaliopoulos, and Ioannis Stavrakakis

Department of Informatics and Telecom., National & Kapodistrian University of Athens,

Ilissia, 157 84 Athens, Greece

{ppantaz,mkaralio,ioannis}@di.uoa.gr

Abstract. In many networks with distributed operation and self-organization

features, acquiring their global topological information is impractical, if feasi-

ble at all. Internet protocols drawing on node centrality indices may instead ap-

proximate them with their egocentric counterparts, computed out over the nodes’

ego-networks. Surprisingly, however, in router-level topologies the approxima-

tive power of localized ego-centered measurements has not been systematically

evaluated. More importantly, it is unclear how to practically interpret any positive

correlation found between the two centrality metric variants.

The paper addresses both issues using different datasets of ISP network topolo-

gies. We first assess how well the egocentric metrics approximate the original so-

ciocentric ones, determined under perfect network-wide information. To this end

we use two measures: their rank-correlation and the overlap in the top-k node

lists the two centrality metrics induce. Overall, the rank-correlation is high, in

the order of 0.8-0.9, and, intuitively, becomes higher as we relax the ego-network

definition to include the ego’s r-hop neighborhood. On the other hand, the top-k

node overlap is low, suggesting that the high rank-correlation is mainly due to

nodes of lower rank. We then let the node centrality metrics drive elementary

network operations, such as local search strategies. Our results suggest that, even

under high rank-correlation, the locally-determined metrics can hardly be effec-

tive aliases for the global ones. The implication for protocol designers is that

rank-correlation is a poor indicator for the approximability of centrality metrics.

1 Introduction

Computer networks are generally complex systems, typically owing their complexity to

their topological structure and its dynamic evolution but also the heterogeneity of their

nodes. Social Network Analysis (SNA) [21] has been lately viewed as a solid analyti-

cal framework for understanding their structural properties and the interactions of their

elements. The expectation within the networking community is that socio-analytical in-

sights can benefit the analysis of network structure and the design of efficient protocols.

Indeed, there has been evidence that such insights can improve network functions such
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as content-caching strategies in wired networks [5] and routing/forwarding in oppor-

tunistic networks [6].

Common denominator to these efforts is the use of SNA-drivenmetrics for assessing

the relative centrality (i.e., importance) of individual network nodes, whether humans

or servers. The computation of these metrics, however, typically demands global infor-

mation about all network nodes and their interconnections. The distribution and main-

tenance of this information is problematic in large-scale networks. In self-organized

environments lacking centralized management operations, in particular, it may not even

be an option at all. A more realistic alternative for assessing node centrality draws on

its ego network, i.e., the subgraph involving itself, its 1-hop neighbors, and their inter-

connections. Egocentric measurements, carried out within their immediate locality, let

nodes derive local approximations of their centrality.

Lending to simpler computations, egocentric1 metrics have, in fact, found their way

into protocol implementations [6], [5]. Nevertheless, the capacity of these local approx-

imations to substitute the globally computed sociocentric metrics is almost always taken

for granted rather than evaluated. Over Internet router-level topologies, in particular, a

systematic study of the approximative power of egocentric metrics is missing.

In this paper, we focus on node centrality metrics, which are the most commonly

used in networking protocols. Besides the well known Betweenness Centrality (BC)

metric, we consider the Conditional BC (CBC), the destination-aware BC variant pro-

posed in [16], which is particularly suited to many-to-one communication and data flow

typologies. We first question how well do sociocentric metrics, computed under global

topological information, correlate with their egocentric variants, as computed locally

over the nodes’ ego networks. Since in most protocol implementations, it is the rank-

ing of the metric values that matters rather than their absolute values, we measure this

correlation over the node rankings they produce, via their full rank-correlation and the

overlap in the top-k node sets in the two rankings. Then, contrary to previous works,

we proceed to study what the measured correlation coefficients can reveal regarding

the capacity of rank-preserving local centrality metrics to substitute the original global

metrics in protocol primitives.

Related work: Computing centrality values typically requires global topological in-

formation. BC computations, in particular, can be carried out by exact yet efficient [3]

or approximation algorithms [4]. The latter seek to provide accurate sampling methods

over the considered network node pairs. Some recently proposed randomwalk schemes

that reveal high BC [11] or central nodes in a general sense [10], provide distributed-

fashion approaches but require gathering beyond-local-scope information. The efforts

to devise local approximations of the global centrality metrics span various disciplines

and usually study whether do the former correlate with the latter. From a networking

standpoint, local approximations of centrality metric have been proposed for the bridg-

ing [13] and closeness centrality [22]. Both works report high positive rank-correlation

scores between the two counterparts over synthetic and real world networks, but do not

explore whether this is sufficient to benefit networking operations. Betweenness Cen-

trality, on the other hand, is locally approximated over real-world network topologies

1 The terms egocentric and local as well as sociocentric and global are used interchangeably in

the paper.



with the node degree, or Degree Centrality (DC), due to the evidenced linear correla-

tion between the mean BC and DC metrics [20]. However, this holds for AS-level Inter-

net maps that can exhibit different connectivity properties compared to the router-level

topologies; or, in the case of load, a BC variant, for scale-free networks [9]. Finally,

some social studies provide experimental evidence for positive correlation between so-

ciocentric and egocentric BC over small social and synthetic networks [12], [7].

Our contribution: We report on the BC vs. egoBC, BC vs. DC, CBC vs. egoCBC

correlation over synthetic topologies and then focus on real-world router-level topolo-

gies of sizes up to 80K nodes, coming from 20 different ISPs (Section 3). Our syn-

thetic networks yield significant rank-correlation that weakens as their size increases.

In router-level topologies, in almost all cases, we measure high rank correlation (0.8-

0.9), which becomes even higher when we compute the egocentric betweenness variants

over generalized ego networks, corresponding to their 2-hop neighborhoods. In each

case, we analyze the time complexity and message overhead related to the computation

of the metrics. (Section 2).

On the contrary, the top-k overlap is found low prompting us to study whether the

rank-preserving local metrics can in practice substitute the global ones. Our experi-

ments with basic network functions such as the centrality-driven content search, show

(Section 4) that high rank-correlation values between the two BC variants are poor pre-

dictors for the capacity of the local approximations to substitute the original global

metrics in actual network protocol operations.

2 Sociocentric vs.egocentric centrality metrics

The sociocentric metrics of betweenness centrality (BC) and the conditional between-

ness centrality (CBC), along with their egocentric counterparts2 are first presented.

Then, the complexity savings achieved by the latter, are discussed.

2.1 Globally computed centrality indices

Consider an arbitrary node pair (s, t) over a connected undirected graph G = (V, E).
If σst is the number of shortest paths between s and t and σst(u) those of them pass-

ing through node u 6= t, then the betweenness centrality of node u, equals BC(u) =
∑

s,t∈V
s<t

σst(u)
σst

. Effectively,BC(u) assesses the importance of a network node for serv-

ing information that flows over shortest paths in the network [8]. Whereas BC(u) is

an average over all network node pairs, the conditional betweenness centrality index

(CBC), captures the topological centrality of node u 6= t with respect to a specific des-

tination node t [17] and is given by: CBC(u; t) =
∑

s∈V
s6=t

σst(u)
σst

, with σst(s) = 0.

Therefore, CBC is particularly suited to settings where information is directed towards

a particular node with discrete network functionality.

2 The degree centrality (DC) is by default an egocentric centrality metric.



a. Ego network of node u (r = 1). b. Ego network of node u (r = 2)

Fig. 1. a) Nodes 2, 3 and 4 contribute to egoCBC(u; 11, 1) = 2 with contributions 1/2, 1/2 and

1, respectively. b) Node 8 reaches the exit node 10 for destination node 11 through five different

paths, two of which pass through node u, thus contributing 2/5 to egoCBC(u; 11, 2).

2.2 Locally computed centrality metrics - ego networks

Computing the above metrics requires information about the whole network topology

and implies computational and message load overheads. In distributed settings, where

nodes may be energy constrained or no explicit centralized network management be

available, these computations are not favorable or not an option at all. Instead, tech-

niques for locally assessing the centrality of network nodes can be borrowed from the

SNA concepts. In the so-called ego-network structure of social studies the person we

are interested in is referred to as the “ego” and its ego-network comprises itself together

with those having an affiliation or friendship with it, known as “alters”. Alters may as

well share relations with each other (Fig. 1.a).

Hereafter, we generalize the ego-network definition to include nodes (alters) lying

r hops away from u and the edges (links) between them. Formally, we can define the

rth-order ego network as follows. Let Nu
r be the set of nodes that form the r-hop neig-

borhood around u, i.e., Nu
r = {n ∈ G : 1 ≤ h(n, u) ≤ r}, where h(a, b) denotes

the minimum hopcount between nodes a and b. The rth-order ego network of node u is

the graph Gu
r = (V u

r , Eu
r ), where the set of nodes and edges are V u

r = Nu
r ∪ {u} and

Eu
r = {(i, j) ∈ E : i, j ∈ V u

r }, respectively. For r = 1 the network Gu
1 corresponds

to the original ego network definition and consists of |V u
1 | = DC(u) + 1 nodes and

|Eu
1 | = DC(u)+CC(u) ·

(

DC(u)
2

)

edges, where CC(u) is the clustering coefficient [14]
of node u and DC(u) its degree centrality. Practically, values of r > 2 would tend to

cancel the advantages that local ego-centered measurements induce.

Accordingly, BC metrics of a certain node can be defined with respect to its ego

network. For the egocentrically measured betweenness centrality (egoBC) of node

u, it suffices to apply the typical BC formula over the graph Gu
r : egoBC(u; r) =

BC(u)|V =V u
r

. We further detail the computation formula of egoBC(u, 1). In Fig. 2

the ego-node u is connected to DC(u)=5 first-neighbor nodes which are partially in-

terconnected with each other. The maximum egoBC value that u can attain, when no

links between its neighbors are present, equals
(

5
2

)

. From this value we need to sub-

tract the number of pairs (like nodes 2-5 or 3-4) that share a direct link and therefore

communicate without traversing u; their number equals the numerator of the clustering



Fig. 2. Toy-example computation: egoBC(u; 1)= 10(1 − 6

10
) − [2(1 − 1

2
) + 2(1 − 1

3
)] = 5

3

coefficient CC(u). Finally, we need to carefully account for those node pairs that share

no direct link but are connected with multiple 2-hop paths, such as nodes 2 and 4 that

are connected via the paths 2-3-4, 2-u-4 and 2-5-4. The idea is that only one of those

paths will cross u; thus, we need to discount the original contribution (i.e., unit) of each
non-directly connected node pair i, j ∈ Nu

1 by as much as the inverse of the number

of competing 2-hop paths connecting i and j. This number corresponds to the element

(i, j) of matrix A2, where A is the adjacency matrix for Gu
1 . Summing up, we have:

egoBC(u; 1) =

{(

DC(u)
2

)

(1 − CC(u)) −
∑

i,j∈Nu
1

:h(i,j)=2
(1 − 1

A2
i,j

) if DC(u) > 1

0 if DC(u) = 1
(1)

The egocentric counterpart of conditional betweenness centrality (egoCBC), on

the other hand, is less straightforward. For each ego network and for a given destination

node t, we need to identify the set of exit nodes er(u; t) = {t′ ∈ Nu
r : h(u, t′) +

h(t′, t) = h(u, t)}, i.e., all nodes r hops away from the ego node u that lie on the

shortest path(s) from u to t. This set is effectively the projection of the remote node

t on the local ego network and may be a singleton but never the null set. In Fig. 1,

for example, we have e1(u; 11) = {6}, e1(u; 9) = {4, 6} for the Gu
1 (left graph) and

e2(u; 11) = {10}, e2(u; 14) = {5, 8} for the Gu
2 (right graph). For each node s ∈ Gu

r ,

we need to calculate the fraction of shortest paths from s towards any of the nodes in

er(u; t) that traverse the ego node. Thus the egocentric variant of CBC is given by

egoCBC(u; t, r) =
∑

s∈V u
r

t′∈er(u;t)

σst′ (u)

σst′
1{h(s,t′)≤h(s,l), l∈er(u;t)} (2)

Again, in Fig. 1a, node 4 contributes to the egoCBC(u, 11) value since its shortest path
to the single exit node 6 traverses u, although it has a shorter path to node 11, via nodes
{5,10} that lie outside the ego network. Likewise, its contribution is a full unit, rather

than 1/2, since the second shortest path to node 6 passes through node 5, a node outside
the ego network of u. This is the price egocentric metrics pay for being agnostic of the

world outside their r-neighborhood.
Although, the definitions of both ego- and sociocentric metrics are valid under

weighted and unweighted graphs, we focus on the latter ones. The way link weights

affect the correlation operations is clearly worth of a separate study.

2.3 Complexity comparison of betweenness counterparts

We briefly discuss how the two types of metrics compare in terms of message overhead

and time complexity required for their computation. Message overhead is measured in



messages times number of edges they have to travel. In both cases, we can distinguish

two metric computation phases: the collection of topological information and the exe-

cution of computations.

Sociocentric computation of centrality. The network nodes need to collect global

information about the overall network topology; hence, each one of the |V | network
nodes has to inform the other |V | − 1 about its neighbors. This generally requires

O(|Ef |) message copies and O(D) time steps for each node’s message, where D is

the network diameter and |Ef | the number of edges in the flooding subgraph. In the

best case, the flooding takes place over the nodes’ spanning trees, hence the message

overhead is O(|V | − 1). For the distribution of one round of messages by all nodes,

the overhead becomes O(|V |2); the time remains O(D) assuming that the process

evolves in parallel. With knowledge of the global topology, each node can compute

the BC values of all other nodes in the network. An efficient way to do this is to invoke

Brandes’ algorithm [3], featuring O(|V | · |E|) complexity for unweighted graphs and

O
(

(|E| + |V |) · |V |log|V |
)

complexity for weighted graphs. Interestingly, the CBC

values of each network node with respect to all other network nodes, emerge as inter-

mediate results of Brandes’ algorithm for the BC computation 3.

Egocentric computation of centrality. Intuitively, the egocentric variants save com-

plexity. The message overhead over the whole network is O(2 · |E|) for the ego network
with r = 1 andO(2·dmax|E|) for the ego network with r = 2, where dmax is the maxi-

mum node degree; for dense graphs this overhead becomes O(|V |2). The time required

for the distribution of information is of no concern, O(1). The egoBC and egoCBC

computation for r = 1 can be carried out as in [7]. The computation involves a multi-

plication of an O(dmax)-size square matrix and trivial condition checks. For r = 2, we
can employ [3] replacing |V | with d2

max. Finally, DC is considered to be immediately

available to every node.

Table 1. Complexity comparison of socio- vs.ego-centric metrics

Metric Time complexity Message overhead

BC O(|V |3) O(D · |V |)

egoBC (r=1) O(d3
max) O(2 · |E|)

egoBC (r=2) O(d4
max) O(2 · dmax · |E|)

CBC O(|V |3) O(D · |V |)

egoCBC(r=1) O(d3
max) O(2 · |E|)

egoCBC(r=2) O(d4
max) O(2 · dmax · |E|)

DC O(1) –

As expected, since dmax is typically much smaller than |V |, the use of local metrics

bears apparent computational benefits. The question of whether these metrics correlate

well with the sociocentric ones is considered next.

3 The algorithm in [3] effectively visits successively each node u ∈ V and runs augmented

versions of shortest path algorithms. By the end of each run, the algorithm has computed

the |V | − 1 CBC(v; u) values, v ∈ V ; while the |V | BC(v) values result from iteratively

summing these values as the algorithm visits all network nodes u ∈ V .



3 Experimental correlation-operations study between socio- and

egocentric centrality metrics

3.1 Correlation coefficients and network topologies

In comparing the ego- with sociocentricmetrics, we are concernedwith (rank) correlation-

operations. Protocol implementations that utilize highly central nodes, usually care

more about the way the metric ranks the network nodes rather than their absolute met-

ric values; this is how a degree-based search scheme explores unstructured P2P net-

works [2] or egoBC is used in DTN forwarding [6]. Alternatively, we may need to em-

ploy only a subset of k nodes with the top centrality values [17] and therefore, we also

study the ovelap scores between the top-k nodes determined with ego- and sociocen-

tric counterparts, respectively. We capture the rank correlation in the non-parametric

Spearman measure ρ, which assesses how monotonic is the relationship between the

ranks of the two centrality variables. For the sake of completeness we also measure the

well-known Pearson correlation (see [18] for the relevant formulas). The rPrs coeffi-

cient also assesses a straight-line relationship between the two variables but now the

calculation is based on the actual data values. Both ρ and rPrs lie in [-1,1] and mark a

significant correlation between the considered metrics when they are close to 1. For the
target-node-dependentCBC values, we present the correlation averages along with the

95% confidence intervals estimated over an at least 7% of the total locations, sample.

Regarding the networks we experiment with, our emphasis is on the real-world in-

tradomain Internet topologies. Nevertheless, synthetic graphs with distinct structural

properties such as the rectangular grid have been also employed to provide insights. The

router-level ISP topologies do not have the predictable structure of the synthetic ones

and typically size up to a few thousand nodes. Yet, over these topologies networking

protocols designed to cope with self-organization requirements, will seek to utilize local

centrality metrics [17]. We have experimented with three sets of router-level topologies:

mrinfo topologies: The dataset we consider includes topology data from 850 dis-

tinct snapshots of 14 different AS topologies, corresponding to Tier-1, Transit and Stub

ISPs [15]. The data were collected daily during the period 2004-08 with the help of

a multicast discovering tool called mrinfo, which circumvents the complexity and

inaccuracy of more conventional measurement tools. Herein we experiment with a rep-

resentative subset of Tier-1 and Transit topologies.

Rocketfuel topologies: The Rocketfuel technique [19] has been shown to collect

high-fidelity router-level maps of ISPs and therefore has been widely used despite its

old, around 2002, publication. The considered dataset includes measurements from 800

vantage points serving as traceroute sources. Innovative techniques such as BGP

directed probing and IP identifiers, have been applied to reduce the number of probes,

and discover the different interface IP addresses that belong to the same router (i.e.,

alias resolution), respectively.

CAIDA topologies: The most recent of our datasets [1] was collected during Oct-

Nov 2011 by CAIDA performing traceroute probes to randomly-chosen destina-

tions from 54 monitors worldwide. Parsing the provided separate file that heuristically

assigns an AS to each node found, we have determined the router-to-AS ownership and



Table 2. Correlation study between BC and egoBC on grid networks

Grid size Diameter / Mean degree Spearman ρ

ego-network (r=1) ego-network (r=2)

5x5 8 / 3.200 0.9195 0.9679

10x10 18 / 3.600 0.8400 0.9556

20x20 38 / 3.800 0.6802 0.8459

50x50 98 / 3.920 0.2429 0.2942

60x8 66 / 3.717 0.5735 0.6336

90x8 96 / 3.728 0.5390 0.5870

150x8 156 / 3.737 0.4584 0.4181

400x8 406 / 3.745 0.1633 0.2213
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Fig. 3. a)-d) Probability distribution of BC and egoBC values for scaling size of a grid network.

e) egoBC-DC correlation scales linearly with <CC> values.

subsequently have extracted out of the raw data files the topologies of the nodes oper-

ated by certain ASes. Our effort was to discover the largest ISP networks in the dataset.

With all three datasets we avail a rich experimentation basis of a diverse Internet topolo-

gies’ set that can minimize the effect of measurement technique errors.

3.2 Experimental results

We choose to spend more effort experimenting on the BC-egoBC, BC-DC correlation

debates, expected to attract more interest (see Section 4) than the limited-scope of CBC.

egoBC vs.BC : In grid topologies, ego networks have fixed size depending on their

position, i.e., corner, side, or internal nodes. Thus, the egoBC index may only exhibit

a small number of different values (e.g., 1, 3 and 6 with respect to the node’s location

when r = 1). When grid dimensions grow larger, the number of shortest paths between

any node pair grows exponentially, resulting in a richer spectrum of BC values over

the grid nodes. On the other hand, the possible egoBC values remain the same; only

the distribution of grid nodes over these values changes (see Fig. 3a-d). Consequently,

in Table 2, ρ values decrease monotonically with the grid size. Same behavior and

reasoning also holds for the line network.

Our findings for the real-world ISP topologies are listed in Table 3. Even with mea-

surements within the first-order ego network, there is high positive rank correlation

between BC and egoBC. On the other hand, the Pearson coefficient suggests looser yet

positive association. When egoBC is computed in the second-order ego network, both

correlation coefficients become even higher and also more similar with each other. The

structural characteristics of the considered ISP topologies differ from the grid topolo-

gies; their diameter and clustering coefficients attain many different values as their size

scales. Provably there is enough asymmetry throughout the topology to yield a wide

range of BC and egoBC values that favors high correlation. A notable exception is the



Table 3. Correlation study between BC-egoBC and BC-DC on router-level ISP topologies

DataSet ID ISP(AS number) <CC> Diameter Size <degree> BC vs.ego-BC BC vs.DC

Spearman ρ Pearson rPrs

ego-net. r=1 ego-net. r=2 ego-net. r=1 ego-net. r=2 Spearman ρ Pearson rPrs

35 Global Crossing(3549) 0.479 9 100 3.78 0.9690 0.9853 0.7029 0.9255 0.8506 0.6714

m 33 NTTC-Gin(2914) 0.307 11 180 3.53 0.9209 0.9565 0.7479 0.8561 0.8180 0.6664

r 13 Level-3(3356) 0.169 25 378 4.49 0.2708 0.9393 -0.0918 0.7982 0.1953 -0.0813

i 12 -//- 0.149 28 436 4.98 0.2055 0.9381 -0.1217 0.7392 0.1696 -0.1128

n 20 Sprint(1239) 0.287 16 528 3.13 0.9866 0.9928 0.5805 0.8488 0.8543 0.6815

f 38 Iunet(1267) 0.231 12 645 3.75 0.8790 0.9516 0.9094 0.9568 0.8549 0.7708

o 44 Telecom Italia(3269) 0.037 13 995 3.65 0.7950 0.9828 0.3362 0.8699 0.7733 0.4852

50 TeleDanmark(3292) 0.058 15 1240 3.06 0.9569 0.9738 0.5475 0.9025 0.9388 0.5538

R 61 Ebone(1755) 0.115 13 295 3.68 0.9736 0.9860 0.6856 0.8895 0.9443 0.7457

O 62 Tiscali(3257) 0.028 14 411 3.18 0.9522 0.9659 0.6073 0.9281 0.9464 0.7103

C 63 Exodus(3967) 0.273 14 353 4.65 0.9125 0.9792 0.6100 0.9061 0.8204 0.6241

K 64 Telstra (1221) 0.015 15 2515 2.42 0.9990 0.9990 0.3336 0.7565 0.9783 0.5172

E 65 Sprint(1239) 0.022 13 7303 2.71 0.9980 0.9990 0.4770 0.7977 0.9562 0.6537

T 66 Level-3(3356) 0.097 10 1620 8.32 0.9841 0.9923 0.6346 0.9075 0.9655 0.7045

F 67 AT&T(7018) 0.005 14 9418 2.48 0.9988 0.9994 0.3388 0.5302 0.9882 0.4483

L 68 Verio (2914) 0.071 15 4607 3.28 0.9904 0.9969 0.4729 0.8044 0.9315 0.6718

70 UUNet (701) 0.012 15 18281 2.77 0.9841 0.9886 0.5430 0.8752 0.9694 0.7544

C 71 COGENT/PSI(174) 0.062 32 14413 3.09 0.9638 0.9599 0.7272 0.9354 0.8940 0.8791

A 72 LDComNet(15557) 0.021 40 6598 2.47 0.9674 0.9245 0.3782 0.7676 0.9479 0.6634

I 74 ChinaTelecom(4134) 0.083 19 81121 3.97 0.8324 0.8986 0.7861 0.9714 0.7370 0.8795

D 75 FUSE-NET(6181) 0.018 10 1831 2.38 0.9903 0.9763 0.6205 0.8574 0.9536 0.7445

A 76 JanetUK(786) 0.031 24 2259 2.26 0.9819 0.9834 0.4444 0.8506 0.9450 0.5765

mrinfo Level-3 ISP topology (IDs 12,13) which we comprehensively study (and vi-

sualize) in [18]. Herein, we provide only a brief explanation. Datasets 12,13 were found

to avail some clustered structures of nodes that, interestingly, exhibit higher egoBC than

global BC values; it is these nodes that distort the desired linear relation between the

centrality counterparts. Finally, note that Table 3 results imply that the localized bridg-

ing centrality [13], which uses egoBC to approximate BC, is also highly correlated with

its global counterpart in these topologies.

DC vs.BC: In grid topologies we have observed the same correlation degradation

with the network size, explained along the aforementioned BC-spectrum arguments. In

all router-level topologies (Table 3) we find high Pearson and even higher Spearman

correlation although consistently lower than the corresponding egoBC vs.BC one, at

least for the Spearman ρ. As such, the previously reported [20] DC-BC correlation over

AS-level topologies is extended, by our results, to the router-level ones. Finally, the ear-

lier observed egoBC-BC rank correlation can be further justified on the grounds of the

high DC-BC Spearman values; the router-level topologies exhibit vanishing clustering

coefficients and thus, the egoBC metric attains similar values to DC (see Eq. 1). This

is depicted in Fig. 3.e where the egoBC-DC correlation scales linearly with the mean

clustering coefficients, especially in the CAIDA set.

egoCBC vs.CBC : We now assess the ego variant of the CBC metric (r=1). Table
4 suggests significant positive rank correlation in all studied ISP topologies, even for

the outlier case of the mrinfo Level-3 networks. Intuitively, the correlation between

CBC counterparts is expected to be higher than the one between BC counterparts; by

neglecting the world outside of the ego network, the egoBC inaccuracies (compared to

the globally determined BC) may arise anywhere across the network. On the contrary,

egoCBC(u; t, r) considers only the paths that lead to the target t, somehow focusing



on an angle that encompasses t; thus, it may differ from the CBC(u;t) view only across

that certain angle.

top-k nodes overlap : Finally, we assess the extent to which the nodes with the top-

k values of local centrality metrics coincide with the corresponding ones determined

by the global BC. Interestingly, Table 5 shows that this overlap is low, at least for the

first-order ego network measurements. This does not actually contradict our previous

results since correlation is determined over all network nodes rather than a subset of

cardinality k. Clearly, the observed high rank-correlation is mainly due to nodes of

lower rank; for instance, those with already zero values for both centrality counterparts

(i.e., DC=1) have been reported to drastically contribute to the high egoBC-BC corre-

lation [7]. Along this thread, our comprehensive study [18] has shown that the actual

association between the two metric variants is not determined solely by the degree dis-

tribution. Finally, the low top-k overlap scores serve as a warning sign as to what the

high coefficients can reveal about the practical implications of local centrality metrics.

ID 35 33 13 12 20 44

Spearman ρ 0.9489 0.9554 0.7336 0.7035 0.9847 0.9902

Conf. Interv. 0.013 0.003 0.007 0.005 0.003 0.001

ID 50 61 62 63 75 76

Spearman ρ 0.9739 0.8423 0.9321 0.7641 0.9961 0.9853

Conf. Interv. 0.009 0.027 0.016 0.023 0.005 0.002

Table 4. Rank-correlation between CBC

and ego-CBC (r=1).

k=10 k=30

ID egoBC(r=1) egoBC(r=2) DC egoBC(r=1) egoBC(r=2) DC

50 30.0 70.0 30.0 10.0 60.0 10.0

63 10.0 60.0 10.0 0.0 30.0 0.0

67 0.0 10.0 0.0 0.0 30.0 0.0

70 0.0 90.0 0.0 36.7 76.7 43.3

71 40.0 90.0 40.0 56.7 80.0 60.0

72 40.0 50.0 40.0 50.0 60.0 50.0

Table 5. Overlap(%) between nodes with

the top-k local centrality and BC values.

4 Practical utility of local centrality metrics

We now study basic network operations where local centrality metrics are employed,

encouraged by the high corresponding correlation, to substitute the global ones. Our

aim is to assess whether such options can actually be effective in networking practice.

A local-centrality-driven navigation scheme: In unstructured power-law P2P net-

works, it has been shown [2] that a high-degree (file) seeking strategy is more efficient

than a random-walk strategy. The former, at each step, passes a single query message

to a neighboring node of higher degree exploiting the great number of links pointing to

high degree nodes. We have implemented a similar navigation scheme that crawls the

network following a MAX or MAX-MIN pattern with respect to node centrality; each

time, the crawler moves to the neighbor with the maximum(minimum) centrality out of

those that exhibit higher(lower) values than the current node, utilizing a self-avoiding

path. We randomly select 20% of the network nodes as starting points and execute 10

runs (i.e., crawlings) for each one but with no destinations predetermined. Effectively,

we seek to compare the navigation patterns and final locations achieved by using the dif-

ferent centrality variants as drivers. α-hops overlap measures the percentage of the final

locations lying within α hops away from those the global metric yields. Zero-hop over-

lap refers to the destinations’ exact matching. Regarding the final locations, figs. 4a-d)

show that the local metrics (r=1) can hardly be effective aliases for the global ones. The
crawler, driven by local metrics, is measured [18] to consistently take from 0.4 up to
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a=zero, egoCBC−CBC
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a=one, egoCBC−target
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a. MAX navigation pattern b. MAX navigation pattern c. MAX-MIN navigation pattern d. MAX-MIN navigation pattern e. MAX search pattern

Fig. 4. a-e) Overlap between the final locations achieved with local and global centrality as driver;

in e) the two rightmost bars of each dataset show the egoCBC/CBC-driven search hit-rates.

2.3 on average less hops than when it is BC-driven, failing to identify the same naviga-

tion pattern i.e., sequence of central nodes. In view of the high correlation between the

involved metrics, we have tried to shed some light on the somewhat counterintuitive,

poor navigation performance [18]. Removing sequentially four nodes from a toy topol-

ogy of initially perfect rank correlation (i.e., ρ =1) between the two counterparts, we

measured it reducing to 0.9953. At the same time the zero-hop overlap for the MAX

pattern drastically diminished from 100% to 61.90%. Clearly, the numerical summaries

the coefficients provide, fail to capture in micro-level the relative significance of each

node which determines the scheme’s performance.

A local-centrality-driven search scheme: As the conditional centrality metrics in-

volve a target node, we are enabled to compare CBC and egoCBC essentially over a

(content) search scheme. For each starting locationwe randomly select a target node and

seek to reach it utilizing a MAX search pattern. Fig. 4.e shows low ovelap between the

final locations achieved by the two counterparts while the hopcount to the final location

is again measured consistently lower (i.e., 0.3 to 1.5 hops) for the egoCBC case; driven

by the local variant the search fails to track closely the route that the global one induces.

In terms of the one-hop overlap between the achieved final locations and the targets (i.e.,
hit-rates), which is also reported in [2], figure 4.e (two rightmost bars) shows that the

egoCBC-driven search indeed hits significantly less targets than the CBC-driven does.

The number of targets reached by the local CBC variant is in good agreement with the

discovered P2P nodes in [2], using DC as a driver; there, a networkwide path of the

query may cumulatively hit up to 50% of either the targets or their first neighbors. On

the contrary, we obtain high overlap values when the global metric drives the MAX

search pattern, since the closer node u lies to the target t the higher its CBC(u; t).

5 Conclusions

The paper has questioned to what extent the original centrality metrics can be substi-

tuted by their computationally friendly local approximations in router-level topologies.

First, the metrics are shown to exhibit high rank-correlationwith their local counterparts

across all datasets (20 ISPs) but one. On the other hand, the match between the two vari-

ants is much worse when we compare the top-k nodes selected by each of them. Then,

we tried to assess what the algebraic values of the correlation coefficients reveal regard-

ing the performance of network functions, when the original metrics are substituted by

their local approximations. Both a simple navigation and a search scheme employing



local centrality metrics produce significantly different navigation patterns and lower hit-

rates, respectively, than their counterparts with the original global metrics. These results

suggest that, despite the positive correlations, local variants can hardly offer effective

approximations to the original metrics. Our work essentially warns against relying on

the correlation indices for assessing the substitutability of ego- and sociocentered vari-

ants of centrality metrics.
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