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Abstract—The paper considers the problem of proactive
caching (or replication) of content in a collection of caches which
can form a group and collectively satisfy content requests of their
users (clientele); such caches can be the ones associated with
close-by base stations. Under significant user similarity, avoiding
caching the same content in multiple locations within the group
and leaving room for more content to be cached within the
group, can yield significant performance improvement compared
to the case of isolated, greedy local, caching behavior by the
nodes. The work considers a generic content-provisioning cost
structure that jointly incorporates objective (i.e., distance-based)
and subjective (social/behavioral-based) cost elements and studies
the resulting non-cooperative game, proposes a simple content
placement implementation, presents results and discusses the
impact of the subjective cost element.

I. INTRODUCTION

A rapid increase of transferred and stored content has been

observed over the last years, a good part of which is due to

the proliferation and enhanced capabilities of smart mobile

devices. A recent report by CISCO, [1], predicts a massive

increase of the wireless Internet devices that is bound to

further increase the demand for content. Consequently, the

ever increasing content traffic becomes a major challenge

for the upcoming Fifth Generation (5G) wireless networks

under development. Not only bandwidth and storage resource

demand will increase significantly, but also the user Quality of

Experience (QoE) may suffer, primarily due to a potentially

high delay induced by congested links or/and fetching content

from far away locations.

One potentially efficient approach for addressing the afore-

mentioned challenge and reducing the content retrieval latency

of popular objects, [2], would be by caching content at the

network edges, such as the Base Stations (BSs). The number of

base stations is expected to explode in 5G in order to meet the

anticipated high bandwidth capacity requirements and deliver

the required user QoE, [3]. Not only the bandwidth capacity

of the wireless network will increase as the density of these

BSs would increase, but also their distance from the users

would decrease, further reducing the content retrieval latency

from the BS. Unless some caching at the BSs is implemented

though, the aggregate content requests from these BSs would

congest the backhaul network, [3].

Caching efficiency can be further improved by pre-

downloading popular contents during low traffic periods. The

content popularity can be predicted from recent data and by

tracking users' content requesting activity, [4]. This technique

is referred to as proactive caching, or content replication.

Proactive caching is able not only to reduce heavy traffic

load during peak hours, but also to decrease content retrieval

latency more effectively and improve user experience, [5].

The content to be proactively cached at a BS would depend

on the content popularity profiles of the users accessing the

Internet through the particular BS. As the density of (distance

between) the BSs increases (decreases) two implications are

worth noting. The first is that the closer distance between BSs

in conjunction with the user mobility would tend to increase

the similarity of the aggregate content profiles of the users

supported by neighboring BSs; in the extreme case in which

users may be supported with equal probability by any of two

neighboring BSs, these profiles would be identical. The second

implication is that since the distance between neighboring

BSs decreases and is expected to be small, fetching content

cached in a neighboring BS would incur a small QoE reduction

compared to fetching it locally (i.e., from the supporting

BS). On the other hand, fetching content from outside the

group of neighboring BSs would incur a high QoE reduction

(for example, due to the backhaul congestion and/or distance

from the content hosting server). The aforementioned two

implications suggest that a group of neighboring BSs could

cooperate to collectively decide what to proactively cache

locally, so as to avoid caching similar content (as a result of

the associated user profile similarities) and bring closer content

unrepresented in the neighbors' caches, instead, increasing

content availability within the group and ultimately enhancing

the delivered QoE.

A commonly employed abstraction for studying such groups

of caches is that of the distributed replication group, [6]. Under

this abstraction, nodes utilize their storage capacity to replicate

information objects (proactively cache content) and make them

available to local and remote (elsewhere within the group)

users. A user's request can be first served by the local node, if

the requested object is available, incurring a minimal access

cost. Otherwise, the requested object is searched and fetched

from other nodes within the group, at a potentially higher

cost. If the object cannot be located anywhere in the group,

it is retrieved from a node which is located outside the group

(maximum access cost), [6].

Generally, nodes tend to behave selfishly in the sense that

they prefer to store the most popular for them objects in

order to get the maximum gain by taking fully advantage of

the cache, [7]. Such a proactive content caching or content



placement strategy can be referred as Greedy Local (GL).

When the similarity of the participating nodes is high and

their distance small, replicating multiple times the same most

popular objects is ineffective and all the nodes may gain

substantially and improve their access costs if they cooperate

and replicate different objects, [6].

Several proactive content caching or content placement

strategies have been proposed in order to determine the content

distribution within a replication group. Earlier works, [8-11],

have focused on the derivation of placements that optimize the

social utility (sum of the individual utilities capturing delay

and bandwidth gains), referred to as socially optimal (SO)

strategies. SO strategies are expected to require some nodes

to host less popular objects than they would had they acted in

isolation under a Greedy Local (GL) strategy, which may lead

to experiencing a worse performance compared to that under

the GL strategy. Practically, SO placement strategies can be

applied in environments where all node-caches are under a

single central authority which dictates its replication decisions

to the nodes, [6], aiming at maximizing the average benefit

for this authority.

In case of a distributed environment with node-caches under

different ownership/administration, SO strategies would not

be acceptable since a node could be mistreated; i.e., its

local utility may turn out to be less than that under the GL

strategy. In this case, the distributed selfish replication group

abstraction is employed and a placement strategy is sought

that is mistreatment-free, to ensure the sustainability of the

group. Such a strategy was first introduced in [6] under a

simple content serving cost structure that accounted only for

the physical distance between the requesting node and the

content hosting/serving node.

In this paper a distributed proactive caching strategy is

derived for an environment where the user QoE has subjective

and objective factors: the subjective QoE factor is shaped

jointly by the user and the requested object, while the objective

QoE factor is determined by the distance between the user and

the location of the requested object. The subjective QoE factor

allows for capturing the human-driven diverse desirability or

perception of quality of different nodes for different objects,

which maybe completely decoupled from the object popularity

(frequency of use). Besides the human-driven factors, users

may be equipped with different hardware and software capa-

bilities (high-end, low-end users). As a result, network-induced

content delivery impairments could possibly be largely fixed

by high-end users. Thus, the high-end users experience better

quality compared to low-end users; for the same network-level

quality of service a high-end user may experience a lower cost

(impact on its QoE) compared to a low-end one. Thus, the

subjective QoE factor introduces another significant dimension

to the resulting QoE besides the object popularity and the

objective QoE factor that have typically been incorporated

in similar environments in the past. The proactive content

caching strategy is derived through a formulation of a non-

cooperative game and it is shown to be mistreatment-free and

yield a Nash Equilibrium (NE) under certain broad conditions

on the cost structure. Examples of subjective QoE factors are

provided and shown to yield significantly different content

placement compared to that when only the objective QoE

factor is considered.

II. DEFINITIONS AND PRELIMINARIES

Consider a group of connected nodes each equipped with

a cache of size W objects and capable of accessing content

from and distributing content to other nodes within the group.

Such a group of nodes is referred to as a distributed replication

group. As already discussed, the main driver for formulating

such a group is the similarity among participating nodes.

Similarity refers to nodes' attributes, such as locality or content

preferences, that shape the benefits of cooperation, [7].

Under cooperation, nodes have access to content replicated

anywhere within the group. A participating node will access

content from its local memory (access location l) if available;

otherwise, from the local memory of a remote node within the

group (access location r) or from a further away source if the

object is not found within the group (access location s).

Let V = {1, ..., N} denote the set of nodes in a distributed

replication group and let O = {1, ...,M} denote the set of all

objects (assumed to be of uniform size). Let n and m denote

a node in V and an object in O, respectively. Let Fn
m denote

the popularity (request probability) of object m for node n and

let Fn = {Fn
1 , F

n
2 , ..., F

n
M} denote the popularity distribution

for node n over all objects.

All participating nodes take fully advantage of their local

cache and select objects for local placement according to a

proactive caching strategy. Let Pn denote the placement of ob-

jects in the local memory of node n. Let P = {P1, P2, ..., PN}
denote the group's placement and P−n = P\Pn denote the set

of placements for all nodes of the group except from n. Finally,

let Ln, Rn and Sn denote the sets of objects that are retrieved

by node n from respective access locations l, r and s; that

is, Ln = {m ∈ O : m ∈ Pn}, Rn = {m ∈ O : m /∈ Pn ∩
m ∈ P−n} and Sn = {m ∈ O : m /∈ Pn ∩m /∈ P−n}.

The cost for accessing content from the three potential

locations l, r and s is typically distinct and is shaped by the

associated distance, access delay, connectivity, level of trust,

etc. Typically, the access location l provides the best QoE to

all users due to the minimal access delay incurred; access from

location r should provide lesser QoE compared to location l,
but much greater compared to location s. Under such location-

shaped QoE it is reasonable to associated a certain cost with

each location hosting the content, that would be considered

to be fixed for all requesting nodes and requested objects, as

in [6,7]. However, this location-shaped only QoE may be a

grossly oversimplifying assumption for today's user/content-

centric environments, as it assumes a highly homogeneous

environment, ignoring potential dependence of the QoE from

the specific requesting node and the requested object, as well.

This paper departs from the previously considered location-

shaped only QoE by considering an enhanced content access

cost structure which is capable of capturing QoE factors

associated with the specific requesting node n and the specific



requested object m, besides that associated with the traditional

factor of distance from the access location. Let tnm(X) denote

the actual cost incurred for accessing object m by node n from

an access location X , X ∈ {l, r, s}. The broader dependence

of cost from n and m allows for capturing more realistic,

human-driven distributed selfish proactive caching (or repli-

cation) environments. Dependence on node n is anticipated

in human-driven environments, as different nodes may have

different level of satisfaction (QoE) associated with some

content access; for instance, two distinct nodes may have a

different level of satisfaction (QoE) regarding the delivery of

the same content with the same latency. Similarly, dependence

on object m is also anticipated in human-driven environments;

for instance, a given node maybe unequally satisfied regarding

the delivery of two distinct objects with the same latency.

In view of the above discussion, the distance from the access

location is considered to be the objective QoE factor captured

in the proposed cost function tnm(X), as it is the basic common

factor associated with any node's QoE for any content retrieval.

The cost dependence on the perception associated with the

specific node and the specific content is considered as the

subjective QoE factor. Generally, high cost values should be

assigned for users with increased QoE requirements for certain

types of content or applications. Even if such high costs are

not frequently incurred when the associated object popularity

is low, they can contribute significantly in shaping the content

placement under an efficient proactive caching. In view of the

discussion above, tnm(X) may be expressed in terms of the

subjective (Qn
m) and the objective (distance from the access

location X dependent, b(X)) QoE factors, as

tnm(X) = f(Qn
m, b(X)) (1)

Intuitively, we expect that in case of accessing objects from

the same access location (same objective QoE factor), their

costs would be differentiated by the subjective QoE factor

only. Thus, the more desirable objects (higher value of the

subjective QoE factor Qn
m) would yield a higher access cost

tnm(X) than the less desirable objects that are located in the

same access location. Thus, the cost ranking among a set of

objects is invariant to the access location. On the other side, for

any two equally desired objects (same subjective QoE factor)

located in different access locations, only the objective factor

differentiates their costs that typically assigns lower access

cost to the nearest objects.

It is worth noting that the proposed cost structure allows for

breaking the strong dependence of the induced mean access

cost from the object popularity, that traditionally shapes the

resulting placement by favoring the most popular objects. If

the subjective QoE factor is low, an otherwise very popular

object may not be selected for placement in locations associ-

ated with a low objective QoE factor.

When the subjective QoE factor Qn
m is fixed for all n and m

it is in essence neglected and the access cost is shaped entirely

by its objective QoE factor (access location), similarly to the

approach considered in [6,7]. In this case, (1) is reduced to

tnm(X) = f(b(X)) = t(X), X ∈ {l, r, s} (2)

For a given node n, the mean access cost Cn(P ) per unit

time under a content placement P is given in (3) and consists

of three parts (each part capturing the mean cost of accessing

objects from each access location). The cost associated with

the entire group C(P ) is derived by summing Cn(P ) over all

n ∈ [1, N ].

Cn(P ) =

M
∑

m=1

Fn
mtnm =

=
∑

m∈Ln

Fn
mtnm(l) +

∑

m∈Rn

Fn
mtnm(r) +

∑

m∈Sn

Fn
mtnm(s)

(3)

III. TSLS STRATEGY UNDER THE PROPOSED COST

STRUCTURE

In this section a content placement strategy is derived

for the group based on a non-cooperative distributed game

of N players. A two-step local search (TSLS) algorithm is

employed following the methodology presented in [6] under

the cost structure introduced in the previous section. The local

search algorithm is shown to have the important property

of mistreatment-free; that is, no node within the group will

experience an access cost that is higher than the one that would

be incurred if the node was not part of the group. Additionally,

the conditions under which it yields a Nash-Equilibrium are

derived. The Nash-Equilibrium property amounts to yielding

a group placement P under which no node n in the group has

motivation to unilaterally modify its local placement Pn for

higher gain.

The local search algorithm operates in two rounds. In the

first round (step 0) each node n establishes its initial content

placement P 0
n by selecting the W most popular objects,

similarly to the GL strategy. The initial step 0 amounts to

calculating the excess gains g0n,m = Fn
m(tnm(s) − tnm(l)) for

all objects m, ranking the resulting gains and selecting the W
objects yielding the top W values of these gains. The excess

gain expresses the mean access cost reduction that incurs if

object m is replicated locally and is not accessed from a server.

The procedure that yields the W most valuable objects for

replication under any definition of excess gains g∗n,m may be

referred to as the application of the GreedyLocal Operator. The

GreedyLocal operator is equivalent to solving a 0/1 Knapsack

problem where object values are the excess gains g∗n,m, the

object weights are unit and the Knapsack capacity is W .

In the second round (step 1) the nodes take turns (in

some order) in improving their placements by taking into

consideration also the placements (by that time) of all the other

nodes in the group. Then a new placement P 1
n for node n is

derived in a similar way as P 0
n , by applying the GreedyLocal

Operator on the excess gains g1n,m that are now given by (4);

P 1−
−n = P 1

1 ∪ ...P 1
n−1 ∪P 0

n+1 ∪ ...P 0
N denotes the placement of

all nodes except node n before the execution of node's n step

1 (improvement step). During this second round a node has the



chance to replace some or even all its items in order to come

up with the most cost-effective placement given the placements

of other nodes. Thus, a node may decide to evict one of its

objects that is also stored somewhere else inside the group

and insert a new one, if this reduces its access cost. As the

nodes amend their placements sequentially, each replacement

made by one node affects both the access cost of nodes that

have already made their adjustments and the choices made by

nodes that follow. A comparison of P 0
n and P 1

n reveals which

objects are inserted and evicted in step 1.

g1n,m =

{

Fn
m(tnm(s)− tnm(l)), if m /∈ P 1−

−n

Fn
m(tnm(r) − tnm(l)), if m ∈ P 1−

−n

(4)

The nodes in the group may experience a cost reduction

due to accessing some objects locally or from a node within

the group instead of a server outside the group. Let Gn(P )
denote the total resulting gain experienced by node n, due to

the cooperation and participation in the distributed replication

group, given by (5).

Gn(P ) =
∑

m∈Ln

Fn
m(tnm(s)− tnm(l))

+
∑

m∈Rn

Fn
m(tnm(s)− tnm(r))

(5)

In the sequel, the TSLS strategy is studied under the proposed

cost structure incorporating both the objective and subjective

QoE factors. The mistreatment-free property of the placement

induced by the TSLS strategy outlined above is established,

followed by the derivation of the conditions under which the

TSLS yields a placement that is a NE. Initially, Proposition

1 proves that after the execution of the improvement step

for any node n its gain is not downgraded. This statement

precludes any mistreatment phenomena. Thus, determining

the final placement P 1
n for a node n by solving the 0/1

Knapsack problem under gains gkn,m, k ∈ {0, 1}, is equivalent

to maximizing Gn(·) given the current placements of the nodes

other than n.

Proposition 1. Following the TSLS strategy under the cost

structure tnm(X) dependent on the subjective QoE factor Qn
m

and the objective QoE factor b(X), the produced placement

P 1
n for node n, 1 ≤ n ≤ N , satisfies for all Pn ∈ {Pn}:

Gn(P
1
1 , ..., P

1
n−1, P

1
n , P

0
n+1, ...P

0
N ) ≥

Gn(P
1
1 , ..., P

1
n−1, Pn, P

0
n+1, ...P

0
N )

(6)

Proof. Rewrite Gn(P ) from eq.(5) as follows:

Gn(P ) =
∑

m∈P
−n

Fn
m(tnm(s)− tnm(r))

+

(

∑

m∈Pn

m/∈P
−n

Fn
m(tnm(s)− tnm(l))

+
∑

m∈Pn

m∈P
−n

Fn
m(tnm(r) − tnm(l))

)

(7)

The new expression is derived by considering objects that are

replicated at node n and again elsewhere in the group and

re-expressing their gain by splitting it into two parts through

Fn
m(tnm(s)−tnm(l)) = Fn

m(tnm(s)−tnm(r))+Fn
m(tnm(r)−tnm(l)).

Given P−n, the quantity outside the parenthesis of eq.(7) is

independent of the objects selected for replication at n and

can be considered as constant. Thus, to maximize Gn(P )
amounts to maximizing the quantity inside the parenthesis,

which depends on both the objects replicated at other nodes

and locally at n. This is the exact quantity that is maximized

by solving the aforementioned 0/1 Knapsack problem with

weights g1n,m, which compose eq.(7).

In the sequel, we derive the conditions under which the

produced global placement is a pure Nash-Equilibrium. The

establishment of the NE property requires that under the final

placement P 1 = (P 1
1 , P

1
2 , ..., P

1
N ) produced by the execution

of the improvement steps for all nodes, no node n may increase

its gain by modifying its placement. This means that under this

placement where evictions and insertions have been performed

by the nodes after n's turn, the TSLS strategy could not yield

a local placement P ∗

n , other than P 1
n , with improved gain.

Propositions 2 and 3 define the properties of the evicted and

the inserted objects that can be combined and lead to the NE

property in Proposition 4. Basically, Proposition 2 guarantees

that only duplicate objects (within the group) are evicted, while

Proposition 3 identifies the cases where only unrepresented

objects (within the group) are inserted. Before proceeding with

the propositions, the sets of evicted and inserted objects during

the execution of improvement step for node n are defined. Let

E1
n = {m ∈ O : m /∈ P 1

n ,m ∈ P 0
n} denote the eviction

set of objects for node n after its improvement step and let

I1n = {m ∈ O : m ∈ P 1
n ,m /∈ P 0

n} denote the set of inserted

objects which replace the objects belonged in E1
n.

Proposition 2. The TSLS strategy, under the cost structure

tnm(X) dependent on the subjective QoE factor Qn
m and the

objective QoE factor b(X), guarantees that the eviction set of

n is such that only duplicate objects are evicted. This amounts

to E1
n ⊆ P 0

n ∩ P 1−
−n .

Proof. Consider two objects me ∈ E1
n and mi ∈ I1n. Thus,

node n selected me for local storage during step 0, while mi

was preferred at step 1 since it was considered to increase the

n' gain. By their definition, it holds for gains g0n,me
,g0n,mi

and

g1n,me
,g1n,mi

that:

g0n,me
≥ g0n,mi

(8)

g1n,mi
> g1n,me

(9)

Suppose now that contrary to the claim of the proposition

me /∈ P 0
n ∩ P 1−

−n which translates to me /∈ P 1−
−n since me ∈

P 0
n . Due to me /∈ P 1−

−n , me retains its step 0 gain (by definition

of g1n,m), hence

g1n,me
= g0n,me

(10)



For all objects and nodes it holds that tnm(s) > tnm(r). Hence

by the definition of gain function (4) it is valid that:

g1n,mi
≤ g0n,mi

(11)

Combining (9) and (10) gives:

g1n,mi
> g0n,me

(12)

Multiplying (11) by (-1) and adding side-by-side (12) leads to

g0n,mi
> g0n,me

which is false as it contradicts with (8). Thus

it must be that me ∈ P 1−
−n .

Proposition 3. The TSLS strategy, under the cost structure

tnm(X) dependent on the subjective QoE factor Qn
m and the

objective QoE factor b(X), guarantees that the insertion set

of node n is such that includes only unrepresented objects

(within the group) under the cases (A) and (B) shown below.

This amounts to I1n ⊆ ([1,M ] \ (P 0
n ∪ P 1−

−n)).
Case (A): Without loss of generality, the cost associated

with access location l can be ignored and considered to be

zero for all nodes and objects, tnm(l) = 0. If it holds that the

ranking of popularity-cost products is location shift invariant,

then Proposition 3 holds.

Case (B): If the cost associated with accessing object m
from location X by node n is tnm(X) = Qn

mb(X) then the

stipulation under case (A) holds and, thus, Proposition 3 holds.

Proof. Consider two objects me ∈ E1
n and mi ∈ I1n. By their

definition me ∈ P 0
n and mi /∈ P 0

n which implies that n benefits

more by replicating me locally during the step 0:

g0n,me
≥ g0n,mi

, or (13)

Fn
me

(tnme
(s)− tnme

(l)) ≥ Fn
mi

(tnmi
(s)− tnmi

(l)) (14)

Since mi is inserted in place of the evicted me during

the improvement step, it should hold that n benefits more by

replicating mi locally compared to the penalty of the remote

access cost for me at step 1:

g1n,mi
> g1n,me

(15)

Suppose now that contrary to the claim of the proposition

mi ∈ P 0
n ∪ P 1−

−n , which translates to mi ∈ P 1−
−n since mi /∈

P 0
n . Proposition 2 also guarantees that me is a duplicate which

translates to me ∈ P 1−
−n . Thus, both objects are retrieved from

the same access location r. According to the gain definition

in step 1 given in (4), (15) leads to:

Fn
mi

(tnmi
(r) − tnmi

(l)) > Fn
me

(tnme
(r)− tnme

(l)) (16)

Let now consider separately the cases (A) and (B).

Case (A):

Since it is considered that tnm(l) = 0 for all objects and

nodes, (14) leads to (17) and (16) leads to (18).

Fn
me

tnme
(s) ≥ Fn

mi
tnmi

(s) (17)

Fn
mi

tnmi
(r) > Fn

me
tnme

(r) (18)

Thus, the popularity-cost product under access location r is

higher for object mi. By definition, the popularity and the

subjective factor are not dependent on the access location.

Taking into consideration the property under which the ranking

of the popularity-cost products is location shift invariant, we

can conclude that the popularity-cost product under the access

location s is also higher for object mi. Hence (18) leads to:

Fn
mi

tnmi
(s) > Fn

me
tnme

(s) (19)

However, (19) is clearly false as it contradicts with (17). Thus

it must be mi /∈ P 0
n ∪ P 1−

−n which proves the claim of the

proposition for case (A).

Case (B):

Let now consider the case where the access cost tnm(X) is

given by (20).

tnm(X) = Qn
mb(X) (20)

Thus, taking into consideration the specific cost tnm(X) defined

in (20), (14) can be rewritten as:

Fn
me

Qn
me

(b(s)− b(l)) ≥ Fn
mi

Qn
mi

(b(s)− b(l)) (21)

Also (16) can be rewritten as:

Fn
mi

Qn
mi

(b(r) − b(l)) > Fn
me

Qn
me

(b(r)− b(l)) (22)

Clearly, the factor b(r)− b(l) in (22) is common for all nodes

and objects retrieved from location r and can be ignored.

Multiplying (22) by
b(s)−b(l)
b(r)−b(l) leads to:

Fn
mi

Qn
mi

(b(s)− b(l)) > Fn
me

Qn
me

(b(s)− b(l)) (23)

However, (23) is clearly false as it contradicts with (21). Thus,

it must be mi /∈ P 0
n ∪ P 1−

−n which proves the claim of the

proposition for case (B).

Notice also that the specific cost function tnm(X) given in

(20) satisfies the property that the ranking of popularity-cost

product is location shift invariant and can be considered as a

specific scenario of case (A).

Proposition 4. The group (global) placement P 1 =
(P 1

1 , P
1
2 , ..., P

1
N ) at the end of the TSLS strategy under the cost

structure tnm(X) dependent on the subjective QoE factor Qn
m

and the objective QoE factor b(X) is a pure Nash Equilibrium

in case that only duplicates are evicted (guaranteed by the

Proposition 2) and only unrepresented objects are inserted

(under the conditions of Proposition 3).

Proof. Let P 1
−n = P 1

1 ∪ ... ∪ P 1
n−1 ∪ P 1

n+1 ∪ ... ∪ P 1
N denote

the final set of objects collectively held by nodes other than

n. Notice generally that P 1
−n 6= P 1−

−n . To prove the claim of

the proposition it suffices to show that for every n ∈ [1, N ]
and for all Pn:

Gn(P
1) ≥ Gn(P

1
1 , ..., P

1
n−1, Pn, P

1
n+1, ..., P

1
N ) (24)

Since, as stated in Proposition 1, solving the 0/1 Knapsack

problem under P 1−
−n maximizes n's gain, we need to show

that solving the Knapsack under P 1
−n, instead of P 1−

−n , leads

to the same placement P 1
n for every node n.

The differences between the global placement at n's turn

at the end of strategy are determined by the duplicates me,

me ∈ E1
j that were evicted and the objects mi, mi ∈ I1j that



were inserted, where n+1 ≤ j ≤ N . We will show that these

changes do not affect the optimality of P 1
n in case that only

unrepresented objects mi are inserted under the conditions

clarified in the Proposition 3.

Consider an object me that belonged to P 1−
−n but was later

evicted by some of the nodes that were holding it during n's

turn. Proposition 2 guarantees that finally at least one node will

be replicating me, me ∈ P 1
n . This precludes the case that n

would decide to modify P 1
n in order to include me. Similarly,

if me ∈ P 1
n then again the evictions of some remote copies

cannot trigger changes to P 1
n .

Consider mi, an object that was inserted by a node fol-

lowing n's turn. Proposition 3 specifies the conditions under

which the mi is an unrepresented object, that is, that mi /∈ P 1
n .

The insertion of an unrepresented object mi cannot cause

the reduction of g1n,m of any m ∈ P 1
n , since the only such

object would be mi which does not belong to P 1
n . On the

contrary, if mi is already represented within the group, node's

n gain g1n,mi
would be reduced. Potentially this could cause

a different ranking of gains for n resulting in placement Pn

other than P 1
n of higher gain.

The previous two arguments regarding me and mi guarantee

that no node n has a reason to modify P 1
n as a result of

transition from P 1−
−n to P 1

−n if the conditions of Proposition

3 are fulfilled. Combining the previous with the fact that P 1
n

maximizes Gn given P 1
−n, based on Proposition 1, establishes

that P 1 is a pure NE.

The above investigation shows that the TSLS strategy under

the cost structure dependent on the QoE derives stable NE

placements under the cases clarified in Proposition 3. More

specifically, the yielded placements under the TSLS strategy

are NE in case that (a) the popularity-cost product ranking

is location shift invariant and (b) the local access costs are

considered to be zero. Generally, the local access cost may

practically be considered to be negligible for all users and

objects, as the induced latency would typically not be percep-

tible to the users. Consequently, the local access cost may be

ignored without loss of generality. Regarding the location shift

invariance of the ranking of the popularity-cost product, it is

noted that this is a property intuitively expected to hold in

practice. For example, it clearly holds under the simple cost

case in (20) or when the subjective QoE factor is absent.

Although the TSLS strategy may not yield the optimal gain

for the group, the access cost for each user will be at most

equal to cost incurred under the isolated GL behavior and pos-

sibly even better. Even if the final placements produced by the

TSLS strategy under some content-provisioning cost structure

may not yield a NE, the participation and sustainability of the

distributed replication group is ensured due to the performance

improvement over that under the GL strategy in isolation.

IV. NUMERICAL EXAMPLES

In this section the groups' access costs associated with

content placements derived by the TSLS strategy have been

presented for distributed proactive caching groups of N = 5

selfish nodes, a content population of M = 50 objects and a

node cache capacity of W = 8 objects. The popularity profiles

Fn
m are considered to be dissimilar or identical for all nodes.

We emphasize the case of identical popularity distributions,

because such environment maximizes the benefits of forming

a distributed proactive caching group. For all the environments,

the content placements are derived under two cost types: (a) a

cost tnm(X) dependent on the subjective and the objective QoE

factors, given by (25) because of its simplicity and satisfying

the NE property as proven in Section III and (b) an equivalent

cost t(X) dependent on the objective QoE factor only.

tnm(X) = b(X)Qn
m (25)

In general, the content popularity indicates the possibility

that a random request addresses a specific object. It has

been proved empirically that the content popularity over a

time period follows a Zipf distribution, which assigns high

popularity to a few objects and low popularity to the majority

of objects, [13]. The popularity of the ith popular object is

equal to (1/ia)/
∑M

l=1(1/l
a), where a is the Zipf parameter

and assumes a positive value, typically from 0.8 to 1.7. In

order to generate dissimilar groups, the Zipf parameter an for

each node n is given in (26), where the parameters of any two

subsequent nodes differ by p, p ∈ {0, 0.1, 0.2}. The distribu-

tion of a node n is also shifted to the right by k positions with

respect to the distribution of node n − 1, k ∈ [0, 3], in order

to yield groups where the set of popular objects may differ

for each node. Identical popularity distributions for all nodes

are derived in case that : (a) the same Zipf parameter (p = 0
leading to an = 1) is assigned to each node; (b) the popularity

ranking of the objects is the same for all nodes (k = 0).

an =











an+1 − p, if 1 ≤ n < N/2

1, if n = N/2

an−1 + p, if N/2 < n ≤ N

(26)

Concerning the objective QoE factor, b(X), we assume

values b(s), b(r) such that b(s) = db(r) with d > 1 leading

also to tnm(s) = dtnm(r)). After some experimentation over

various values b(s) and b(r), we have selected b(s) = 20,

b(r) = 5 and d = 4 to emphasize the cost distance between

accessing from the group (access location r) and accessing

from a source outside the group (access location s). Regarding

the local access, there is practically no room for differentiation

through a subjective QoE factor, due to the high benefits

associated with local access for all users and objects. Thus,

without loss of generality, we have considered that b(l) = 0.

The selected function for tnm(X) guarantees that the cost

is an increasing function of Qn
m and b(X). More desirable

objects (higher value of Qn
m) would yield a higher access cost

tnm(X) than less desirable objects that have the same access

location. Also b(X) ensures that for any object m and node

n the costs associated with access locations l,r and s satisfy

tnm(l) < tnm(r) < tnm(s) due to b(l) < b(r) < b(s).
Regarding the subjective QoE factor, as already indicated,

function Qn
m reflects the quality expectations of node n for



content m retrieval. Since the environment that ignores the

subjective QoE factor would place the most popular objects

in each node at step 0, to emphasize the potential impact of the

subjective QoE factor, we select such factors Qn
m which would

not be in line with the popularity of the objects. That is, we

consider low popularity objects that have high subjective QoE

expectations, as shown in the factor Qn
m given by (27), where

the same set of r, r < M , unpopular objects for all nodes n
has been also selected as objects of high QoE expectations.

The parameter q in (27) manipulates the importance of the

subjective QoE factor in the cost values tnm(X). The values

q = 10 and r = 5 have been selected for our results.

Qn
m =

{

qFn
m , if 1 ≤ m ≤ M − r

qFn
M+1−m , if M − r < m ≤ M

(27)

For comparison reasons, we have also considered an equiv-

alent distributed replication group under a cost structure that

ignores the subjective QoE factor. This cost depends only on

the objective QoE factor and is equivalent to the simple cost

scheme described in the previous works [6,7]. In order for

the comparison to be meaningful, an average subjective QoE

factor Q is computed as the mean of the subjective factors

Qn
m over all objects and nodes (given by (28)) and the access

cost in the equivalent group that ignores the subjective QoE

factor is given by (29) for all access locations X ∈ {l, r, s}:

Q =
1

M

1

N

M
∑

m=1

N
∑

n=1

Qn
m (28)

tnm(X) = t(X) = Qb(X) (29)

Let also P , P 1, Pn, P−n, P 0
n , P 1

n and P 1−
−n denote the

corresponding placements of the TSLS strategy produced

under the use of costs t(X) agnostic to the subjective QoE

factors Qn
m. Let Ln = {m ∈ O : m ∈ Pn}, Rn = {m ∈ O :

m /∈ Pn ∩m ∈ P−n}, Sn = {m ∈ O : m /∈ Pn ∩m /∈ P−n}
denote the sets of objects retrieved from access locations

l, r and s, respectively. The cost reduction g0n,m and g1n,m
incurred for each node n, given by (30) and (31), determine

the respective placements P 0 and P 1. The cost of each node

n, Cn(P ), and the associated gain Gn(P ) are given by (32)

and (33), respectively, ignoring the subjective QoE factor.

g0n,m = Fn
m(t(s)− t(l)) (30)

g1n,m =

{

Fn
m(t(s)− t(l)), if m /∈ P 1−

−n

Fn
m(t(r) − t(l)), if m ∈ P 1−

−n

(31)

Cn(P ) =
M
∑

m=1

Fn
mt(X)

=

[

b(l)
∑

m∈Ln

Fn
m + b(r)

∑

m∈Rn

Fn
m + b(s)

∑

m∈Sn

Fn
m

]

Q

(32)

TABLE I
SET OF OBJECTS LOCALLY REPLICATED PER NODE ACCORDING TO THE

TSLS STRATEGY FOR THE SYMMETRIC ENVIRONMENT

Subjective and Objective Objective Costs t(X)

Costs tn
m
(X)

Node 1 {1 : 5} ∪ {8, 9, 49} {1 : 3} ∪ {8 : 12}

Node 2 {1 : 6} ∪ {10, 11} {1 : 4} ∪ {13 : 16}

Node 3 {1 : 6} ∪ {12, 48} {1 : 5} ∪ {17 : 19}

Node 4 {1 : 6} ∪ {13, 47} {1 : 5} ∪ {20 : 22}

Node 5 {1 : 7} ∪ {50} {1 : 7} ∪ {23}

0 0.21 0.23 0.23 0.25 0.27 0.27 0.33 0.37 0.37 1.63 6.32 Inf
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Fig. 1. Total access costs for the groups under both the proposed cost structure
and the equivalent ignoring the objective QoE factor.

Gn(P ) =
∑

m∈Ln

Fn
m(t(s)−t(l))+

∑

m∈Rn

Fn
m(t(s)−t(r)) (33)

In Table I, the set of objects locally replicated have been

presented for all nodes under the execution of the TSLS

strategy in our symmetric environment, where all nodes have

identical popularity distributions. As expected, each node

replicates a different set of objects according to the group 's

current placement and the selected cost functions, which can

be dependent on either both the subjective and the objective

QoE factors or the objective QoE factor only. We can observe

that the costs associated with the objective QoE factor only

give an advantage to the popular objects for local storage

due to their frequently incurred costs, while all the unpopular

objects have been ignored although associated with a high

QoE factor and their contribution to the mean cost is relatively

high. On the contrary, this behavior is modified when the cost

captures also the subjective QoE factor. Under this case, the

local caches include also the least popular objects due to their

impact on the QoE. Therefore, the proposed cost structure

allows for breaking the strong dependence of the induced mean

access cost from the object popularity, that traditionally shapes

the resulting placement and favors the most popular objects.

If the subjective QoE factor is low, an otherwise very popular

object may not be included in the local placement.

To investigate the achieved total cost collectively for the

group, we have also considered the various environments of

variant similarity, described above, by modifying the Zipf



TABLE II
ACCESS COSTS INDUCED PER NODE IN CASE THAT THE SUBJECTIVE AND

OBJECTIVE QOE FACTORS ARE CONSIDERED FOR THE SYMMETRIC

ENVIRONMENT

Cost Cn(P 0) Cost Cn(P 1)

Node 1 1.3632 0.8329

Node 2 1.3632 0.8135

Node 3 1.3632 0.8243

Node 4 1.3632 0.8309

Node 5 1.3632 0.7588

parameters and by shifting the popularity distributions for all

considered values of p and k, respectively. The similarity of the

yielded groups has been measured through the tightness metric

T , introduced in [7]. For each group, the initial (P 0) and the

final (P 1) placements have been derived under the same cost

functions where both the subjective and the objective QoE

factors have been taken into consideration. The resulting costs

C(P 0) and C(P 1) are depicted in Fig. 1. The placement P 1

has also been derived by considering a fixed subjective QoE

factor (i.e., in essence ignoring it) which is the average Q (see

earlier); i.e., P 1 is shaped by the objective QoE factor only.

The induced cost C(P 1) is also shown in Fig. 1, it is shaped

by b(X) and Q and observed to be higher than C(P 1). Finally,

the cost produced under placement P 1 but considering the real

cost tnm(X) (25) is also shown in Fig. 1 and is given by (34).

Cn(P ) =

M
∑

m=1

Fn
mtnm(X)

=
∑

m∈Ln

Fn
mQn

mb(l) +
∑

m∈Rn

Fn
mQn

mb(r) +
∑

m∈Sn

Fn
mQn

mb(s)

(34)

Fig.1 shows that ignoring the subjective cost Qn
m when it

is present leads to a placement P 1 of higher cost (C(P 1)
and C(P 1) are higher than C(P 1)). Notice also that the GL

strategy induces average costs C(P 0) that are higher than

those under the proposed strategy, as expected, since all nodes

will perform under the proposed strategy at least as well

as under the GL (mistreatment-free property). In fact, the

calculation of all costs Cn(P
1) reveals that no node n induces

a higher cost than the respective GL cost Cn(P
0), as observed

in Table II under the symmetric environment.

V. CONCLUSION

In this work we have considered the problem of proactive

caching (or replication) of content in a group of caches.

Since this problem refers to node and content centric environ-

ments, we have introduced a generic content-provisioning cost

structure that incorporates an objective QoE cost factor (the

distance from the access location) and a subjective QoE cost

factor (social/behavioral-based). Such cost structure enables us

to take into consideration the specific nodes' preferences and

the content's characteristics in order to enhance QoE for all

users.

We have employed a distributed two-step local search

strategy that determines the proactive distribution of content

in the group of caches under the proposed generic content-

provisioning cost structure. We have established for the pro-

posed strategy two important properties. These are that (a) the

strategy is mistreatment-free since no node belonging in the

group will experience a deterioration of access cost compared

to the access cost that would be incurred if the node was not

part of the group; (b) the strategy yields a Nash-Equilibrium

under logical conditions for the cost structure. Therefore,

stable NE placements can be derived, performance is improved

collectively and for each node, while the sustainability of the

group is ensured.

Additionally, we have presented numerical results that

demonstrate the decoupling of QoE and popularity achieved by

the proposed generic content-provisioning cost structure. As

observed the unpopular objects of high importance for QoE are

selected for proactive caching within the group. The generic

cost structure also achieves improved access cost for the entire

group compared to the total cost incurred in case of ignoring

the subjective QoE cost element.
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