
AVL Trees

Data Structures and Programming 
Techniques

1



AVL Trees

• We will now introduce AVL trees that have the 
property that they are kept almost balanced 
but not completely balanced. In this way we 
have 𝑂(log 𝑛) search time but also 𝑂(log 𝑛)
insertion and deletion time in the worst case.

• AVL trees have been named after their 
inventors, Russian mathematicians Adelson-
Velskii and Landis.
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Definitions

• We define the height of a binary search tree to 
be the length of the longest path from the root to 
some leaf. 

• The height of a tree with only one node is 0. The 
height of the empty tree is defined to be -1.

• If N is a node in a binary search tree T, then we 
say that N has the AVL property if the heights of 
the left and right subtrees of N are either equal 
or they differ by 1.

• An AVL tree is a binary search tree in which each 
node has the AVL property.
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Example – AVL tree
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Example – AVL tree
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Example – AVL tree
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Fact

• It is easy to see that all the subtrees of an AVL 
tree are AVL trees.
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Example – Non-AVL tree
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Example – Non-AVL tree
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Example – Non AVL tree
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Extended AVL Trees

• If we consider trees in their extended form 
then the AVL property needs to hold for 
internal nodes.
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Proposition

• The height of an AVL tree storing 𝑛 entries is 
𝑂 log 𝑛 .

• Proof?
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Proof

• Instead of trying to find an upper bound for the 
height of an AVL tree directly, we will find a lower 
bound on the minimum number of internal 
nodes 𝒏(𝒉) of an AVL tree with height ℎ. From 
this, it will be easy to derive our result.

• Notice that 𝑛 1 = 1 because an AVL tree of 
height 1 must have at least one internal node.

• Similarly 𝑛 2 = 2 because an AVL tree of height 
2 must have at least two internal nodes.
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Proof (cont’d)

• An AVL tree of height ℎ ≥ 3 with the 
minimum number of internal nodes is such 
that both subtrees of the root are AVL trees 
with the minimum number of internal nodes: 
one with height ℎ − 1 and one with height 
ℎ − 2.

• Taking the root into account, we obtain the 
following formula: 

𝑛 ℎ = 1 + 𝑛 ℎ − 1 + 𝑛 ℎ − 2 .
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Proof (cont’d)

• The previous formula implies that 𝑛(ℎ) is a 
strictly increasing function of ℎ. 

• Thus, we know that 𝑛 ℎ − 1 > 𝑛 ℎ − 2 .

• Replacing 𝑛(ℎ − 1) with 𝑛(ℎ − 2) in the 
formula of the previous slide and dropping the 
1, we get that for ℎ ≥ 3,

𝑛 ℎ > 2 𝑛(ℎ − 2).
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Proof (cont’d)

• The previous formula shows that 𝑛(ℎ) at least doubles 
each time ℎ increases by 2, which intuitively means 
that 𝒏 𝒉 grows exponentially.

• To show this formally, we apply the formula of the 
previous slide repeatedly, yielding the following series 
of inequalities:

𝑛 ℎ > 2 𝑛 ℎ − 2

> 4 𝑛 ℎ − 4
> 8 𝑛 ℎ − 6

⋮
> 2𝑖 𝑛(ℎ − 2𝑖)
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Proof (cont’d)

• That is, 𝑛(ℎ) > 2𝑖𝑛(ℎ − 2𝑖), for any integer 𝑖 such that ℎ − 2𝑖 ≥ 1.
• Since we already know the values of 𝑛 1 and 𝑛(2), we pick 𝑖 so 

that ℎ − 2𝑖 is equal to either 1 or 2. That is, we pick 𝑖 =
ℎ

2
− 1.

• By substituting the value of 𝑖 in the formula above, we obtain, for 
ℎ ≥ 3,

𝑛 ℎ > 2
ℎ
2 −1

𝑛(ℎ − 2
ℎ

2
+ 2)

≥ 2
ℎ
2 −1

𝑛(1)

≥ 2
ℎ

2
−1.
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Proof (cont’d)

• By taking logarithms of both sides of the 
previous formula, we obtain

log 𝑛(ℎ) >
ℎ

2
− 1.

• This is equivalent to ℎ < 2 log 𝑛(ℎ) + 2.

• This implies that an AVL tree storing 𝑛 entries 
has height at most 2 log 𝑛 + 2.
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Keeping Track of Balance Factors

• By adding a new member to each node of an AVL tree, 
we can keep track of whether the left and right subtree
are of equal height, or whether one is higher than the 
other.

typedef enum {LeftHigh, Equal, RightHigh} BalanceFactor;

typedef struct AVLTreeNodeTag {

BalanceFactor BF;

KeyType Key;

struct AVLTreeNodeTag *LLink;

struct AVLTreeNodeTag *RLink;

} AVLTreeNode;
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Notation

• In drawing trees, we shall show a left-higher 
node by “/”, a node whose balance factor is 
equal by “−”, and a right-higher node by “\”.

• We will use notation “//” or “\\” for nodes 
that do not have the AVL property and they 
have longer paths on the left or right 
respectively.
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Example AVL Tree
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Example AVL Tree
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Example AVL Tree
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Example AVL Tree
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Example AVL Tree
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Example non-AVL Tree
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Example non-AVL Tree

Data Structures and Programming 
Techniques

28

\\

\\

\

−

−



Example non-AVL Tree
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Example non-AVL Tree
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Rebalancing an AVL Tree

• When we are building up a binary search tree 
using the insertion algorithm, it is possible 
that the AVL property will be lost at some 
point. 

• In this case we apply to the tree some shape-
changing transformations to restore the AVL 
property. These transformations are the 
rotations we have already introduced.
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Rotations

• Let us now consider the case when a new node has been 
inserted into the taller subtree of a node and its height has 
increased, so that now one subtree has height 2 more than 
the other, and the node no longer satisfies the AVL 
requirements.

• Let us assume we have inserted the new node into the 
right subtree of node r, its height has increased, and r
previously was right higher (so now it will become “\\”).

• So r is the node where the AVL property was lost and let x 
be the root of its right subtree. Then there are three cases 
to consider depending on the balance factor of x. 
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Rotations (cont’d)

• Case 1: x is right higher. Therefore the new node was inserted in 
the right subtree of x. Then, we can do a single left rotation that 
restores the AVL property as shown on the next slide.

• We have rotated the node x upward to the root, dropping r down 
into the left subtree of x. The subtree T2 of nodes with keys 
between those of r and x now becomes the right subtree of r.

• Note that in the tallest subtree we had height h+2, then height h+3 
when the new node was inserted, then height h+2 again when the 
AVL property was restored. Thus, there are no further height 
increases in the tree that would force us to examine nodes other 
than r.

• Note that r was the closest ancestor of the inserted node where the 
AVL property was lost. We do not need to consider any other nodes 
higher than r.
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Single Left Rotation at r

r

x
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Rotations (cont’d)

• Case 2: x is left higher. Therefore, the new node was inserted in the 
left subtree of x. In this case, we have to move down two levels to 
the node w that roots the left subtree of x, to find the new root of 
the local tree where the rotation will take place. 

• This is called double right-left rotation because the transformation 
can be obtained in two steps by first rotating the subtree with root 
x to the right (so that w becomes the root), and then rotating the 
tree with root r to the left (moving w up to become the new root).

• Note that after the rotation the heights have been restored to h+2 
as they were before the rotation so no other nodes of the tree 
need to be considered.

• Some authors call this rotation double left rotation. The term 
double right-left that we use is more informative.
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Double Right-Left Rotation at x and r

r

x
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Rotations (cont’d)

• In this case, the new balance factors of r and x 
depend on the balance factor of w after the node 
was inserted. The diagram shows the subtrees of w
as having equal heights but it is possible that w may 
be either left or right higher. The resulting balance 
factors are as follows:
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Rotations (cont’d)

• Case 3: Equal Height. This case cannot happen. 
• Remember that we have just inserted a new node 

into the subtree rooted at x, and this subtree now 
has height 2 more than the left subtree of the 
root. The new node went either into the left or 
the right subtree of x. Hence its insertion 
increased the height of only one subtree of x. If 
these subtrees had equal heights after the 
insertion then the height of the full subtree
rooted at x was not changed by the insertion, 
contrary to what we already know.
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Rotations (cont’d)

• Let us now consider the case symmetric to the 
one we considered so far: r was left higher 
and we introduced the new node in the left 
subtree of r.

• In this case we will use single right rotation 
and double left-right rotation to restore the 
AVL property.
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Single Right Rotation at r

r

x
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Double Left-Right Rotation at x and r

r

x
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Rotations are Local

• Rotations are done only when the height of a 
subtree has increased. After the rotation, the 
increase in height has been removed so no 
further rotations or changes of balance 
factors are done.

• So the AVL property is restored with a single 
rotation.
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Example: Building an AVL Tree

• Insert ORY

ORY
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Insert JFK

ORY

JFK
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Insert BRU

• The tree is unbalanced.

ORY

JFK

BRU
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Do a Single Right Rotation at ORY

JFK

BRU ORY
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Insert DUS, ZRH, MEX and ORD

JFK

BRU ORY

DUS MEX ZRH

ORD
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Insert NRT

JFK

BRU ORY

DUS MEX ZRH

ORD

NRT

The subtree rooted at MEX 
is unbalanced.
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Double Right-Left Rotation at ORD and 
MEX

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX
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Insert ARN and GLA

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX

ARN

GLA
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Insert GCM

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX

ARN

GLA

GCM

The subtree rooted at DUS 
becomes unbalanced.
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Double Right-Left Rotation at GLA and 
DUS

JFK

BRU ORY

ZRH

ORD

NRT

MEX

ARN

GLA

GCM

DUS
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Deletion of a Node

• To delete a node from an AVL tree, we will use similar ideas 
with the ones we used for insertion.

• We will reduce the problem to the case when the node x to 
be deleted has at most one child.

• Suppose x has two children. Find the immediate 
predecessor y of x under inorder traversal by first taking 
the left child of x, and then moving right as far as possible 
to obtain y.

• The node y is guaranteed to have no right child because of 
the way it was found.

• Place y into the position in the tree occupied by x.
• Delete y from its former position by proceeding as follows.
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Deletion of a Node (cont’d)

• Delete node y from the tree. Since we know that y has at most one child, 
we delete y by simply linking the parent of y to the single child of y (or to 
NULL, if there is no child).

• The height of the subtree formerly rooted at y has been reduced by 1, and 
we must now trace the effects of this change on height through all the 
nodes on the path from y back to the root of the tree.

• We will use a Boolean variable shorter to show if the height of a 
subtree has been shortened. The action to be taken at each node depends 
on the value of shorter, on the balance factor of the node and 
sometimes on the balance factor of a child of the node.

• The Boolean variable shorter is initially TRUE. The following steps are 
to be done for each node p on the path from the parent of y to the root 
of the tree, provided shorter remains TRUE. When shorter becomes 
FALSE, then no further changes are needed and the algorithm 
terminates.
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Case 1: No rotation

• The current node p has balance factor equal. 
The balance factor of p is changed accordingly 
as its left or right subtree has been shortened, 
and shorter becomes FALSE.
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Case 1 Graphically

Data Structures and Programming 
Techniques

56

p−

Deleted node

T2 T1

p\

Height unchanged

T2

T1



Case 2: No rotation

• The balance factor of p is not equal, and the 
taller subtree was shortened. Change the 
balance factor of p to equal, and leave 
shorter as TRUE.
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Case 2 Graphically
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Case 3

• The balance factor of p is not equal and the 
shorter subtree was shortened. The height 
requirement for an AVL tree is now violated at 
p, so we apply a rotation as follows to restore 
balance.

• Let q be the root of the taller subtree of p (the 
one not shortened). We have three cases 
according to the balance factor of q.
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Case 3a: Single left rotation

• The balance factor of q is equal. A single left 
rotation at p (with changes to the balance 
factors of p and q) restores balance, and 
shorter becomes FALSE.
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Case 3a Graphically
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Case 3b: Single left rotation

• The balance factor of q is the same as that of 
p. Apply a single left rotation at p, set the 
balance factors of p and q to equal, and leave 
shorter as TRUE.
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Case 3b Graphically
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Case 3c: Double right-left rotation

• The balance factors of p and q are opposite. 
Apply a double right-left rotation (first at q, 
then at p), set the balance factor of the new 
root to equal and the other balance factors as 
appropriate, and leave shorter as TRUE.
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Case 3c Graphically
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Example of Deletion in an AVL Tree
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Delete p
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Replace p with o and Delete o
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Adjust Balance Factors
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Balance Factors Adjusted
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Rotate Left at o
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Result of Left Rotation

Data Structures and Programming 
Techniques

72

m//

e

j

k

l

h

ig

f

c

b d

a

o

n t

u

\

/

/

/

−

− −

\

/

/ −

−

−

/

s

−

−

− −r



Double Rotate Left-Right at e and m
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Result of Double Rotation
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Complexity of Operations on AVL Trees

• The operations of search, insertion and deletion 
in an AVL tree visit the nodes along a root-to-leaf 
path of the tree, plus, possibly, their siblings.

• There is a going-down phase which typically 
involves search, and a going-up phase which 
involves rotations.

• The complexity of the work done at each node is 
𝑂 1 .

• Thus, the worst case complexity for search, 
insertion and deletion in an AVL tree with height 
ℎ and 𝑛 nodes is 𝑶 𝒉 = 𝑶 𝐥𝐨𝐠𝒏 .
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C.

– Chapter 9. Section 9.8.

• R. Kruse, C.L. Tondo and B.Leung. Data Structures 
and Program Design in C.

– Chapter 9. Section 9.4.

• M.T. Goodrich, R. Tamassia and D. Mount. Data 
Structures and Algorithms in C++. 2nd edition.

– Section 10.2
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