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External Searching 

• So far we have assumed that our data 
structures are stored in main memory. 
However, if the size of a data structure is too 
big then it will be stored on hard disk. 

• Examples: the database of a bank, a database 
of satellite images, a database of videos etc. 
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External Searching (cont’d) 

• A disk access can be at least 100,000 to 
1,000,000 times longer than a main memory 
access. 

• Thus, for data structures residing on disk, we 
want to minimize disk accesses. 
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(𝑎, 𝑏) Trees 

• An (𝒂, 𝒃) tree, where 𝑎 and 𝑏 are integers, 

such that 2 ≤ 𝑎 ≤
(𝑏+1)

2
, is a multi-way search 

tree 𝑇 with the following additional 
restrictions: 
– Size property: Each internal node has at least 𝑎 

children, unless it is the root, and at most 𝑏 
children. The root can have as few as 2 children. 

– Depth property: All external nodes have the same 
depth. 
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B-Trees 

• We can select the parameters 𝑎 and 𝑏 so that 
each tree node occupies a single disk block or 
page.  

• This gives rise to a well-known external memory 
data structure called the B-tree. 

• A B-tree of order 𝑚 is an (𝑎, 𝑏) tree with 𝑎 = ⌈
𝑚

2
⌉ 

and 𝑏 = 𝑚. 
• We choose 𝑚 such that the 𝑚 children references 

and the 𝑚 − 1 keys stored at a node can all fit 
into a single block. 
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Proposition 

• The height of an (𝑎, 𝑏) tree storing 𝑛 entries is 

𝑂
log 𝑛

log 𝑎
. 

• Proof? 
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Proof 

• Let 𝑇 be an (𝑎, 𝑏) tree storing 𝑛 entries and let ℎ be the height of 𝑇. 
We justify the proposition by proving the following bounds on ℎ: 

1

log 𝑏
log(𝑛 + 1) ≤ ℎ ≤

1

log 𝑎
log

𝑛+1

2
+1 

• By the size and depth properties, the number 𝑛′′ of external nodes 
of 𝑇 is at least 2𝑎ℎ−1 and at most 𝑏ℎ . 

• To see the upper bound, consider that we can have 1 node at level 
0, at most 𝑏 nodes at level 1, at most 𝑏2 nodes at level 2 etc. and at 
most 𝑏ℎ at level ℎ (these are the external nodes). 

• To see the lower bound, consider that we can have 1 node at level 
0, 2 nodes at level 1, at least 2𝑎 nodes at level 2, at least 2𝑎2 at 
level 3 etc. and at least 2𝑎ℎ−1 nodes at level  ℎ. 

Data Structures and Programming 
Techniques 

7 



Proof (cont’d) 

• By an earlier proposition we have that 𝑛′′ = 𝑛 + 1 therefore 
2𝑎ℎ−1 ≤ 𝑛 + 1 ≤ 𝑏ℎ 

• Taking the logarithm of base 2 of each term, we get 
ℎ − 1 log 𝑎 + 1 ≤ log(𝑛 + 1) ≤ ℎ log 𝑏 

• The lower bound we want to prove is obvious from the above 
inequalities. 

• The upper bound we want to prove is also easy to see as follows: 
ℎ log 𝑎 − log 𝑎 + 1 ≤ log(𝑛 + 1) 
ℎ log 𝑎 ≤ log(𝑛 + 1) + log 𝑎 − 1 

ℎ ≤
1

log 𝑎
log

𝑛 + 1

2
+ 1 
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Proposition 

• Let 𝑇 be a B-tree of order 𝑚 and height ℎ. 

Let 𝑑 = ⌈
𝑚

2
⌉ and 𝑛 the number of entries in 

the tree. Then, the following inequalities hold: 

1. 2𝑑ℎ−1 − 1 ≤ 𝑛 ≤ 𝑚ℎ − 1 

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ log𝑑
(𝑛+1)

2
+ 1 

• Proof? 
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Proof 

• Let us prove (1) first.  
• The upper bound follows from the fact that a B-tree of 

order 𝑚 is a multi-way tree and the respective 
proposition we proved for multi-way trees. 

• The lower bound follows from the corresponding result 
we proved for 𝑎, 𝑏  trees. 

• Because the number of external nodes is one plus the 
number of entries of the tree, from this result we have 
𝑛 ≥ 2𝑑ℎ−1 − 1. 

• To prove (2), rewrite the inequalities and then take 
logarithms with bases 𝑚 and 𝑑 for the respective 
terms. 

Data Structures and Programming 
Techniques 

10 



Fact 

• From the previous proposition, we have that 
the height of a B-tree is 𝑶 𝐥𝐨𝐠𝒅 𝒏  as we 
would like it for a balanced search tree. 
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Declarations 

• To implement B-trees in C, we can start with the following 
declarations: 

 

  #define MAX 4         /* maximum number of keys in node */ 

  #define MIN 2         /* minimum number of keys in node */ 

   

  typedef int Key; 

 

  typedef struct { 

    Key key; 

    int value;        /* values can be of arbitrary type */ 

  } Treeentry; 

 

  typedef struct treenode Treenode; 

  struct treenode { 

    int count;           /* number of keys in node */ 

    Treeentry entry[MAX+1]; 

    Treenode *branch[MAX+1]; 

  }; 
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Declarations (cont’d) 

• The constant MAX=𝑚 − 1. The constant 

MIN=
𝑚

2
− 1. 

• The entries at each node are kept in an array 
entry and the pointers in an array branch. 

• The variable count gives us the number of 
keys at a node. 
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Insertion into a B-tree 

• The general method for insertion in a B-tree is as follows. First, a 
search is made to see if the new key is in the tree. This search (if the 
tree is truly new) will terminate in failure at a leaf.  

• The new key is then added to the parent of the leaf node. If the 
node was not previously full, then the insertion is finished. 

• When a key is added to a full node, we have an overflow. Then this 
node splits into two nodes on the same level, except that the 
median key is not put into either of the two new nodes, but is 
instead sent up to the tree to be inserted into the parent node. 

• When a search is later made through the tree, a comparison with 
the median key will serve to direct the search into the proper 
subtree. 
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Example 

• Let us see an example of insertions into an 
initially empty B-tree of order 5. 

Data Structures and Programming 
Techniques 

15 



Insert a 
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Sent j to the Parent Node 
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Final Tree 
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Insertion into a B-tree 

• We will write a recursive function for inserting 
a key into a B-tree. 

• The recursion is started by the function 
InsertTree which calls the recursive 
function PushDown. If the outermost call to 
function PushDown returns TRUE, then 
there is a key to be placed in a new root and 
the height of the tree increases. 
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Insertion into a B-tree (cont’d) 

/* InsertTree: Inserts entry into the B-tree. 

   Pre: The B-tree to which root points has been created, and no entry in the B-tree 

   has key equal to newentry key. 

   Post: newentry has been inserted into the B-tree, the root is returned. 

   Uses: PushDown */ 

 

Treenode *InsertTree(Treeentry newentry, Treenode *root) 

{ 

  Treeentry medentry;   /* node to be reinserted as new root */ 

  Treenode *medright;   /* subtree on right of medentry     */ 

  Treenode *newroot;   /* used when the height of the tree increases */ 

 

  if (PushDown(newentry, root, &medentry, &medright)){ 

    /* Tree grows in height. Make a new root */ 

    newroot=(Treenode *)malloc(sizeof(Treenode)); 

    newroot->count=1; 

    newroot->entry[1]=medentry; 

    newroot->branch[0]=root; 

    newroot->branch[1]=medright; 

    return newroot; 

  } 

  return root; 

} 
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Recursive Insertion into a Subtree 

• The recursive function PushDown recursively moves down the tree 
looking for a position for newentry.  

• We continue searching until we hit an empty subtree. Then we 
return TRUE and send the key (now called medentry) back up for 
insertion. 

• The parameter current points to the root of the subtree being 
searched.  

• medentry is the median key sent up to a parent.  
• When a recursive call returns TRUE, we attempt to insert the key 

medentry in the current node. If there is room, we are finished.  
• Otherwise, the current node *current splits into *current 

and *medright and a (possibly different) median key 
medentry is sent up the tree. 
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Recursive Insertion into a Subtree 
(cont’d) 

/* PushDown: recursively move down tree searching for newentry. 

   Pre: newentry belongs in the subtree to which current points. 

   Post: newentry has been inserted into the subtree to which current points; if TRUE 

   is returned, then the height of the subtree has grown, and medentry needs 

   to be reinserted higher in the tree, with subtree medright on its right. 

   Uses: PushDown recursively, SearchNode, Split, PushIn. */ 

 

Boolean PushDown(Treeentry newentry, Treenode *current, Treeentry *medentry, Treenode **medright) 

{ 

  int pos;              /*branch on which to continues the search */ 

 

  if (current==NULL){  /* cannot insert into empty tree; terminates */ 

    *medentry=newentry; 

    *medright=NULL; 

    return TRUE; 

  } else {             /* Search the current node */ 

    if (SearchNode(newentry.key, current, &pos)) 

      printf("Inserting duplicate key into B-tree"); 

    if (PushDown(newentry, current->branch[pos], medentry, medright)) 

      if (current->count < MAX){    /*Reinsert median key.  */ 

        PushIn(*medentry, *medright, current, pos); 

        return FALSE; 

      } else { 

        Split(*medentry, *medright, current, pos, medentry, medright); 

        return TRUE; 

      } 

    return FALSE; 

  } 

} 
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Searching a Node 

• The Boolean function SearchNode determines if the 
target key target is in the current node and, if not, 
finds which of the count+1 branches will contain the 
target key. 

• The position of the target or the branch to continue 
searching is returned in variable pos. 

• The branch 0 is considered separately. For the rest of 
the entries, the function SearchNode uses 
sequential search starting at the end of the array 
entry.  

• If nodes of the tree contain many keys, we might want 
to use binary search. 
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Searching a Node (cont’d) 

/* SearchNode: searches keys in node for target. 

   Pre: target is a key and current points to a node of a B-tree. 

   Post: Searches keys in node for target; returns location pos of 

   target, or branch on which to continue search.*/ 

 

Boolean SearchNode(Key target, Treenode *current, int *pos) 

{ 

  if (target < current->entry[1].key){  /* Take the leftmost branch */ 

    *pos=0; 

    return FALSE; 

  } else {           /* Start a sequential search through the keys */ 

    for (*pos=current->count; target < current->entry[*pos].key && 
*pos > 1; (*pos)--) 

      ; 

    return (target == current->entry[*pos].key); 

  } 

} 
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Insertion of a Key into a Node 

• The function PushIn inserts the key 
medentry and its right-hand pointer 
medright into node *current at position 
pos provided that there is space. 
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Insertion of a Key into a Node (cont’d) 

/* PushIn: inserts a key into a node. 

   Pre: medentry belongs at index pos in node *current, which has room 

   for it. 

   Post: Inserts key medentry and pointer medright into *current at  

   index pos. */ 

 

void PushIn(Treeentry medentry, Treenode *medright, Treenode *current, int pos) 

{ 

  int i;        /* index to move keys to make room for medentry */ 

 

  for (i=current->count; i>pos; i--){ 

    /* Shift all keys and branches to the right */ 

    current->entry[i+1]=current->entry[i]; 

    current->branch[i+1]=current->branch[i]; 

  } 

  current->entry[pos+1]=medentry; 

  current->branch[pos+1]=medright; 

  current->count++; 

} 
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Splitting a Full Node 

• The function Split inserts the key 
medentry with subtree pointer medright 
into the full node *current, splits the right 
half off as new node *newright, and sends 
the median key newmedian upward for 
reinsertion later. 
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Splitting a Full Node 
/* Split: splits a full node. 

   Pre: medentry belongs at index pos of node *current which is full. 

   Post: Splits node *current with entry medentry and pointer medright at index pos 

         into nodes *current and *newright with median entry newmedian. 

   Uses: PushIn */ 

 

void Split(Treeentry medentry, Treenode *medright, Treenode *current, int pos, Treeentry *newmedian, Treenode **newright) 

{ 

  int i;             /* used for copying from *current to new node */ 

  int median;        /* median position in the combined, overfull node */ 

 

  if (pos<=MIN)     /* Find splitting point. Determine if new key goes to left or right half */ 

    median=MIN; 

  else 

    median=MIN+1; 

 

  /* Get a new node and put it on the right */ 

  *newright=(Treenode *)malloc(sizeof(Treenode)); 

  for (i=median+1; i<=MAX; i++){    /* Move half the keys to the right node */ 

    (*newright)->entry[i-median]=current->entry[i]; 

    (*newright)->branch[i-median]=current->branch[i]; 

  } 

  (*newright)->count=MAX-median; 

  current->count=median; 

 

  if (pos <= MIN)          /* Push in the new key */ 

    PushIn(medentry, medright, current, pos); 

  else 

    PushIn(medentry, medright, *newright, pos-median); 

  *newmedian=current->entry[current->count]; 

  (*newright)->branch[0]=current->branch[current->count]; 

  current->count--; 

} 
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Deletion from a B-tree 

• Let us now see how we delete a key from a B-tree. 
• If the key to be deleted is in a node with only external 

nodes as children, then it can be deleted immediately. 
• If the key to be deleted is in an internal node with only 

internal nodes as children, then its immediate 
predecessor (or successor) under the natural order of 
keys is guaranteed to be in a node with only external-
node children. (Proof?) 

• Hence, we can promote the immediate predecessor or 
successor into the position occupied by the key to be 
deleted, and delete the key from the node with only 
external-node children. 
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Deletion from a B-tree (cont’d) 

• If the node where the deletion takes place contains more than the 
minimum number of keys, then one can be deleted with no further action.  

• If the node contains the minimum number, then we first look at its two 
immediate siblings (or in the case of a node on the outside, one sibling). 

• If one of these has more than the minimum number for entries, then we 
can do a transfer operation: one child of the sibling is moved to the node 
where the deletion takes place, one of the keys of the sibling is moved into 
the parent node, and a key from the parent node is moved into the node 
where the deletion takes place.  

• If the immediate sibling has only the minimum number of keys then we 
perform a fusion operation: the current node and its sibling are merged 
into a new node and a key is moved from the parent into this new node. 

• If this step leaves the parent with too few entries, the process propagates 
upward. 
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Example 
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Deletion Function 

/* DeleteTree: deletes target from the B-tree. 

   Pre: target is the key of some entry in the B-tree to which root 

   points. 

   Post: This entry has been deleted from the B-tree. 

   Uses: RecDeleteTree */ 

 

Treenode *DeleteTree(Key target, Treenode *root) 

{ 

  Treenode *oldroot;      /* used to dispose of an empty root */ 

 

  RecDeleteTree(target, root); 

  if (root->count==0){    /* root is empty */ 

    oldroot=root; 

    root=root->branch[0]; 

    free(oldroot); 

  } 

  return root; 

} 
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Recursive Deletion 

• Most of the work is done in the recursive function 
RecDeleteTree.  

• This function first searches the current node for the target. 
If it is found and the node has only internal-node children, 
then the immediate successor of the key is found and is 
placed in the current node, and the successor is deleted.  

• Deletion from a node with only external-node children is 
straightforward. 

• Otherwise, the function continues recursively. When a 
recursive call returns, the function checks to see if enough 
entries remain in the appropriate node, and, if not, moves 
entries as required.  
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Recursive Deletion (cont’d) 

/* RecDeleteTree: look for target to delete. 

   Pre: target is the key of some entry in the subtree of a B-tree to which current points. 

   Post: This entry has been deleted from the B-tree. 

   Uses: RecDeleteTree recursively, SearchNode, Successor, Remove, Restore */ 

 

void RecDeleteTree(Key target, Treenode *current) 

{ 

  int pos;          /* location of target or of branch on which to search */ 

  if (!current){ 

    printf("Target was not in the B-tree"); 

    return;         /* Hitting an empty tree is an error */ 

  } else { 

    if (SearchNode(target, current, &pos)) 

      if (current->branch[pos-1]){ 

        Successor(current, pos);  /* replaces entry[pos] by its successor */ 

        RecDeleteTree(current->entry[pos].key, current->branch[pos]); 

      } else 

        Remove(current, pos);  /* removes key from pos of *current */ 

    else                    /* Target was not found in the current node */ 

      RecDeleteTree(target, current->branch[pos]); 

    if (current->branch[pos]) 

      if (current->branch[pos]->count < MIN) 

        Restore(current, pos); 

  } 

} 
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Auxiliary Functions 

/* Remove: delete an entry and the branch to its right. 

   Pre: current points to a node in a B-tree with an entry 

   in index pos. 

   Post: This entry and the branch to its right are 

   removed from *current */ 

 

 

void Remove(Treenode *current, int pos) 

{ 

  int i;        /* index for moving entries */ 

  for (i=pos+1; i<=current->count; i++){ 

    current->entry[i-1]=current->entry[i]; 

    current->branch[i-1]=current->branch[i]; 

  } 

  current->count--; 

} 
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Auxiliary Functions (cont’d) 

/* Successor: replaces an entry by its 

   immediate successor. 

   Pre: current points to a node in a B-tree with an 

   entry in index pos. 

   Post: This entry is replaced by its immediate 

   successor under order of keys. */ 

 

void Successor(Treenode *current, int pos) 

{ 

 

/* The code is left as exercise */ 

 

} 
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Auxiliary Functions (cont’d) 

• The function Restore implements the 
transfer or fusion operation required when we 
have an underflow. 

• The transfer operation is implemented by 
functions MoveLeft and MoveRight. 

• The fusion operation is implemented by 
function Combine. 
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Auxiliary Functions (cont’d) 

/* Restore: restore the minimum number of entries. 

Pre: current points to a node in a B-tree with an entry in index pos; the branch to 

the right of pos has one too few entries. 

Post: An entry taken from elsewhere is used to restore the minimum number of entries by 

entering it at current->branch[pos]. 

Uses: MoveLeft, MoveRight, Combine */ 

 

 

void Restore(Treenode *current, int pos) 

{ 

if (pos==0)       /* case: leftmost key */ 

  if (current->branch[1]->count > MIN) 

    MoveLeft(current, 1); 

  else 

    Combine(current, 1); 

  else if (pos == current->count) /*case: rightmost key */ 

    if (current->branch[pos-1]->count > MIN) 

      MoveRight(current, pos); 

    else 

      Combine(current, pos); 

  else if (current->branch[pos-1]->count > MIN) 

    MoveRight(current, pos); 

  else if (current->branch[pos+1]->count > MIN) 

    MoveLeft(current, pos+1); 

  else 

    Combine(current, pos); 

} 
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Auxiliary Functions (cont’d) 

/* MoveRight: move a key to the right. 

   Pre: current points to a node in a B-tree with entries in the branches pos and 

   pos-1, with too few entries in branch pos. 

   Post: The rightmost entry from branch pos-1 has moved into *current, which has 

   sent an entry into the branch pos */ 

 

 

void MoveRight(Treenode *current, int pos) 

{ 

  int c; 

  Treenode *t; 

  t=current->branch[pos]; 

  for (c=t->count; c>0; c--){ 

  /* shift all keys in the right node one position */ 

    t->entry[c+1]=t->entry[c]; 

    t->branch[c+1]=t->branch[c]; 

  } 

  t->branch[1]=t->branch[0];   /* move key from parent to right node */ 

  t->count++; 

  t->entry[1]=current->entry[pos]; 

  t=current->branch[pos-1];   /* move last key of left node into parent */ 

  current->entry[pos]=t->entry[t->count]; 

  current->branch[pos]->branch[0]=t->branch[t->count]; 

  t->count--; 

} 
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Auxiliary Functions (cont’d) 

/* MoveLeft: move a key to the left. 

Pre: current points to a node in a B-tree with entries in the branches pos and 

pos-1, with too few in branch pos-1. 

Post: The leftmost entry from branch pos has moved into *current, which has sent 

an entry into the branch pos-1 */ 

 

void MoveLeft(Treenode *current, int pos) 

{ 

  int c; 

  Treenode *t; 

  t=current->branch[pos-1];   /* move key from parent into left node */ 

  t->count++; 

  t->entry[t->count]=current->entry[pos]; 

  t->branch[t->count]=current->branch[pos]->branch[0]; 

  t=current->branch[pos];  /* Move first key from right node into parent */ 

  current->entry[pos]=t->entry[1]; 

  t->branch[0]=t->branch[1]; 

  t->count--; 

  for (c=1; c<=t->count; c++){ 

    /* shift all keys in the right node one position leftward */ 

    t->entry[c]=t->entry[c+1]; 

    t->branch[c]=t->branch[c+1]; 

  } 

} 
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Auxiliary Functions 

/* Combine: combine adjacent nodes. 

   Pre: current points to a node in a B-tree with entries in the branches pos and 

   pos-1, with too few to move entries. 

   Post: The nodes at branches pos-1 and pos have been combined into one node, 

   which also includes the entry formerly in *current at index pos. */ 

 

void Combine(Treenode *current, int pos) 

{ 

  int c; 

  Treenode *right; 

  Treenode *left; 

  right=current->branch[pos]; 

  left=current->branch[pos-1];    /* work with the left node */ 

  left->count++;                  /* insert the key from the parent */ 

  left->entry[left->count]=current->entry[pos]; 

  left->branch[left->count]=right->branch[0]; 

  for (c=1; c<=right->count; c++){ /* insert all keys from right node */ 

    left->count++; 

    left->entry[left->count]=right->entry[c]; 

    left->branch[left->count]=right->branch[c]; 

  } 

  for (c=pos; c< current->count; c++){  /* delete key from parent node */ 

    current->entry[c]=current->entry[c+1]; 

    current->branch[c]=current->branch[c+1]; 

  } 

  current->count--; 

  free(right);           /* dispose of the empty right node */ 

} 
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Complexity of Operations in a B-tree 

• As we have shown for multi-way trees, the 
complexity of search, insertion and deletion in 
a B-tree of order 𝑚 is 𝑂 ℎ𝑡  where 𝑂(𝑡) is the 
time it takes to implement split, transfer or 
fusion using the data structure implementing 
each node of the tree. 

• If we count only disk block operations then 
𝑂 𝑡 = 𝑂(1). Therefore, the complexity of 
each operation is 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒎

𝟐

𝒏). 
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B+-trees 

• A variation of B-trees called B+-trees is one of 
the most important indexing structures used 
in today’s file systems and relational database 
management systems. 
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B+-tree Example 
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Readings 

• The code we presented is from the following book: 
– R. Kruse, C. L. Tondo and B. Leung. Data Structures and 

Program Design in C. 
• Chapter 10 

• The theoretical results are from the following books: 
– M. T. Goodrich, R. Tamassia and D. Mount. Data Structures 

and Algorithms in C++. 2nd edition. John Wiley. 

– Sartaj Sahni. Δομές Δεδομένων, Αλγόριθμοι και 
Εφαρμογές στη C++. Εκδόσεις Τζιόλα. 

• R. Sedgewick. Αλγόριθμοι σε C. 
– Κεφ. 16.3 
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