
B-Trees

Data Structures and Programming
Techniques

1

External Searching

• So far we have assumed that our data
structures are stored in main memory.
However, if the size of a data structure is too
big then it will be stored on hard disk.

• Examples: the database of a bank, a database
of satellite images, a database of videos etc.

Data Structures and Programming
Techniques

2

External Searching (cont’d)

• A disk access can be at least 100,000 to
1,000,000 times longer than a main memory
access.

• Thus, for data structures residing on disk, we
want to minimize disk accesses.

Data Structures and Programming
Techniques

3

(𝑎, 𝑏) Trees

• An (𝒂, 𝒃) tree, where 𝑎 and 𝑏 are integers,

such that 2 ≤ 𝑎 ≤
(𝑏+1)

2
, is a multi-way search

tree 𝑇 with the following additional
restrictions:
– Size property: Each internal node has at least 𝑎

children, unless it is the root, and at most 𝑏
children. The root can have as few as 2 children.

– Depth property: All external nodes have the same
depth.

Data Structures and Programming
Techniques

4

B-Trees

• We can select the parameters 𝑎 and 𝑏 so that
each tree node occupies a single disk block or
page.

• This gives rise to a well-known external memory
data structure called the B-tree.

• A B-tree of order 𝑚 is an (𝑎, 𝑏) tree with 𝑎 = ⌈
𝑚

2
⌉

and 𝑏 = 𝑚.
• We choose 𝑚 such that the 𝑚 children references

and the 𝑚 − 1 keys stored at a node can all fit
into a single block.

Data Structures and Programming
Techniques

5

Proposition

• The height of an (𝑎, 𝑏) tree storing 𝑛 entries is

𝑂
log 𝑛

log 𝑎
.

• Proof?

Data Structures and Programming
Techniques

6

Proof

• Let 𝑇 be an (𝑎, 𝑏) tree storing 𝑛 entries and let ℎ be the height of 𝑇.
We justify the proposition by proving the following bounds on ℎ:

1

log 𝑏
log(𝑛 + 1) ≤ ℎ ≤

1

log 𝑎
log

𝑛+1

2
+1

• By the size and depth properties, the number 𝑛′′ of external nodes
of 𝑇 is at least 2𝑎ℎ−1 and at most 𝑏ℎ .

• To see the upper bound, consider that we can have 1 node at level
0, at most 𝑏 nodes at level 1, at most 𝑏2 nodes at level 2 etc. and at
most 𝑏ℎ at level ℎ (these are the external nodes).

• To see the lower bound, consider that we can have 1 node at level
0, 2 nodes at level 1, at least 2𝑎 nodes at level 2, at least 2𝑎2 at
level 3 etc. and at least 2𝑎ℎ−1 nodes at level ℎ.

Data Structures and Programming
Techniques

7

Proof (cont’d)

• By an earlier proposition we have that 𝑛′′ = 𝑛 + 1 therefore
2𝑎ℎ−1 ≤ 𝑛 + 1 ≤ 𝑏ℎ

• Taking the logarithm of base 2 of each term, we get
ℎ − 1 log 𝑎 + 1 ≤ log(𝑛 + 1) ≤ ℎ log 𝑏

• The lower bound we want to prove is obvious from the above
inequalities.

• The upper bound we want to prove is also easy to see as follows:
ℎ log 𝑎 − log 𝑎 + 1 ≤ log(𝑛 + 1)
ℎ log 𝑎 ≤ log(𝑛 + 1) + log 𝑎 − 1

ℎ ≤
1

log 𝑎
log

𝑛 + 1

2
+ 1

Data Structures and Programming
Techniques

8

Proposition

• Let 𝑇 be a B-tree of order 𝑚 and height ℎ.

Let 𝑑 = ⌈
𝑚

2
⌉ and 𝑛 the number of entries in

the tree. Then, the following inequalities hold:

1. 2𝑑ℎ−1 − 1 ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ log𝑑
(𝑛+1)

2
+ 1

• Proof?

Data Structures and Programming
Techniques

9

Proof

• Let us prove (1) first.
• The upper bound follows from the fact that a B-tree of

order 𝑚 is a multi-way tree and the respective
proposition we proved for multi-way trees.

• The lower bound follows from the corresponding result
we proved for 𝑎, 𝑏 trees.

• Because the number of external nodes is one plus the
number of entries of the tree, from this result we have
𝑛 ≥ 2𝑑ℎ−1 − 1.

• To prove (2), rewrite the inequalities and then take
logarithms with bases 𝑚 and 𝑑 for the respective
terms.

Data Structures and Programming
Techniques

10

Fact

• From the previous proposition, we have that
the height of a B-tree is 𝑶 𝐥𝐨𝐠𝒅 𝒏 as we
would like it for a balanced search tree.

Data Structures and Programming
Techniques

11

Declarations

• To implement B-trees in C, we can start with the following
declarations:

 #define MAX 4 /* maximum number of keys in node */

 #define MIN 2 /* minimum number of keys in node */

 typedef int Key;

 typedef struct {

 Key key;

 int value; /* values can be of arbitrary type */

 } Treeentry;

 typedef struct treenode Treenode;

 struct treenode {

 int count; /* number of keys in node */

 Treeentry entry[MAX+1];

 Treenode *branch[MAX+1];

 };

Data Structures and Programming
Techniques

12

Declarations (cont’d)

• The constant MAX=𝑚 − 1. The constant

MIN=
𝑚

2
− 1.

• The entries at each node are kept in an array
entry and the pointers in an array branch.

• The variable count gives us the number of
keys at a node.

Data Structures and Programming
Techniques

13

Insertion into a B-tree

• The general method for insertion in a B-tree is as follows. First, a
search is made to see if the new key is in the tree. This search (if the
tree is truly new) will terminate in failure at a leaf.

• The new key is then added to the parent of the leaf node. If the
node was not previously full, then the insertion is finished.

• When a key is added to a full node, we have an overflow. Then this
node splits into two nodes on the same level, except that the
median key is not put into either of the two new nodes, but is
instead sent up to the tree to be inserted into the parent node.

• When a search is later made through the tree, a comparison with
the median key will serve to direct the search into the proper
subtree.

Data Structures and Programming
Techniques

14

Example

• Let us see an example of insertions into an
initially empty B-tree of order 5.

Data Structures and Programming
Techniques

15

Insert a

Data Structures and Programming
Techniques

16

a

Insert g

Data Structures and Programming
Techniques

17

a g

Insert f

Data Structures and Programming
Techniques

18

a f g

Insert b

Data Structures and Programming
Techniques

19

a b f g

Insert k - Overflow

Data Structures and Programming
Techniques

20

a b f g k

Creation of a New Root Node

Data Structures and Programming
Techniques

21

a b g k

f

Split

Data Structures and Programming
Techniques

22

a b

f

g k

Insert d

Data Structures and Programming
Techniques

23

a b d

f

g k

Insert h

Data Structures and Programming
Techniques

24

a b d

f

g h k

Insert m

Data Structures and Programming
Techniques

25

a b d

f

g h k m

Insert j - Overflow

Data Structures and Programming
Techniques

26

a b d

f

g h j k m

Sent j to the Parent Node

Data Structures and Programming
Techniques

27

a b d

f

g h k m

j

Split

Data Structures and Programming
Techniques

28

a b d

f j

g h k m

Insert e

Data Structures and Programming
Techniques

29

a b d e

f j

g h k m

Insert s

Data Structures and Programming
Techniques

30

a b d e

f j

g h k m s

Insert i

Data Structures and Programming
Techniques

31

a b d e

f j

g h i k m s

Insert r

Data Structures and Programming
Techniques

32

a b d e

f j

g h i k m r s

Insert x - Overflow

Data Structures and Programming
Techniques

33

a b d e

f j

g h i k m r s x

r is Sent to the Parent Node

Data Structures and Programming
Techniques

34

a b d e

f j

g h i k m s x

r

Split

Data Structures and Programming
Techniques

35

a b d e

f j r

g h i k m s x

Insert c - Overflow

Data Structures and Programming
Techniques

36

a b c d e

f j r

g h i k m s x

c is Sent to the Parent

Data Structures and Programming
Techniques

37

a b d e

f j r

g h i k m s x

c

Split

Data Structures and Programming
Techniques

38

a b

c f j r

g h i k m s x d e

Insert l

Data Structures and Programming
Techniques

39

a b

c f j r

g h i k l m s x d e

Insert n

Data Structures and Programming
Techniques

40

a b

c f j r

g h i k l m n s x d e

Insert t

Data Structures and Programming
Techniques

41

a b

c f j r

g h i k l m n s t x d e

Insert u

Data Structures and Programming
Techniques

42

a b

c f j r

g h i k l m n s t u x d e

Insert p - Overflow

Data Structures and Programming
Techniques

43

a b

c f j r

g h i k l m n p s t u x d e

m is Sent to the Parent Node

Data Structures and Programming
Techniques

44

a b

c f j r

g h i k l n p s t u x d e

m

Split

Data Structures and Programming
Techniques

45

a b

c f j m r

g h i k l s t u x d e n p

Overflow at the Root

Data Structures and Programming
Techniques

46

a b

c f j m r

g h i k l s t u x d e n p

j is Sent up to a New Root

Data Structures and Programming
Techniques

47

a b

c f m r

g h i k l s t u x d e n p

j

Split

Data Structures and Programming
Techniques

48

a b

c f

g h i k l s t u x d e n p

j

m r

Final Tree

Data Structures and Programming
Techniques

49

a b

c f

g h i k l s t u x d e n p

j

m r

Insertion into a B-tree

• We will write a recursive function for inserting
a key into a B-tree.

• The recursion is started by the function
InsertTree which calls the recursive
function PushDown. If the outermost call to
function PushDown returns TRUE, then
there is a key to be placed in a new root and
the height of the tree increases.

Data Structures and Programming
Techniques

50

Insertion into a B-tree (cont’d)

/* InsertTree: Inserts entry into the B-tree.

 Pre: The B-tree to which root points has been created, and no entry in the B-tree

 has key equal to newentry key.

 Post: newentry has been inserted into the B-tree, the root is returned.

 Uses: PushDown */

Treenode *InsertTree(Treeentry newentry, Treenode *root)

{

 Treeentry medentry; /* node to be reinserted as new root */

 Treenode *medright; /* subtree on right of medentry */

 Treenode *newroot; /* used when the height of the tree increases */

 if (PushDown(newentry, root, &medentry, &medright)){

 /* Tree grows in height. Make a new root */

 newroot=(Treenode *)malloc(sizeof(Treenode));

 newroot->count=1;

 newroot->entry[1]=medentry;

 newroot->branch[0]=root;

 newroot->branch[1]=medright;

 return newroot;

 }

 return root;

}

Data Structures and Programming
Techniques

51

Recursive Insertion into a Subtree

• The recursive function PushDown recursively moves down the tree
looking for a position for newentry.

• We continue searching until we hit an empty subtree. Then we
return TRUE and send the key (now called medentry) back up for
insertion.

• The parameter current points to the root of the subtree being
searched.

• medentry is the median key sent up to a parent.
• When a recursive call returns TRUE, we attempt to insert the key

medentry in the current node. If there is room, we are finished.
• Otherwise, the current node *current splits into *current

and *medright and a (possibly different) median key
medentry is sent up the tree.

Data Structures and Programming
Techniques

52

Recursive Insertion into a Subtree
(cont’d)

/* PushDown: recursively move down tree searching for newentry.

 Pre: newentry belongs in the subtree to which current points.

 Post: newentry has been inserted into the subtree to which current points; if TRUE

 is returned, then the height of the subtree has grown, and medentry needs

 to be reinserted higher in the tree, with subtree medright on its right.

 Uses: PushDown recursively, SearchNode, Split, PushIn. */

Boolean PushDown(Treeentry newentry, Treenode *current, Treeentry *medentry, Treenode **medright)

{

 int pos; /*branch on which to continues the search */

 if (current==NULL){ /* cannot insert into empty tree; terminates */

 *medentry=newentry;

 *medright=NULL;

 return TRUE;

 } else { /* Search the current node */

 if (SearchNode(newentry.key, current, &pos))

 printf("Inserting duplicate key into B-tree");

 if (PushDown(newentry, current->branch[pos], medentry, medright))

 if (current->count < MAX){ /*Reinsert median key. */

 PushIn(*medentry, *medright, current, pos);

 return FALSE;

 } else {

 Split(*medentry, *medright, current, pos, medentry, medright);

 return TRUE;

 }

 return FALSE;

 }

}

Data Structures and Programming
Techniques

53

Searching a Node

• The Boolean function SearchNode determines if the
target key target is in the current node and, if not,
finds which of the count+1 branches will contain the
target key.

• The position of the target or the branch to continue
searching is returned in variable pos.

• The branch 0 is considered separately. For the rest of
the entries, the function SearchNode uses
sequential search starting at the end of the array
entry.

• If nodes of the tree contain many keys, we might want
to use binary search.

Data Structures and Programming
Techniques

54

Searching a Node (cont’d)

/* SearchNode: searches keys in node for target.

 Pre: target is a key and current points to a node of a B-tree.

 Post: Searches keys in node for target; returns location pos of

 target, or branch on which to continue search.*/

Boolean SearchNode(Key target, Treenode *current, int *pos)

{

 if (target < current->entry[1].key){ /* Take the leftmost branch */

 *pos=0;

 return FALSE;

 } else { /* Start a sequential search through the keys */

 for (*pos=current->count; target < current->entry[*pos].key &&
*pos > 1; (*pos)--)

 ;

 return (target == current->entry[*pos].key);

 }

}

Data Structures and Programming
Techniques

55

Insertion of a Key into a Node

• The function PushIn inserts the key
medentry and its right-hand pointer
medright into node *current at position
pos provided that there is space.

Data Structures and Programming
Techniques

56

Insertion of a Key into a Node (cont’d)

/* PushIn: inserts a key into a node.

 Pre: medentry belongs at index pos in node *current, which has room

 for it.

 Post: Inserts key medentry and pointer medright into *current at

 index pos. */

void PushIn(Treeentry medentry, Treenode *medright, Treenode *current, int pos)

{

 int i; /* index to move keys to make room for medentry */

 for (i=current->count; i>pos; i--){

 /* Shift all keys and branches to the right */

 current->entry[i+1]=current->entry[i];

 current->branch[i+1]=current->branch[i];

 }

 current->entry[pos+1]=medentry;

 current->branch[pos+1]=medright;

 current->count++;

}

Data Structures and Programming
Techniques

57

Splitting a Full Node

• The function Split inserts the key
medentry with subtree pointer medright
into the full node *current, splits the right
half off as new node *newright, and sends
the median key newmedian upward for
reinsertion later.

Data Structures and Programming
Techniques

58

Splitting a Full Node
/* Split: splits a full node.

 Pre: medentry belongs at index pos of node *current which is full.

 Post: Splits node *current with entry medentry and pointer medright at index pos

 into nodes *current and *newright with median entry newmedian.

 Uses: PushIn */

void Split(Treeentry medentry, Treenode *medright, Treenode *current, int pos, Treeentry *newmedian, Treenode **newright)

{

 int i; /* used for copying from *current to new node */

 int median; /* median position in the combined, overfull node */

 if (pos<=MIN) /* Find splitting point. Determine if new key goes to left or right half */

 median=MIN;

 else

 median=MIN+1;

 /* Get a new node and put it on the right */

 *newright=(Treenode *)malloc(sizeof(Treenode));

 for (i=median+1; i<=MAX; i++){ /* Move half the keys to the right node */

 (*newright)->entry[i-median]=current->entry[i];

 (*newright)->branch[i-median]=current->branch[i];

 }

 (*newright)->count=MAX-median;

 current->count=median;

 if (pos <= MIN) /* Push in the new key */

 PushIn(medentry, medright, current, pos);

 else

 PushIn(medentry, medright, *newright, pos-median);

 *newmedian=current->entry[current->count];

 (*newright)->branch[0]=current->branch[current->count];

 current->count--;

}

Data Structures and Programming
Techniques

59

Deletion from a B-tree

• Let us now see how we delete a key from a B-tree.
• If the key to be deleted is in a node with only external

nodes as children, then it can be deleted immediately.
• If the key to be deleted is in an internal node with only

internal nodes as children, then its immediate
predecessor (or successor) under the natural order of
keys is guaranteed to be in a node with only external-
node children. (Proof?)

• Hence, we can promote the immediate predecessor or
successor into the position occupied by the key to be
deleted, and delete the key from the node with only
external-node children.

Data Structures and Programming
Techniques

60

Deletion from a B-tree (cont’d)

• If the node where the deletion takes place contains more than the
minimum number of keys, then one can be deleted with no further action.

• If the node contains the minimum number, then we first look at its two
immediate siblings (or in the case of a node on the outside, one sibling).

• If one of these has more than the minimum number for entries, then we
can do a transfer operation: one child of the sibling is moved to the node
where the deletion takes place, one of the keys of the sibling is moved into
the parent node, and a key from the parent node is moved into the node
where the deletion takes place.

• If the immediate sibling has only the minimum number of keys then we
perform a fusion operation: the current node and its sibling are merged
into a new node and a key is moved from the parent into this new node.

• If this step leaves the parent with too few entries, the process propagates
upward.

Data Structures and Programming
Techniques

61

Example

Data Structures and Programming
Techniques

62

a b

c f

g h i k l s t u x d e n p

j

m r

Delete h

Data Structures and Programming
Techniques

63

a b

c f

g i k l s t u x d e n p

j

m r

Delete r

Data Structures and Programming
Techniques

64

a b

c f

g i k l s t u x d e n p

j

m r

Find the Successor of r

Data Structures and Programming
Techniques

65

a b

c f

g i k l s t u x d e n p

j

m r

Promote the Successor of r – Delete
the Successor from its Place

Data Structures and Programming
Techniques

66

a b

c f

g i k l t u x d e n p

j

m s

Delete p

Data Structures and Programming
Techniques

67

a b

c f

g i k l t u x d e n p

j

m s

Transfer

Data Structures and Programming
Techniques

68

a b

c f

g i k l u x d e n

j

m

t
s

After the Transfer

Data Structures and Programming
Techniques

69

a b

c f

g i k l u x d e n s

j

m t

Delete d

Data Structures and Programming
Techniques

70

a b

c f

g i k l u x e n s

j

m t

d

Fusion

Data Structures and Programming
Techniques

71

a b

 f

g i k l u x e n s

j

m t

c

After the Fusion – Underflow at f

Data Structures and Programming
Techniques

72

a b c e

 f

g i k l u x n s

j

m t

Fusion

Data Structures and Programming
Techniques

73

a b c e

f

g i k l u x n s

j

m t

After the Fusion – Delete Root

Data Structures and Programming
Techniques

74

a b c e g i k l u x n s

f j m t

Final Tree

Data Structures and Programming
Techniques

75

a b c e g i k l u x n s

f j m t

Deletion Function

/* DeleteTree: deletes target from the B-tree.

 Pre: target is the key of some entry in the B-tree to which root

 points.

 Post: This entry has been deleted from the B-tree.

 Uses: RecDeleteTree */

Treenode *DeleteTree(Key target, Treenode *root)

{

 Treenode *oldroot; /* used to dispose of an empty root */

 RecDeleteTree(target, root);

 if (root->count==0){ /* root is empty */

 oldroot=root;

 root=root->branch[0];

 free(oldroot);

 }

 return root;

}

Data Structures and Programming
Techniques

76

Recursive Deletion

• Most of the work is done in the recursive function
RecDeleteTree.

• This function first searches the current node for the target.
If it is found and the node has only internal-node children,
then the immediate successor of the key is found and is
placed in the current node, and the successor is deleted.

• Deletion from a node with only external-node children is
straightforward.

• Otherwise, the function continues recursively. When a
recursive call returns, the function checks to see if enough
entries remain in the appropriate node, and, if not, moves
entries as required.

Data Structures and Programming
Techniques

77

Recursive Deletion (cont’d)

/* RecDeleteTree: look for target to delete.

 Pre: target is the key of some entry in the subtree of a B-tree to which current points.

 Post: This entry has been deleted from the B-tree.

 Uses: RecDeleteTree recursively, SearchNode, Successor, Remove, Restore */

void RecDeleteTree(Key target, Treenode *current)

{

 int pos; /* location of target or of branch on which to search */

 if (!current){

 printf("Target was not in the B-tree");

 return; /* Hitting an empty tree is an error */

 } else {

 if (SearchNode(target, current, &pos))

 if (current->branch[pos-1]){

 Successor(current, pos); /* replaces entry[pos] by its successor */

 RecDeleteTree(current->entry[pos].key, current->branch[pos]);

 } else

 Remove(current, pos); /* removes key from pos of *current */

 else /* Target was not found in the current node */

 RecDeleteTree(target, current->branch[pos]);

 if (current->branch[pos])

 if (current->branch[pos]->count < MIN)

 Restore(current, pos);

 }

}

Data Structures and Programming
Techniques

78

Auxiliary Functions

/* Remove: delete an entry and the branch to its right.

 Pre: current points to a node in a B-tree with an entry

 in index pos.

 Post: This entry and the branch to its right are

 removed from *current */

void Remove(Treenode *current, int pos)

{

 int i; /* index for moving entries */

 for (i=pos+1; i<=current->count; i++){

 current->entry[i-1]=current->entry[i];

 current->branch[i-1]=current->branch[i];

 }

 current->count--;

}

Data Structures and Programming
Techniques

79

Auxiliary Functions (cont’d)

/* Successor: replaces an entry by its

 immediate successor.

 Pre: current points to a node in a B-tree with an

 entry in index pos.

 Post: This entry is replaced by its immediate

 successor under order of keys. */

void Successor(Treenode *current, int pos)

{

/* The code is left as exercise */

}

Data Structures and Programming
Techniques

80

Auxiliary Functions (cont’d)

• The function Restore implements the
transfer or fusion operation required when we
have an underflow.

• The transfer operation is implemented by
functions MoveLeft and MoveRight.

• The fusion operation is implemented by
function Combine.

Data Structures and Programming
Techniques

81

Auxiliary Functions (cont’d)

/* Restore: restore the minimum number of entries.

Pre: current points to a node in a B-tree with an entry in index pos; the branch to

the right of pos has one too few entries.

Post: An entry taken from elsewhere is used to restore the minimum number of entries by

entering it at current->branch[pos].

Uses: MoveLeft, MoveRight, Combine */

void Restore(Treenode *current, int pos)

{

if (pos==0) /* case: leftmost key */

 if (current->branch[1]->count > MIN)

 MoveLeft(current, 1);

 else

 Combine(current, 1);

 else if (pos == current->count) /*case: rightmost key */

 if (current->branch[pos-1]->count > MIN)

 MoveRight(current, pos);

 else

 Combine(current, pos);

 else if (current->branch[pos-1]->count > MIN)

 MoveRight(current, pos);

 else if (current->branch[pos+1]->count > MIN)

 MoveLeft(current, pos+1);

 else

 Combine(current, pos);

}

Data Structures and Programming
Techniques

82

Auxiliary Functions (cont’d)

/* MoveRight: move a key to the right.

 Pre: current points to a node in a B-tree with entries in the branches pos and

 pos-1, with too few entries in branch pos.

 Post: The rightmost entry from branch pos-1 has moved into *current, which has

 sent an entry into the branch pos */

void MoveRight(Treenode *current, int pos)

{

 int c;

 Treenode *t;

 t=current->branch[pos];

 for (c=t->count; c>0; c--){

 /* shift all keys in the right node one position */

 t->entry[c+1]=t->entry[c];

 t->branch[c+1]=t->branch[c];

 }

 t->branch[1]=t->branch[0]; /* move key from parent to right node */

 t->count++;

 t->entry[1]=current->entry[pos];

 t=current->branch[pos-1]; /* move last key of left node into parent */

 current->entry[pos]=t->entry[t->count];

 current->branch[pos]->branch[0]=t->branch[t->count];

 t->count--;

}

Data Structures and Programming
Techniques

83

Auxiliary Functions (cont’d)

/* MoveLeft: move a key to the left.

Pre: current points to a node in a B-tree with entries in the branches pos and

pos-1, with too few in branch pos-1.

Post: The leftmost entry from branch pos has moved into *current, which has sent

an entry into the branch pos-1 */

void MoveLeft(Treenode *current, int pos)

{

 int c;

 Treenode *t;

 t=current->branch[pos-1]; /* move key from parent into left node */

 t->count++;

 t->entry[t->count]=current->entry[pos];

 t->branch[t->count]=current->branch[pos]->branch[0];

 t=current->branch[pos]; /* Move first key from right node into parent */

 current->entry[pos]=t->entry[1];

 t->branch[0]=t->branch[1];

 t->count--;

 for (c=1; c<=t->count; c++){

 /* shift all keys in the right node one position leftward */

 t->entry[c]=t->entry[c+1];

 t->branch[c]=t->branch[c+1];

 }

}

Data Structures and Programming
Techniques

84

Auxiliary Functions

/* Combine: combine adjacent nodes.

 Pre: current points to a node in a B-tree with entries in the branches pos and

 pos-1, with too few to move entries.

 Post: The nodes at branches pos-1 and pos have been combined into one node,

 which also includes the entry formerly in *current at index pos. */

void Combine(Treenode *current, int pos)

{

 int c;

 Treenode *right;

 Treenode *left;

 right=current->branch[pos];

 left=current->branch[pos-1]; /* work with the left node */

 left->count++; /* insert the key from the parent */

 left->entry[left->count]=current->entry[pos];

 left->branch[left->count]=right->branch[0];

 for (c=1; c<=right->count; c++){ /* insert all keys from right node */

 left->count++;

 left->entry[left->count]=right->entry[c];

 left->branch[left->count]=right->branch[c];

 }

 for (c=pos; c< current->count; c++){ /* delete key from parent node */

 current->entry[c]=current->entry[c+1];

 current->branch[c]=current->branch[c+1];

 }

 current->count--;

 free(right); /* dispose of the empty right node */

}

Data Structures and Programming
Techniques

85

Complexity of Operations in a B-tree

• As we have shown for multi-way trees, the
complexity of search, insertion and deletion in
a B-tree of order 𝑚 is 𝑂 ℎ𝑡 where 𝑂(𝑡) is the
time it takes to implement split, transfer or
fusion using the data structure implementing
each node of the tree.

• If we count only disk block operations then
𝑂 𝑡 = 𝑂(1). Therefore, the complexity of
each operation is 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒎

𝟐

𝒏).

Data Structures and Programming

Techniques
86

B+-trees

• A variation of B-trees called B+-trees is one of
the most important indexing structures used
in today’s file systems and relational database
management systems.

Data Structures and Programming
Techniques

87

B+-tree Example

Data Structures and Programming
Techniques

88

Readings

• The code we presented is from the following book:
– R. Kruse, C. L. Tondo and B. Leung. Data Structures and

Program Design in C.
• Chapter 10

• The theoretical results are from the following books:
– M. T. Goodrich, R. Tamassia and D. Mount. Data Structures

and Algorithms in C++. 2nd edition. John Wiley.

– Sartaj Sahni. Δομές Δεδομένων, Αλγόριθμοι και
Εφαρμογές στη C++. Εκδόσεις Τζιόλα.

• R. Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 16.3

Data Structures and Programming
Techniques

89

