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Dynamic Sets

• Sets are fundamental for mathematics but 
also for computer science.

• In computer science, we usually study 
dynamic sets i.e., sets that can grow, shrink or 
otherwise change over time.

• The data structures we have presented so far 
in this course offer us ways to represent finite, 
dynamic sets and manipulate them on a 
computer.
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Dynamic Sets and Symbol Tables

• Many of the data structures we have so far 
presented for symbol tables can be used to 
implement a dynamic set (e.g., a linked list, a 
hash table, a (2,4) tree etc.).
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Disjoint Sets

• Some applications involve grouping 𝑛 distinct 
elements into a collection of disjoint sets
(ξένα σύνολα).

• Important operations in this case are to 
construct a set, to find which set a given 
element belongs to, and to unite two sets.
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Definitions

• A disjoint-set data structure maintains a 
collection 𝑆 = { 𝑆1, 𝑆2, ⋯ , 𝑆𝑛} of disjoint 
dynamic sets.

• Each set is identified by a representative 
(αντιπρόσωπο), which is some member of the 
set.

• The disjoint sets might form a partition
(διαμέριση) of a universe set 𝑈.
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Definitions (cont’d)

• The disjoint-set data structure supports the following 
operations:
– MAKE-SET(𝒙): It creates a new set whose only member (and thus 

representative) is pointed to by 𝑥. Since the sets are disjoint, we 
require that 𝑥 not already be in any of the existing sets.

– UNION(𝒙, 𝒚): It unites the dynamic sets that contain 𝑥 and 𝑦, say 
𝑆𝑥 and 𝑆𝑦, into a new set that is the union of these two sets. 
One of the 𝑆𝑥 and 𝑆𝑦 give its name to the new set and the other 
set is “destroyed” by removing it from the collection 𝑆. The two 
sets are assumed to be disjoint prior to the operation. The 
representative of the resulting set is some member of 𝑆𝑥 ∪ 𝑆𝑦
(usually the representative of the set that gave its name to the 
union).

– FIND-SET(𝒙) returns a pointer to the representative of the unique 
set containing 𝑥.
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Determining the Connected 
Components of an Undirected Graph

• One of the many applications of disjoint-set data 
structures is determining the connected 
components (συνεκτικές συνιστώσες) of an 
undirected graph.

• The implementation based on disjoint-sets that 
we will present here is appropriate when the 
edges of the graph are not static e.g., when edges 
are added dynamically and we need to maintain 
the connected components as each edge is 
added.

Data Structures and Programming 
Techniques

7



Example Graph
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Computing the Connected 
Components of an Undirected Graph

• The following procedure CONNECTED-COMPONENTS
uses the disjoint-set operations to compute the 
connected components of a graph.

CONNECTED-COMPONENTS(𝐺)
for each vertex 𝑣 ∈ 𝑉 𝐺

do MAKE-SET(𝑣)
for each edge 𝑢, 𝑣 ∈ 𝐸 𝐺

do if FIND-SET(𝑢)≠FIND-SET(𝑣)
then UNION(𝑢, 𝑣)
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Computing the Connected 
Components (cont’d)

• Once CONNECTED-COMPONENTS has been run as a 
preprocessing step, the procedure SAME-
COMPONENT given below answers queries about 
whether two vertices are in the same connected 
component.

SAME-COMPONENT(𝑢, 𝑣)
if FIND-SET(𝑢)=FIND-SET(𝑣)

then return TRUE
else return FALSE
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Example Graph
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The Collection of Disjoint Sets After 
Each Edge is Processed

Edge 
processed

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 𝑺𝟗 𝑺𝟏𝟎

initial sets {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b,d) {a} {b,d} {c} {e} {f} {g} {h} {i} {j}

(e,g) {a} {b,d} {c} {e,g} {f} {h} {i} {j}

(a,c) {a,c} {b,d} {e,g} {f} {h} {i} {j}

(h,i) {a,c} {b,d} {e,g} {f} {h,i} {j}

(a,b) {a,b,c,d} {e,g} {f} {h,i} {j}

(e,f) {a,b,c,d} {e,f,g} {h,i} {j}

(b,c) {a,b,c,d} {e,f,g} {h,i} {j}
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Minimum Spanning Trees

• Another application of the disjoint set 
operations that we will see is Kruskal’s 
algorithm for computing the minimum 
spanning tree of a graph.
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Maintaining Equivalence Relations

• Another application of disjoint-set data 
structures is to maintain equivalence 
relations.

• Definition. An equivalence relation on a set 𝑆
is relation ≡ with the following properties:
– Reflexivity: for all 𝑎 ∈ 𝑆, we have 𝑎 ≡ 𝑎.

– Symmetry: for all 𝑎, 𝑏 ∈ 𝑆, if 𝑎 ≡ 𝑏 then 𝑏 ≡ 𝑎.

– Transitivity: for all 𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎 ≡ 𝑏 and 𝑏 ≡
𝑐 then 𝑎 ≡ 𝑐 .
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Representation of Disjoint Sets

• We need

– For each set/representative:

• a list of all its members

– For each member:

• a fast way to find its set/representative

• A simple solution

– for each set: a linked list of members

– for each member: a pointer back to the 
representative (first element of the list)
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The Structure of Each List Object
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Example: the Sets {c, h, e, b} and 
{f, g, d}
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Implementation of MAKE-SET and 
FIND-SET

• With the linked-list representation, both 
MAKE-SET and FIND-SET are easy.

• To carry out MAKE-SET(𝑥), we create a new 
linked list which has one object with set 
element 𝑥.

• To carry out, FIND-SET(𝑥), we just return the 
pointer from 𝑥 back to the representative.
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Implementation of UNION

• To perform UNION(𝑥, 𝑦), we can append 𝑥’s list 
onto the end of 𝑦’s list.

• The representative of the new set is the 
element that was originally the representative 
of the set containing 𝑦.

• We should also update the pointer to the 
representative for each object originally in 𝑥’s 
list.
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Amortized Analysis

• In an amortized analysis (επιμερισμένη ανάλυση), the 
time required to perform a sequence of data structure 
operations is averaged over all operations performed.

• Amortized analysis can be used to show that the 
average cost of an operation is small, if one averages 
over a sequence of operations, even though a single 
operation might be expensive.

• Amortized analysis differs from the average-case 
analysis in that probability is not involved; an 
amortized analysis guarantees the average 
performance of each operation in the worst case.
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Techniques for Amortized Analysis

• The aggregate method (η μέθοδος της συνάθροισης).
With this method, we show that for all 𝑚, a sequence 
of 𝑚 operations takes time 𝑇(𝑚) in total, in the worst 
case. Therefore, in the worst case, the average cost, or 
amortized cost, per operation is  

𝑇(𝑚)

𝑚
.

• The accounting method.
• The potential method.

• We will only use the aggregate method in this lecture. 
For the other methods, see any advanced algorithms 
book e.g., the one cited in the readings.
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Complexity types

• Deterministic, single run
– worst-case: max time over all inputs
– average-case: expected time over all inputs

• probability distribution over inputs (usually uniform)

• Randomized algorithm, single run
– expected time over all executions
– worst-case input (usually)

• Multiple runs
– amortized: average over the number of runs
– worst-case input (usually)

• Can be combined!
22



Complexity types

• Deterministic quicksort:
– worst-case: O(n2)
– average-case: O(nlogn)

• Randomized quicksort (random pivot)
– expected time: O(nlogn) for any input

• Dynamic array (double size when full)
– amortized insert: O(1)

• Hash table
– amortized, average-case insert: O(1)
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Complexity Parameters for the 
Disjoint-Set Data Structures

• We will analyze the running time of our data structures 
in terms of two parameters:
– 𝑛, the number of MAKE-SET operations, and
– 𝑚, the total number of MAKE-SET, UNION and FIND-SET

operations.

• Since the sets are disjoint, each union operation 
reduces the number of sets by one. Therefore, after 
𝑛 − 1 UNION operations, only one set remains. The 
number of UNION operations is thus at most 𝑛 − 1.

• Since the MAKE-SET operations are included in the total 
number of operations, we have 𝑚 ≥ 𝑛.
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Complexity of Operations for the 
Linked List Representation

• MAKE-SET and FIND-SET take 𝑂(1) time.
• UNION(𝑥, 𝑦) takes time 𝑂 𝑥 + 𝑦 where 𝑥 and 𝑦

denote the cardinalities of the sets that contain 𝑥 and 𝑦. 
We need 𝑂( 𝑦 ) time to reach the last object in 𝑦’s list to 
make it point to the first object in 𝑥’s list.  We also need 
𝑂( 𝑥 ) time to update all pointers to the representative in 
𝑥’s list. 

• If we keep a pointer to the last object in the list in each 
representative then we do not need to scan 𝑦’s list, and we 
only need 𝑂( 𝑥 ) time to update all pointers to the 
representative in 𝑥’s list. 

• In both cases, the complexity of UNION is 𝑂(𝑛) since the 
cardinality of each set can be at most 𝑛. 
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Complexity (cont’d)

• We can prove that there is a sequence of 
𝑚 MAKE-SET and UNION operations that take 
𝑂(𝑚2) time. Therefore, the amortized time of 
an operation is 𝑂 𝑚 .

• Proof?
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Proof

• Let 𝑛 =
𝑚

2
+ 1 and 𝑞 = 𝑚 − 𝑛 =

𝑚

2
− 1.

• Suppose that we have 𝑛 objects 𝑥1, 𝑥2, ⋯ , 𝑥𝑛.

• We then execute the sequence of 𝑚 = 𝑛 + 𝑞
operations shown on the next slide.
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Operations
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Operation Number of objects updated

MAKE-SET(𝑥1) 1

MAKE-SET(𝑥2) 1

⋮ ⋮

MAKE-SET(𝑥𝑛) 1

UNION(𝑥1, 𝑥2) 1

UNION(𝑥2, 𝑥3) 2

UNION(𝑥3, 𝑥4) 3

⋮ ⋮

UNION(𝑥𝑞−1, 𝑥𝑞) 𝑞 − 1



Proof (cont’d)

• We spend 𝑂(𝑛) time performing the 𝑛 MAKE-
SET operations.

• Because the 𝑖-th UNION operation updates 𝑖
objects, the total number of objects updated 

are σ𝑖=1
𝑞−1

𝑖 =
𝑞(𝑞−1)

2
= 𝑂(𝑞2).

• The total time spent therefore is 𝑂(𝑛 + 𝑞2)
which is 𝑂(𝑚2) since 𝑛 = 𝑂(𝑚) and 𝑞 =
𝑂 𝑚 .
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The Weighted Union Heuristic

• The above implementation of the UNION

operation requires an average of 𝑂(𝑚) time per 
operation because we may be appending a longer 
list onto a shorter list, and we must update the 
pointer to the representative of each member of 
the longer list.

• If each representative also includes the length of 
the list then we can always append the smaller 
list onto the longer, with ties broken arbitrarily. 
This is called the weighted union heuristic.
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Theorem

• Using the linked list representation of disjoint 
sets and the weighted union heuristic, a 
sequence of 𝑚 MAKE-SET, UNION and FIND-SET

operations, 𝑛 of which are MAKE-SET

operations, takes 𝑂(𝑚 + 𝑛 log2 𝑛) time.

• Proof?

Data Structures and Programming 
Techniques

36



Proof

• We start by computing, for each object in a set of size 𝑛, an upper bound 
on the number of times the object’s pointer back to the representative 
has been updated.

• Consider a fixed object 𝑥. We know that each time 𝑥’s representative 
pointer was updated, 𝑥 must have started in the smaller set and ended up 
in a set (the union) at least twice the size of its own set.

• For example,  the first time 𝑥’s representative pointer was updated, the 
resulting set must have had at least 2 members. Similarly, the next time 
𝑥’s representative pointer was updated, the resulting set must have had at 
least 4 members. 

• Continuing on, we observe that for any 𝑘 ≤ 𝑛, after 𝑥’s representative 
pointer has been updated log2 𝑘 times, the resulting set must have at 
least 𝑘 members.

• Since the largest set has at most  𝑛 members, each object’s representative 
pointer has been updated at most log2 𝑛 times over all UNION
operations. The total time used in updating 𝑛 objects is thus 𝑂(𝑛 log2 𝑛).
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Proof (cont’d)

• The time for the entire sequence of 𝑚
operations follows easily.

• Each MAKE-SET and FIND-SET operation takes 
𝑂(1) time, and there are 𝑂(𝑚) of them. 

• The total time for the entire sequence is thus 
𝑂(𝑚 + 𝑛 log2 𝑛).
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Complexity (cont’d)

• The bound we have just shown can be seen to 
be 𝑶(𝒎 𝐥𝐨𝐠𝟐 𝒎), therefore the amortized 
time for each of the 𝑚 operations is 
𝑶 𝐥𝐨𝐠𝟐 𝒎 .

• There is a faster implementation of disjoint 
sets which improves this amortized 
complexity.

• We will present this method now.
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Disjoint-Set Forests

• In the faster implementation of disjoint sets, 
we represent sets by rooted trees.

• Each node of a tree represents one set 
member and each tree represents a set.

• In a tree, each set member points only to its 
parent. The root of each tree contains the 
representative of the set and is its own 
parent.

• For many sets, we have a disjoint-set forest.
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Example: the Sets {b, c, e, h} and
{d, f, g}
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Implementing MAKE-SET,
FIND-SET and UNION

• A MAKE-SET operation simply creates a tree 
with just one node.

• A FIND-SET operation can be implemented by 
chasing parent pointers until we find the root 
of the tree. The nodes visited on this path 
towards the root constitute the find-path.

• A UNION operation can be implemented by 
making the root of one tree to point to the 
root of the other.
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Example: the UNION of Sets {b, c, e, h} 
and {d, f, g}
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Complexity

• With the previous data structure, we do not 
improve on the linked-list implementation.

• A sequence of 𝑛 − 1 UNION operations may 
create a tree that is just a linear chain of 𝑛
nodes. Then, a FIND-SET operation can take 
𝑂(𝑛) time. Similarly, for a UNION operation.

• By using the following two heuristics, we can 
achieve a running time that is almost linear in 
the number of operations 𝑚.
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The Union by Rank Heuristic

• The first heuristic, union by rank, is similar to the weighted 
union heuristic we used with the linked list representation.

• The idea is to make the root of the tree with fewer nodes to 
point to the root of the tree with more nodes.

• We will not explicitly keep track of the size of the subtree
rooted at each node. Instead, for each node, we maintain a 
rank that approximates the logarithm of the size of the 
subtree rooted at the node and is also an upper bound on 
the height of the node (i.e., the number of edges in the 
longest path between 𝑥 and a descendant leaf).

• In union by rank, the root with the smaller rank is made to 
point to the root with the larger rank during a UNION
operation.
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The Path Compression Heuristic

• The second heuristic, path compression, is 
also simple and very effective.

• This heuristic is used during FIND-SET

operations to make each node on the find 
path point directly to the root.

• In this way, trees with small height are 
constructed.

• Path compression does not change any ranks.
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The Path Compression Heuristic 
Graphically
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The Path Compression Heuristic 
Graphically (cont’d)
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Implementing Disjoint-Set Forests

• With each node 𝑥, we maintain the integer value 
rank[𝑥], which is an upper bound on the height of 𝑥 .

• When a singleton set is created by MAKE-SET, the initial 
rank of the single node in the corresponding tree is 0.

• Each FIND-SET operation leaves ranks unchanged.

• When applying UNION to two trees, we make the root 
of higher rank the parent of the root of lower rank. In 
this case ranks remain the same. In case of a tie, we 
arbitrarily choose one of the roots as the parent and 
increment its rank.
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Pseudocode

We designate the parent of node 𝑥 by p[𝑥].

MAKE-SET(𝑥)

p[𝑥]← 𝑥

rank[𝑥] ← 0

UNION(𝑥, 𝑦)

LINK(FIND-SET(𝑥), FIND-SET(𝑦))
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Pseudocode (cont’d)

LINK(𝑥, 𝑦)
if rank[𝑥] > rank[𝑦]

then p[𝑦] ← 𝑥
else p[𝑥] ← 𝑦

if rank[𝑥] = rank[𝑦] 
then rank[𝑦] ← rank[𝑦]+1

FIND-SET(𝑥)
if 𝑥 ≠ p[𝑥]

then p[𝑥] ← FIND-SET(p[𝑥])
return p[𝑥]
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The FIND-SET Procedure

• Notice that the FIND-SET procedure is a two-
pass method: it makes one pass up the find 
path to find the root, and it makes a second 
pass back down the find path to update each 
node so it points directly to the root. 

• The second pass is made as the recursive calls 
return.
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Complexity

• Let us consider a sequence of 𝑚 MAKE-SET, UNION and FIND-SET
operations, 𝑛 of which are MAKE-SET operations.

• When we use both union by rank and path compression, the worst 
case running time for the sequence of operations can be proven to 
be 𝑶(𝒎 𝜶 𝒎, 𝒏 ), where 𝛼(𝑚, 𝑛) is the very slowly growing 
inverse of Ackermann’s function.

• Ackermann’s function is an exponential,  very rapidly growing 
function. Its inverse, 𝛼, grows slower than the logarithmic 
function.

• In any conceivable application of a disjoint-union data structure, we 
have 𝛼(𝑚, 𝑛) ≤ 4.

• Thus we can view the running time as linear in 𝒎 in all practical 
situations.

• Therefore, the amortized complexity of each operation is 𝑶 𝟏 .
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Implementation in C

• Let us assume that the sets will have positive integers in the range 
0 to N-1 as their members.

• The simplest way to implement in C the disjoint sets data structure 
is to use an array id[N] of integers that take values in the range 0
to N-1. This array will be used to keep track of the representative 
of each set but also the members of each set.

• Initially, we set id[i]=i, for each i between 0 and N-1. This is 
equivalent to N MAKE-SET operations that create the initial versions 
of the sets.

• To implement the UNION operation for the sets that contain integers 
p and q, we scan the array id and change all the array elements 
that have the value p to have the value q.

• The implementation of the FIND-SET(p) simply returns the value of 
id[p].
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Implementation in C (cont’d)

• The program on the next slide initializes the 
array id, and then reads pairs of integers 
(p,q) and performs the operation 
UNION(p,q) if p and q are not in the same set 
yet.

• The program is an implementation of the 
equivalence problem defined earlier. Similar 
programs can be written for the other 
applications of disjoint sets presented.
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Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

if (id[p] == id[q]) continue;

for (t = id[p], i = 0; i < N; i++)

if (id[i] == t) id[i] = id[q];

printf("%d %d\n", p, q);

}

}
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Implementation in C (cont’d)

• The extension of this implementation to the 
case where sets are represented by linked lists 
is left as an exercise.
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Implementation in C (cont’d)

• The disjoint-forests data structure can easily be 
implemented by changing the meaning of the elements 
of array id. Now each id[i] represents an element 
of a set and points to another element of that set. The 
root element points to itself.

• The program on the next slide illustrates this 
functionality. Note that after we have found the roots 
of the two sets, the UNION operation is simply 
implemented by the assignment statement id[i]=j.

• The implementation of the FIND-SET operation is similar.
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Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

id[i] = j;

printf("%d %d\n", p, q);

}

}

Data Structures and Programming 
Techniques

59



Implementation in C (cont’d)

• We can implement a weighted version of the 
UNION operation by keeping track of the size of 
the two trees and making the root of the 
smaller tree point to the root of the larger.

• The code on the next slide implements this 
functionality by making use of an array 
sz[N] (for size).
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Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, id[N], sz[N];

for (i = 0; i < N; i++)

{ id[i] = i; sz[i] = 1; }

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

if (sz[i] < sz[j])

{ id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

printf("%d %d\n", p, q);

}

}
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Implementation in C (cont’d)

• In a similar way, we can implement the union 
by rank heuristic.

• This heuristic together with the path 
compression heuristic are left as exercises. 
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