
Data Structures for Disjoint Sets

Data Structures and Programming
Techniques

1

Dynamic Sets

• Sets are fundamental for mathematics but
also for computer science.

• In computer science, we usually study
dynamic sets i.e., sets that can grow, shrink or
otherwise change over time.

• The data structures we have presented so far
in this course offer us ways to represent finite,
dynamic sets and manipulate them on a
computer.

Data Structures and Programming
Techniques

2

Dynamic Sets and Symbol Tables

• Many of the data structures we have so far
presented for symbol tables can be used to
implement a dynamic set (e.g., a linked list, a
hash table, a (2,4) tree etc.).

Data Structures and Programming
Techniques

3

Disjoint Sets

• Some applications involve grouping 𝑛 distinct
elements into a collection of disjoint sets
(ξένα σύνολα).

• Important operations in this case are to
construct a set, to find which set a given
element belongs to, and to unite two sets.

Data Structures and Programming
Techniques

4

Definitions

• A disjoint-set data structure maintains a
collection 𝑆 = { 𝑆1, 𝑆2, ⋯ , 𝑆𝑛} of disjoint
dynamic sets.

• Each set is identified by a representative
(αντιπρόσωπο), which is some member of the
set.

• The disjoint sets might form a partition
(διαμέριση) of a universe set 𝑈.

Data Structures and Programming
Techniques

5

Definitions (cont’d)

• The disjoint-set data structure supports the following
operations:
– MAKE-SET(𝒙): It creates a new set whose only member (and thus

representative) is pointed to by 𝑥. Since the sets are disjoint, we
require that 𝑥 not already be in any of the existing sets.

– UNION(𝒙, 𝒚): It unites the dynamic sets that contain 𝑥 and 𝑦, say
𝑆𝑥 and 𝑆𝑦, into a new set that is the union of these two sets.
One of the 𝑆𝑥 and 𝑆𝑦 give its name to the new set and the other
set is “destroyed” by removing it from the collection 𝑆. The two
sets are assumed to be disjoint prior to the operation. The
representative of the resulting set is some member of 𝑆𝑥 ∪ 𝑆𝑦
(usually the representative of the set that gave its name to the
union).

– FIND-SET(𝒙) returns a pointer to the representative of the unique
set containing 𝑥.

Data Structures and Programming
Techniques

6

Determining the Connected
Components of an Undirected Graph

• One of the many applications of disjoint-set data
structures is determining the connected
components (συνεκτικές συνιστώσες) of an
undirected graph.

• The implementation based on disjoint-sets that
we will present here is appropriate when the
edges of the graph are not static e.g., when edges
are added dynamically and we need to maintain
the connected components as each edge is
added.

Data Structures and Programming
Techniques

7

Example Graph

Data Structures and Programming
Techniques

8

a b

c d

e

g

f h

i

j

Computing the Connected
Components of an Undirected Graph

• The following procedure CONNECTED-COMPONENTS
uses the disjoint-set operations to compute the
connected components of a graph.

CONNECTED-COMPONENTS(𝐺)
for each vertex 𝑣 ∈ 𝑉 𝐺

do MAKE-SET(𝑣)
for each edge 𝑢, 𝑣 ∈ 𝐸 𝐺

do if FIND-SET(𝑢)≠FIND-SET(𝑣)
then UNION(𝑢, 𝑣)

Data Structures and Programming
Techniques

9

Computing the Connected
Components (cont’d)

• Once CONNECTED-COMPONENTS has been run as a
preprocessing step, the procedure SAME-
COMPONENT given below answers queries about
whether two vertices are in the same connected
component.

SAME-COMPONENT(𝑢, 𝑣)
if FIND-SET(𝑢)=FIND-SET(𝑣)

then return TRUE
else return FALSE

Data Structures and Programming
Techniques

10

Example Graph

Data Structures and Programming
Techniques

11

a b

c d

e

g

f h

i

j

The Collection of Disjoint Sets After
Each Edge is Processed

Edge
processed

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 𝑺𝟗 𝑺𝟏𝟎

initial sets {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b,d) {a} {b,d} {c} {e} {f} {g} {h} {i} {j}

(e,g) {a} {b,d} {c} {e,g} {f} {h} {i} {j}

(a,c) {a,c} {b,d} {e,g} {f} {h} {i} {j}

(h,i) {a,c} {b,d} {e,g} {f} {h,i} {j}

(a,b) {a,b,c,d} {e,g} {f} {h,i} {j}

(e,f) {a,b,c,d} {e,f,g} {h,i} {j}

(b,c) {a,b,c,d} {e,f,g} {h,i} {j}

Data Structures and Programming
Techniques

12

Minimum Spanning Trees

• Another application of the disjoint set
operations that we will see is Kruskal’s
algorithm for computing the minimum
spanning tree of a graph.

Data Structures and Programming
Techniques

13

Maintaining Equivalence Relations

• Another application of disjoint-set data
structures is to maintain equivalence
relations.

• Definition. An equivalence relation on a set 𝑆
is relation ≡ with the following properties:
– Reflexivity: for all 𝑎 ∈ 𝑆, we have 𝑎 ≡ 𝑎.

– Symmetry: for all 𝑎, 𝑏 ∈ 𝑆, if 𝑎 ≡ 𝑏 then 𝑏 ≡ 𝑎.

– Transitivity: for all 𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎 ≡ 𝑏 and 𝑏 ≡
𝑐 then 𝑎 ≡ 𝑐 .

Data Structures and Programming
Techniques

14

Representation of Disjoint Sets

• We need

– For each set/representative:

• a list of all its members

– For each member:

• a fast way to find its set/representative

• A simple solution

– for each set: a linked list of members

– for each member: a pointer back to the
representative (first element of the list)

Data Structures and Programming
Techniques

15

The Structure of Each List Object

Data Structures and Programming
Techniques

23

Pointer Back to
Representative

Pointer to
Next Object

Set Member

Example: the Sets {c, h, e, b} and
{f, g, d}

Data Structures and Programming
Techniques

24

c h e b .

f g d .

The representatives of the two sets are c and f.

Implementation of MAKE-SET and
FIND-SET

• With the linked-list representation, both
MAKE-SET and FIND-SET are easy.

• To carry out MAKE-SET(𝑥), we create a new
linked list which has one object with set
element 𝑥.

• To carry out, FIND-SET(𝑥), we just return the
pointer from 𝑥 back to the representative.

Data Structures and Programming
Techniques

25

Implementation of UNION

• To perform UNION(𝑥, 𝑦), we can append 𝑥’s list
onto the end of 𝑦’s list.

• The representative of the new set is the
element that was originally the representative
of the set containing 𝑦.

• We should also update the pointer to the
representative for each object originally in 𝑥’s
list.

Data Structures and Programming
Techniques

26

Amortized Analysis

• In an amortized analysis (επιμερισμένη ανάλυση), the
time required to perform a sequence of data structure
operations is averaged over all operations performed.

• Amortized analysis can be used to show that the
average cost of an operation is small, if one averages
over a sequence of operations, even though a single
operation might be expensive.

• Amortized analysis differs from the average-case
analysis in that probability is not involved; an
amortized analysis guarantees the average
performance of each operation in the worst case.

Data Structures and Programming
Techniques

27

Techniques for Amortized Analysis

• The aggregate method (η μέθοδος της συνάθροισης).
With this method, we show that for all 𝑚, a sequence
of 𝑚 operations takes time 𝑇(𝑚) in total, in the worst
case. Therefore, in the worst case, the average cost, or
amortized cost, per operation is

𝑇(𝑚)

𝑚
.

• The accounting method.
• The potential method.

• We will only use the aggregate method in this lecture.
For the other methods, see any advanced algorithms
book e.g., the one cited in the readings.

Data Structures and Programming
Techniques

28

Complexity types

• Deterministic, single run
– worst-case: max time over all inputs
– average-case: expected time over all inputs

• probability distribution over inputs (usually uniform)

• Randomized algorithm, single run
– expected time over all executions
– worst-case input (usually)

• Multiple runs
– amortized: average over the number of runs
– worst-case input (usually)

• Can be combined!
22

Complexity types

• Deterministic quicksort:
– worst-case: O(n2)
– average-case: O(nlogn)

• Randomized quicksort (random pivot)
– expected time: O(nlogn) for any input

• Dynamic array (double size when full)
– amortized insert: O(1)

• Hash table
– amortized, average-case insert: O(1)

23

Complexity Parameters for the
Disjoint-Set Data Structures

• We will analyze the running time of our data structures
in terms of two parameters:
– 𝑛, the number of MAKE-SET operations, and
– 𝑚, the total number of MAKE-SET, UNION and FIND-SET

operations.

• Since the sets are disjoint, each union operation
reduces the number of sets by one. Therefore, after
𝑛 − 1 UNION operations, only one set remains. The
number of UNION operations is thus at most 𝑛 − 1.

• Since the MAKE-SET operations are included in the total
number of operations, we have 𝑚 ≥ 𝑛.

Data Structures and Programming
Techniques

29

Complexity of Operations for the
Linked List Representation

• MAKE-SET and FIND-SET take 𝑂(1) time.
• UNION(𝑥, 𝑦) takes time 𝑂 𝑥 + 𝑦 where 𝑥 and 𝑦

denote the cardinalities of the sets that contain 𝑥 and 𝑦.
We need 𝑂(𝑦) time to reach the last object in 𝑦’s list to
make it point to the first object in 𝑥’s list. We also need
𝑂(𝑥) time to update all pointers to the representative in
𝑥’s list.

• If we keep a pointer to the last object in the list in each
representative then we do not need to scan 𝑦’s list, and we
only need 𝑂(𝑥) time to update all pointers to the
representative in 𝑥’s list.

• In both cases, the complexity of UNION is 𝑂(𝑛) since the
cardinality of each set can be at most 𝑛.

Data Structures and Programming
Techniques

30

Complexity (cont’d)

• We can prove that there is a sequence of
𝑚 MAKE-SET and UNION operations that take
𝑂(𝑚2) time. Therefore, the amortized time of
an operation is 𝑂 𝑚 .

• Proof?

Data Structures and Programming
Techniques

31

Proof

• Let 𝑛 =
𝑚

2
+ 1 and 𝑞 = 𝑚 − 𝑛 =

𝑚

2
− 1.

• Suppose that we have 𝑛 objects 𝑥1, 𝑥2, ⋯ , 𝑥𝑛.

• We then execute the sequence of 𝑚 = 𝑛 + 𝑞
operations shown on the next slide.

Data Structures and Programming
Techniques

32

Operations

Data Structures and Programming
Techniques

33

Operation Number of objects updated

MAKE-SET(𝑥1) 1

MAKE-SET(𝑥2) 1

⋮ ⋮

MAKE-SET(𝑥𝑛) 1

UNION(𝑥1, 𝑥2) 1

UNION(𝑥2, 𝑥3) 2

UNION(𝑥3, 𝑥4) 3

⋮ ⋮

UNION(𝑥𝑞−1, 𝑥𝑞) 𝑞 − 1

Proof (cont’d)

• We spend 𝑂(𝑛) time performing the 𝑛 MAKE-
SET operations.

• Because the 𝑖-th UNION operation updates 𝑖
objects, the total number of objects updated

are σ𝑖=1
𝑞−1

𝑖 =
𝑞(𝑞−1)

2
= 𝑂(𝑞2).

• The total time spent therefore is 𝑂(𝑛 + 𝑞2)
which is 𝑂(𝑚2) since 𝑛 = 𝑂(𝑚) and 𝑞 =
𝑂 𝑚 .

Data Structures and Programming
Techniques

34

The Weighted Union Heuristic

• The above implementation of the UNION

operation requires an average of 𝑂(𝑚) time per
operation because we may be appending a longer
list onto a shorter list, and we must update the
pointer to the representative of each member of
the longer list.

• If each representative also includes the length of
the list then we can always append the smaller
list onto the longer, with ties broken arbitrarily.
This is called the weighted union heuristic.

Data Structures and Programming
Techniques

35

Theorem

• Using the linked list representation of disjoint
sets and the weighted union heuristic, a
sequence of 𝑚 MAKE-SET, UNION and FIND-SET

operations, 𝑛 of which are MAKE-SET

operations, takes 𝑂(𝑚 + 𝑛 log2 𝑛) time.

• Proof?

Data Structures and Programming
Techniques

36

Proof

• We start by computing, for each object in a set of size 𝑛, an upper bound
on the number of times the object’s pointer back to the representative
has been updated.

• Consider a fixed object 𝑥. We know that each time 𝑥’s representative
pointer was updated, 𝑥 must have started in the smaller set and ended up
in a set (the union) at least twice the size of its own set.

• For example, the first time 𝑥’s representative pointer was updated, the
resulting set must have had at least 2 members. Similarly, the next time
𝑥’s representative pointer was updated, the resulting set must have had at
least 4 members.

• Continuing on, we observe that for any 𝑘 ≤ 𝑛, after 𝑥’s representative
pointer has been updated log2 𝑘 times, the resulting set must have at
least 𝑘 members.

• Since the largest set has at most 𝑛 members, each object’s representative
pointer has been updated at most log2 𝑛 times over all UNION
operations. The total time used in updating 𝑛 objects is thus 𝑂(𝑛 log2 𝑛).

Data Structures and Programming
Techniques

37

Proof (cont’d)

• The time for the entire sequence of 𝑚
operations follows easily.

• Each MAKE-SET and FIND-SET operation takes
𝑂(1) time, and there are 𝑂(𝑚) of them.

• The total time for the entire sequence is thus
𝑂(𝑚 + 𝑛 log2 𝑛).

Data Structures and Programming
Techniques

38

Complexity (cont’d)

• The bound we have just shown can be seen to
be 𝑶(𝒎 𝐥𝐨𝐠𝟐 𝒎), therefore the amortized
time for each of the 𝑚 operations is
𝑶 𝐥𝐨𝐠𝟐 𝒎 .

• There is a faster implementation of disjoint
sets which improves this amortized
complexity.

• We will present this method now.

Data Structures and Programming
Techniques

39

Disjoint-Set Forests

• In the faster implementation of disjoint sets,
we represent sets by rooted trees.

• Each node of a tree represents one set
member and each tree represents a set.

• In a tree, each set member points only to its
parent. The root of each tree contains the
representative of the set and is its own
parent.

• For many sets, we have a disjoint-set forest.

Data Structures and Programming
Techniques

40

Example: the Sets {b, c, e, h} and
{d, f, g}

Data Structures and Programming
Techniques

41

c

h e

b

f

d

g

The representatives of the two sets are c and f.

Implementing MAKE-SET,
FIND-SET and UNION

• A MAKE-SET operation simply creates a tree
with just one node.

• A FIND-SET operation can be implemented by
chasing parent pointers until we find the root
of the tree. The nodes visited on this path
towards the root constitute the find-path.

• A UNION operation can be implemented by
making the root of one tree to point to the
root of the other.

Data Structures and Programming
Techniques

42

Example: the UNION of Sets {b, c, e, h}
and {d, f, g}

Data Structures and Programming
Techniques

43

c

h e

b

f

d

g

Complexity

• With the previous data structure, we do not
improve on the linked-list implementation.

• A sequence of 𝑛 − 1 UNION operations may
create a tree that is just a linear chain of 𝑛
nodes. Then, a FIND-SET operation can take
𝑂(𝑛) time. Similarly, for a UNION operation.

• By using the following two heuristics, we can
achieve a running time that is almost linear in
the number of operations 𝑚.

Data Structures and Programming
Techniques

44

The Union by Rank Heuristic

• The first heuristic, union by rank, is similar to the weighted
union heuristic we used with the linked list representation.

• The idea is to make the root of the tree with fewer nodes to
point to the root of the tree with more nodes.

• We will not explicitly keep track of the size of the subtree
rooted at each node. Instead, for each node, we maintain a
rank that approximates the logarithm of the size of the
subtree rooted at the node and is also an upper bound on
the height of the node (i.e., the number of edges in the
longest path between 𝑥 and a descendant leaf).

• In union by rank, the root with the smaller rank is made to
point to the root with the larger rank during a UNION
operation.

Data Structures and Programming
Techniques

45

The Path Compression Heuristic

• The second heuristic, path compression, is
also simple and very effective.

• This heuristic is used during FIND-SET

operations to make each node on the find
path point directly to the root.

• In this way, trees with small height are
constructed.

• Path compression does not change any ranks.

Data Structures and Programming
Techniques

46

The Path Compression Heuristic
Graphically

Data Structures and Programming
Techniques

47

f

e

d

c

b

The Path Compression Heuristic
Graphically (cont’d)

Data Structures and Programming
Techniques

48

edcb

f

Implementing Disjoint-Set Forests

• With each node 𝑥, we maintain the integer value
rank[𝑥], which is an upper bound on the height of 𝑥 .

• When a singleton set is created by MAKE-SET, the initial
rank of the single node in the corresponding tree is 0.

• Each FIND-SET operation leaves ranks unchanged.

• When applying UNION to two trees, we make the root
of higher rank the parent of the root of lower rank. In
this case ranks remain the same. In case of a tie, we
arbitrarily choose one of the roots as the parent and
increment its rank.

Data Structures and Programming
Techniques

49

Pseudocode

We designate the parent of node 𝑥 by p[𝑥].

MAKE-SET(𝑥)

p[𝑥]← 𝑥

rank[𝑥] ← 0

UNION(𝑥, 𝑦)

LINK(FIND-SET(𝑥), FIND-SET(𝑦))

Data Structures and Programming
Techniques

50

Pseudocode (cont’d)

LINK(𝑥, 𝑦)
if rank[𝑥] > rank[𝑦]

then p[𝑦] ← 𝑥
else p[𝑥] ← 𝑦

if rank[𝑥] = rank[𝑦]
then rank[𝑦] ← rank[𝑦]+1

FIND-SET(𝑥)
if 𝑥 ≠ p[𝑥]

then p[𝑥] ← FIND-SET(p[𝑥])
return p[𝑥]

Data Structures and Programming
Techniques

51

The FIND-SET Procedure

• Notice that the FIND-SET procedure is a two-
pass method: it makes one pass up the find
path to find the root, and it makes a second
pass back down the find path to update each
node so it points directly to the root.

• The second pass is made as the recursive calls
return.

Data Structures and Programming
Techniques

52

Complexity

• Let us consider a sequence of 𝑚 MAKE-SET, UNION and FIND-SET
operations, 𝑛 of which are MAKE-SET operations.

• When we use both union by rank and path compression, the worst
case running time for the sequence of operations can be proven to
be 𝑶(𝒎 𝜶 𝒎, 𝒏), where 𝛼(𝑚, 𝑛) is the very slowly growing
inverse of Ackermann’s function.

• Ackermann’s function is an exponential, very rapidly growing
function. Its inverse, 𝛼, grows slower than the logarithmic
function.

• In any conceivable application of a disjoint-union data structure, we
have 𝛼(𝑚, 𝑛) ≤ 4.

• Thus we can view the running time as linear in 𝒎 in all practical
situations.

• Therefore, the amortized complexity of each operation is 𝑶 𝟏 .

Data Structures and Programming
Techniques

53

Implementation in C

• Let us assume that the sets will have positive integers in the range
0 to N-1 as their members.

• The simplest way to implement in C the disjoint sets data structure
is to use an array id[N] of integers that take values in the range 0
to N-1. This array will be used to keep track of the representative
of each set but also the members of each set.

• Initially, we set id[i]=i, for each i between 0 and N-1. This is
equivalent to N MAKE-SET operations that create the initial versions
of the sets.

• To implement the UNION operation for the sets that contain integers
p and q, we scan the array id and change all the array elements
that have the value p to have the value q.

• The implementation of the FIND-SET(p) simply returns the value of
id[p].

Data Structures and Programming
Techniques

54

Implementation in C (cont’d)

• The program on the next slide initializes the
array id, and then reads pairs of integers
(p,q) and performs the operation
UNION(p,q) if p and q are not in the same set
yet.

• The program is an implementation of the
equivalence problem defined earlier. Similar
programs can be written for the other
applications of disjoint sets presented.

Data Structures and Programming
Techniques

55

Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

if (id[p] == id[q]) continue;

for (t = id[p], i = 0; i < N; i++)

if (id[i] == t) id[i] = id[q];

printf("%d %d\n", p, q);

}

}

Data Structures and Programming
Techniques

56

Implementation in C (cont’d)

• The extension of this implementation to the
case where sets are represented by linked lists
is left as an exercise.

Data Structures and Programming
Techniques

57

Implementation in C (cont’d)

• The disjoint-forests data structure can easily be
implemented by changing the meaning of the elements
of array id. Now each id[i] represents an element
of a set and points to another element of that set. The
root element points to itself.

• The program on the next slide illustrates this
functionality. Note that after we have found the roots
of the two sets, the UNION operation is simply
implemented by the assignment statement id[i]=j.

• The implementation of the FIND-SET operation is similar.

Data Structures and Programming
Techniques

58

Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

id[i] = j;

printf("%d %d\n", p, q);

}

}

Data Structures and Programming
Techniques

59

Implementation in C (cont’d)

• We can implement a weighted version of the
UNION operation by keeping track of the size of
the two trees and making the root of the
smaller tree point to the root of the larger.

• The code on the next slide implements this
functionality by making use of an array
sz[N] (for size).

Data Structures and Programming
Techniques

60

Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, id[N], sz[N];

for (i = 0; i < N; i++)

{ id[i] = i; sz[i] = 1; }

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

if (sz[i] < sz[j])

{ id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

printf("%d %d\n", p, q);

}

}

Data Structures and Programming
Techniques

61

Implementation in C (cont’d)

• In a similar way, we can implement the union
by rank heuristic.

• This heuristic together with the path
compression heuristic are left as exercises.

Data Structures and Programming
Techniques

62

Readings

• T.H. Cormen, C. E. Leiserson and R. L. Rivest.
Introduction to Algorithms. MIT Press.

– Chapter 22

• Robert Sedgewick. Αλγόριθμοι σε C. 3η

Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος.

– Κεφάλαιο 1

Data Structures and Programming
Techniques

63

