
Graphs (Γράφοι)

Data Structures and Programming
Techniques

1

Graphs

• Graphs are collections of nodes in which various
pairs are connected by line segments. The nodes
are usually called vertices (κορυφές) and the line
segments edges (ακμές).

• Graphs are more general than trees. Graphs are
allowed to have cycles and can have more than
one connected component.

• Some authors use the terms nodes (κόμβοι) and
arcs (τόξα) instead of vertices and edges.

Data Structures and Programming
Techniques

2

Example of Graphs (Directed)

Data Structures and Programming
Techniques

3

Example of Graphs (Undirected)

Data Structures and Programming
Techniques

4

Examples of Graphs

• Transportation networks

• Interesting problem: What is the path with
one or more stops of shortest overall distance
connecting a starting city and a destination
city?

Data Structures and Programming
Techniques

5

Examples (cont’d)

• A network of oil pipelines

• Interesting problem: What is the maximum
possible overall flow of oil from the source to
the destination?

Data Structures and Programming
Techniques

6

Examples (cont’d)

• The Internet

• Interesting problem: Deliver an e-mail from
user A to user B

Data Structures and Programming
Techniques

7

Examples (cont’d)

• The Web

• Interesting problem: What is the PageRank of
a Web site?

Data Structures and Programming
Techniques

8

Examples (cont’d)

• The Facebook social network

• Interesting problem: Are John and Mary
connected? What interesting clusters exist?

Data Structures and Programming
Techniques

9

Formal Definitions

• A graph 𝐺 = (𝑉, 𝐸) consists of a set of vertices V and a set of edges
E, where the edges in E are formed from pairs of distinct vertices in
V.

• If the edges have directions then we have a directed graph
(κατευθυνόμενο γράφο) or digraph. In this case edges are ordered
pairs of vertices e.g., 𝑢, 𝑣 and are called directed. If 𝑢, 𝑣 is a
directed edge then 𝑢 is called its origin and 𝑣 is called its
destination.

• If the edges do not have directions then we have an undirected
graph (μη-κατευθυνόμενος γράφο). In this case edges are
unordered pairs of vertices e.g., 𝑣, 𝑢 and are called undirected.

• For simplicity, we will use the directed pair notation noting that in
the undirected case 𝑢, 𝑣 is the same as 𝑣, 𝑢 .

• When we say simply graph, we will mean an undirected graph.

Data Structures and Programming
Techniques

10

Example of a Directed Graph

Data Structures and Programming
Techniques

11

1

2

3 4

5
6

7

8

9

10
11

𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}

Example of an Undirected Graph

Data Structures and Programming
Techniques

12

1

2

3 4

5
6

7

8

9

10
11

𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}

More Definitions

• Two different vertices 𝑣𝑖 and 𝑣𝑗 in a graph 𝐺 = 𝑉, 𝐸 are
said to be adjacent (γειτονικές) if there exists an edge
𝑒 𝜖 𝐸 such that 𝑒 = 𝑣𝑖 , 𝑣𝑗 .

• An edge is said to be incident (προσπίπτουσα) on a vertex
if the vertex is one of the edge’s endpoints.

• A path (μονοπάτι) 𝑝 in a graph 𝐺 = 𝑉, 𝐸 is a sequence of
vertices of 𝑉 of the form 𝑝 = 𝑣1𝑣2 … 𝑣𝑛, 𝑛 ≥ 2 in which
each vertex 𝑣𝑖 is adjacent to the next one 𝑣𝑖+1 (for 1 ≤ 𝑖 ≤
𝑛 − 1).

• The length of a path is the number of edges in it.
• A path is simple if each vertex in the path is distinct.
• A cycle is a path 𝑝 = 𝑣1𝑣2 … 𝑣𝑛 of length greater than one

that begins and ends at the same vertex (i.e., 𝑣1 = 𝑣𝑛).

Data Structures and Programming
Techniques

13

Definitions (cont’d)

• A directed path is a path such that all edges
are directed and are traversed along their
direction.

• A directed cycle is similarly defined.

Data Structures and Programming
Techniques

14

Definitions (cont’d)

• A simple cycle is a path that travels through
three or more distinct vertices and connects
them into a loop.

• Formally, if 𝑝 is a path of the form 𝑝 =
𝑣1𝑣2 … 𝑣𝑛, then 𝑝 is a simple cycle if and only
if 𝑛 > 3, 𝑣1 = 𝑣𝑛 and 𝑣𝑖 ≠ 𝑣𝑗 for distinct 𝑖 and

𝑗 in the range 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1.

• Simple cycles do not repeat edges.

Data Structures and Programming
Techniques

15

Example

Data Structures and Programming
Techniques

16

1

2

5

4 6

7
8

3

Four simple cycles: (1,2,3,1) (4,5,6,7,4) (4,5,6,4) (4,6,7,4)

Example (cont’d)

Data Structures and Programming
Techniques

17

1

2

5

4 6

7
8

3

Two non-simple cycles: (1,2,1) (4,5,6,4,7,6,4)

Example (cont’d)

Data Structures and Programming
Techniques

18

1

2

5

4 6

7
8

3

A path that is not a cycle: (1,2,4,6,8)

Connectivity and Components

• Two vertices in a graph 𝐺 = (𝑉, 𝐸) are said to
be connected (συνδεδεμένες) if there is a
path from the first to the second in 𝐺.

• Formally, if 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑉, where 𝑥 ≠ 𝑦,
then 𝑥 and 𝑦 are connected if there exists a
path 𝑝 = 𝑣1𝑣2 … 𝑣𝑛 in 𝐺 such that 𝑥 = 𝑣1 and
𝑦 = 𝑣𝑛.

Data Structures and Programming
Techniques

19

Connectivity and Components (cont’d)

• In the graph 𝐺 = (𝑉, 𝐸), a connected component
(συνεκτική συνιστώσα) is a subset 𝑆 of the vertices 𝑉
that are all connected to one another.

• A connected component 𝑆 of 𝐺 is a maximal
connected component (μέγιστη συνεκτική
συνιστώσα) provided there is no bigger subset 𝑇 of
vertices in 𝑉 such that 𝑇 properly contains 𝑆 and such
that 𝑇 itself is a connected component of 𝐺.

• An undirected graph 𝐺 can always be separated into
maximal connected components 𝑆1, 𝑆2, … , 𝑆𝑛 such that
𝑆𝑖 ∩ 𝑆𝑗 = ∅ whenever 𝑖 ≠ 𝑗.

Data Structures and Programming
Techniques

20

Example of Undirected Graph and its Separation
into Two Maximal Connected Components

Data Structures and Programming
Techniques

21

Connectivity and Components in
Directed Graphs

• A subset 𝑆 of vertices in a directed graph 𝐺 is
strongly connected (ισχυρά συνεκτικό) if for
each pair of distinct vertices (𝑣𝑖 , 𝑣𝑗) in 𝑆, 𝑣𝑖 is

connected to 𝑣𝑗 and 𝑣𝑗 is connected to 𝑣𝑖 .

• A subset 𝑆 of vertices in a directed graph 𝐺 is
weakly connected (ασθενώς συνεκτικό) if for
each pair of distinct vertices (𝑣𝑖 , 𝑣𝑗) in 𝑆, 𝑣𝑖 is

connected to 𝑣𝑗 or 𝑣𝑗 is connected to 𝑣𝑖 .

Data Structures and Programming
Techniques

22

Example: A Strongly Connected
Digraph

Data Structures and Programming
Techniques

23

Example: A Weakly Connected Digraph

Data Structures and Programming
Techniques

24

Degree in Undirected Graphs

• In an undirected graph 𝐺 the degree (βαθμός)
of vertex 𝑥 is the number of edges 𝑒 in which
𝑥 is one of the endpoints of 𝑒.

• The degree of a vertex 𝑥 is denoted by
deg 𝑥 .

Data Structures and Programming
Techniques

25

Example

Data Structures and Programming
Techniques

26

1

2

5

4 6

7
8

3

The degree of node 1 is 2. The degree of node 4 is 4. The degree of node 8 is 1.

Predecessors and Successors in
Directed Graphs

• If 𝑥 is a vertex in a directed graph 𝐺 = (𝑉, 𝐸)
then the set of predecessors (προηγούμενων)
of 𝑥 denoted by 𝑃𝑟𝑒𝑑(𝑥) is the set of all
vertices 𝑦 ∈ 𝑉 such that 𝑦, 𝑥 ∈ 𝐸.

• Similarly the set of successors (επόμενων) of
𝑥 denoted by 𝑆𝑢𝑐𝑐(𝑥) is the set of all vertices
𝑦 ∈ 𝑉 such that 𝑥, 𝑦 ∈ 𝐸.

Data Structures and Programming
Techniques

27

In-Degree and Out-Degree in Directed
Graphs

• The in-degree of a vertex 𝑥 is the number of
predecessors of 𝑥.

• The out-degree of a vertex 𝑥 is the number of
successors of 𝑥.

• We can also define the in-degree and the out-
degree by referring to the incoming and outgoing
edges of a vertex.

• The in-degree and out-degree of a vertex 𝑥 are
denoted by 𝑖𝑛𝑑𝑒𝑔(𝑥) and 𝑜𝑢𝑡𝑑𝑒𝑔(𝑥)
respectively.

Data Structures and Programming
Techniques

28

Example

Data Structures and Programming
Techniques

29

1

2 3

4 5

The in-degree of node 4 is 2. The out-degree of node 4 is 1.

Proposition

• If 𝐺 is an undirected graph with 𝑚 edges, then

𝑣 𝑖𝑛 𝐺

deg(𝑣) = 2𝑚.

• Proof?

Data Structures and Programming
Techniques

30

Proof

• An edge (𝑢, 𝑣) is counted twice in the
summation above; once by its endpoint 𝑢 and
one by its endpoint 𝑣. Thus, the total
contribution of the edges to the degrees of
the vertices is twice the number of edges.

Data Structures and Programming
Techniques

31

Proposition

• If 𝐺 is a directed graph with 𝑚 edges, then

𝑣 𝑖𝑛 𝐺

𝑖𝑛𝑑𝑒 𝑔 𝑣 =

𝑣 𝑖𝑛 𝐺

𝑜𝑢𝑡𝑑𝑒𝑔(𝑣) = 𝑚.

• Proof?

Data Structures and Programming
Techniques

32

Proof

• In a directed graph, an edge (𝑢, 𝑣) contributes
one unit to the out-degree of its origin vertex
𝑢 and one unit to the in-degree of its
destination 𝑣. Thus, the total contribution of
the edges to the out-degrees of the vertices is
equal to the number of edges, and similarly
for the out-degrees.

Data Structures and Programming
Techniques

33

Proposition

• Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges.

If 𝐺 is undirected, then 𝑚 ≤
𝑛 𝑛−1

2
, and if 𝐺 is

directed, then 𝑚 ≤ 𝑛 𝑛 − 1 .

• Proof?

Data Structures and Programming
Techniques

34

Proof

• If 𝐺 is undirected then the maximum degree
of a vertex is 𝑛 − 1. Therefore, from the
previous proposition about the sum of the
degrees, we have 2𝑚 ≤ 𝑛 𝑛 − 1 .

• If 𝐺 is directed then the maximum in-degree
of a vertex is 𝑛 − 1. Therefore, from the
previous proposition about the sum of the in-
degrees, we have 𝑚 ≤ 𝑛 𝑛 − 1 .

Data Structures and Programming
Techniques

35

More definitions

• A subgraph (υπογράφος) of a graph 𝐺 is a graph 𝐻
whose vertices and edges are subsets of the vertices
and edges of 𝐺 respectively.

• A spanning subgraph (υπογράφος επικάλυψης) of 𝐺
is a subgraph of 𝐺 that contains all the vertices of 𝐺.

• A forest (δάσος) is a graph without cycles.
• A free tree (ελεύθερο δένδρο) is a connected forest

i.e., a connected graph without cycles. The trees that
we studied in earlier lectures are rooted trees (δένδρα
με ρίζα) and they are different than free trees.

• A spanning tree (δένδρο επικάλυψης) of a graph is a
spanning subgraph that is a free tree.

Data Structures and Programming
Techniques

36

Example

Data Structures and Programming
Techniques

37

1

2

5

4 6

7
8

3

The thick green lines define a spanning tree of the graph.

Example

Data Structures and Programming
Techniques

38

The thick green lines define a forest
which consists of two free trees.

Graph Representations: Adjacency
Matrices

• Let 𝐺 = (𝑉, 𝐸) be a graph. Suppose we
number the vertices in 𝑉 as 𝑣1, 𝑣2, … , 𝑣𝑛.

• The adjacency matrix (πίνακας γειτνίασης) 𝑇
corresponding to 𝐺 is an 𝑛 × 𝑛 matrix such

that 𝑇 𝑖, 𝑗 = 1 if there is an edge 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸,

and 𝑇 𝑖, 𝑗 = 0 if there is no such edge in 𝐸.

Data Structures and Programming
Techniques

39

Example

0 1 0 0

0 0 1 1

1 0 0 1

1 0 0 0

Data Structures and Programming
Techniques

40

1 2

3 4

A graph G The adjacency matrix for graph G

1 2 3 4

1

2

3

4

Adjacency Matrices

• The adjacency matrix of an undirected graph
𝐺 is a symmetric matrix i.e., 𝑇 𝑖, 𝑗 = 𝑇[𝑗, 𝑖]
for all 𝑖 and 𝑗 in the range 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

• The adjacency matrix for a directed graph
need not be symmetric.

Data Structures and Programming
Techniques

41

Adjacency Matrices

• The diagonal entries in an adjacency matrix
(of a directed or undirected graph) are zero,
since graphs as we have defined them are not
permitted to have looping self-referential
edges that connect a vertex to itself.

Data Structures and Programming
Techniques

42

Example

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

Data Structures and Programming
Techniques

43

1 2

3 4

An undirected graph G The adjacency matrix for graph G

1 2 3 4

1

2

3

4

Adjacency Matrices in C

#define MAXVERTEX 10

typedef enum {FALSE, TRUE} Boolean

typedef Boolean

AdjacencyMatrix[MAXVERTEX][MAXVERTEX]

typedef struct graph {

int n /*number of vertices in graph */

AdjacencyMatrix A;

} Graph;

Data Structures and Programming
Techniques

44

Adjacency Sets

• Another way to define a graph 𝐺 = (𝑉, 𝐸) is to
specify adjacency sets (σύνολα γειτνίασης) for
each vertex in 𝑉.

• Let 𝑉𝑥 stand for the set of all vertices adjacent to
𝑥 in an undirected graph 𝐺 or the set of all
vertices that are successors of 𝑥 in a directed
graph 𝐺.

• If we give both the vertex set 𝑉 and the
collection 𝐴 = {𝑉𝑥|𝑥 ∈ 𝑉} of adjacency sets for
each vertex in 𝑉 then we have given enough
information to define the graph 𝐺.

Data Structures and Programming
Techniques

45

Graph Representations: Adjacency
Lists

• Another family of representations for a graph
uses adjacency lists (λίστες γειτνίασης) to
represent the adjacency set 𝑉𝑥 for each vertex
𝑥 in the graph.

Data Structures and Programming
Techniques

46

Example Directed Graph

1 2 2 3

2 3 3 4 5

3 1 4

4 0

5 1 1

Data Structures and Programming
Techniques

47

1 3

5 4

A directed graph G
The sequential adjacency lists for graph
G. Notice that vertices are listed in their
natural order.

2

Adjacency listOut Degree
Vertex
Number

Example Directed Graph

Data Structures and Programming
Techniques

48

1 3

5 4

A directed graph G

The linked adjacency lists for graph G.
Notice that vertices in a list are organized
according to their natural order.

2
2 3 .
3 4 5 .

4

1 .

.
.

1:

2:

3:

4:

5:

Example Undirected Graph

1 3 2 3 5

2 4 1 3 4 5

3 3 1 2 4

4 2 2 4

5 2 1 2

Data Structures and Programming
Techniques

49

1 3

5 4

An undirected graph G
The sequential adjacency lists for graph G

2

Adjacency listDegree
Vertex
Number

Sequential Adjacency Lists in C

typedef int AdjacencyList[MAXVERTEX];

typedef struct graph{

int n; /*number of vertices in graph */

int degree[MAXVERTEX];

AdjacencyList A[MAXVERTEX];

} Graph;

Data Structures and Programming
Techniques

50

Linked Adjacency Lists in C

typedef int Vertex;

typedef struct edge {

Vertex endpoint;

struct edge *nextedge;

} Edge;

typedef struct graph{

int n; /*number of vertices in graph */

Edge *firstedge[MAXVERTEX];

} Graph;

Data Structures and Programming
Techniques

51

Linked Adjacency Lists in C (cont’d)

• The previous representation used an array for
the vertices and linked lists for the adjacency
lists.

• We can use linked lists for the vertices as well
as follows.

Data Structures and Programming
Techniques

52

Linked Adjacency Lists in C (cont’d)

typedef struct vertex Vertex;

typedef struct edge Edge;

struct vertex {

Edge *firstedge;

Vertex *nextvertex;

}

struct edge {

Vertex *endpoint;

Edge *nextedge;

};

typedef Vertex *Graph;

Data Structures and Programming
Techniques

53

Graph Searching

• To search a graph G, we need to visit all
vertices of G in some systematic order.

• Let us define an enumeration

typedef enum {FALSE, TRUE} Boolean;

• Each vertex v can be a structure with a
Boolean valued member v.Visited
which is initially FALSE for all vertices of G.
When we visit v, we will set it to TRUE.

Data Structures and Programming
Techniques

54

An Algorithm for Graph Searching

void GraphSearch(G,v)

{

Let G=(V,E) be a graph.

Let C be an empty container.

for (each vertex x in V){

x.Visited=FALSE;

}

Put v into C;

while (C is non-empty){

Remove a vertex x from container C;

if (!(x.Visited)){

Visit(x);

x.Visited=TRUE;

for (each vertex w in Vx){

if (!(w.Visited)) Put w into C;

}

}

}

}

Data Structures and Programming
Techniques

55

Graph Searching (cont’d)

• Let us consider what happens when the
container C is a stack.

Data Structures and Programming
Techniques

56

Example

Data Structures and Programming
Techniques

57

1

2 3 4

5 6 7 8

What is the order vertices are visited?

Example (cont’d)

Data Structures and Programming
Techniques

58

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6 and 5.

Depth-First Search (DFS)

• When C is a stack, the tree in the previous
example is searched in depth-first order.

• Depth-first search (αναζήτηση πρώτα κατά
βάθος) at a vertex always goes down (by
visiting unvisited children) before going across
(by visiting unvisited brothers and sisters).

• Depth-first search of a graph is analogous to a
pre-order traversal of an ordered tree.

Data Structures and Programming
Techniques

59

Graph Searching (cont’d)

• Let us consider what happens when the
container C is a queue.

Data Structures and Programming
Techniques

60

Example

Data Structures and Programming
Techniques

61

1

2 3 4

5 6 7 8

What is the order vertices are visited?

Example (cont’d)

Data Structures and Programming
Techniques

62

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 2, 3, 4, 5, 6, 7 and 8.

Breadth-First Search (BFS)

• When C is a queue, the tree in the previous example is
searched in breadth-first order.

• Breadth-first search (αναζήτηση πρώτα κατά πλάτος)
at a vertex always goes broad before going deep.

• Breadth-first traversal of a graph is analogous to a
traversal of an ordered tree that visits the nodes of the
tree in level-order.

• BFS subdivides the vertices of a graph in levels. The
starting vertex is at level 0, then we have the vertices
adjacent to the starting vertex at level 1, then the
vertices adjacent to these vertices at level 2 etc.

Data Structures and Programming
Techniques

63

Example

Data Structures and Programming
Techniques

64

1

2

3

4

5

6

7

8

What is the order of visiting vertices for DFS?

Example (cont’d)

Data Structures and Programming
Techniques

65

1

2

3

4

5

6

7

8

Depth-first search visits the vertices in the order 1, 4, 8, 6, 5, 7, 3 and 2

Example (cont’d)

Data Structures and Programming
Techniques

66

1

2

3

4

5

6

7

8

What is the order of visit for BFS?

Example (cont’d)

Data Structures and Programming
Techniques

67

1

2

3

4

5

6

7

8

Breadth-first search visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.

Exhaustive Search

• Either the stack version or the queue version
of the algorithm GraphSearch will visit
every vertex in a graph G provided that G
consists of a single strongly connected
component.

• If this is not the case, then we can enumerate
all the vertices of G and run GraphSearch
starting from each one of them in order to
visit all the vertices of G.

Data Structures and Programming
Techniques

68

Exhaustive Search (cont’d)

void ExhaustiveGraphSearch(G)

{

Let G=(V,E) be a graph.

for (each vertex v in G){

GraphSearch(G, v)

}

}

Data Structures and Programming
Techniques

69

Theseus in the Labyrinth

• DFS and BFS can be simulated using a string
and a can of paint for painting the vertices
i.e., using a version of the algorithm that
Theseus might have used in the labyrinth of
the Minotaur!

Data Structures and Programming
Techniques

70

Implementing DFS in C

• We will now show how to implement depth-
first search in C.

• We will use the linked adjacency lists
representation of a graph.

• We will write a function DepthFirst which
calls the recursive function Traverse.

Data Structures and Programming
Techniques

71

Implementing DFS in C (cont’d)

/* global variable visited */

Boolean visited[MAXVERTEX];

/* DepthFirst: depth-first traversal of a graph

Pre: The graph G has been created.

Post: The function Visit has been performed at each vertex of G in

depth-first order

Uses: Function Traverse produces the recursive depth-first order */

void DepthFirst(Graph G, void (*Visit)(Vertex x))

{

Vertex v;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

for (v=0; v < G.n; v++)

if (!visited[v]) Traverse(G, v, Visit);

}

Data Structures and Programming
Techniques

72

Implementing DFS in C (cont’d)

/* Traverse: recursive traversal of a graph

Pre: v is a vertex of graph G

Post: The depth first traversal, using function Visit, has been

completed for v and for all vertices adjacent to v.

Uses: Traverse recursively, Visit */

void Traverse(Graph G, Vertex v, void (*Visit)(Vertex x))

{

Vertex w;

Edge *curedge;

visited[v]=TRUE;

Visit(v);

curedge=G.firstedge[v]; /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint; /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Traverse(G, w, Visit);

curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,_) of V */

}

}

Data Structures and Programming
Techniques

73

Example of Recursive DFS

Data Structures and Programming
Techniques

74

1

2 3 4

5 6 7 8

What is the order vertices are visited?

Example (cont’d)

Data Structures and Programming
Techniques

75

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is
different than the order we got when using a stack!

Complexity of DFS

• DFS as implemented above (with adjacency lists) on a graph
with 𝑒 edges and 𝑛 vertices has complexity 𝑶 𝒏 + 𝒆 .

• To see why observe that on no vertex is Traverse called
more than once, because as soon as we call Traverse
with parameter 𝑣, we mark 𝑣 visited and we never call
Traverse on a vertex that has previously been marked as
visited.

• Thus, the total time spent going down the adjacency lists is
proportional to the lengths of those lists, that is 𝑂 𝑒 .

• The initialization steps in DepthFirst have complexity
𝑂 𝑛 .

• Thus, the total complexity is 𝑂 𝑛 + 𝑒 .

Data Structures and Programming
Techniques

76

Complexity of DFS (cont’d)

• If DFS is implemented using an adjacency matrix,
then its complexity will be 𝑂 𝑛2 .

• If the graph is dense (πυκνός), that is, it has close
to 𝑂 𝑛2 edges the difference of the two
implementations is minor as they would both run
in 𝑂 𝑛2 time.

• If the graph is sparse (αραιός), that is, it has close
to 𝑂 𝑛 edges, then the adjacency matrix
approach would be much slower than the
adjacency list approach.

Data Structures and Programming
Techniques

77

Implementing BFS in C

• Let us now show how to implement breadth-
first search in C.

• The algorithm BreadthFirst makes use of
a queue which can be implemented using any
of the implementations we presented in an
earlier lecture.

Data Structures and Programming
Techniques

78

Implementing BFS in C (cont’d)

/* BreadthFirst: breadth-first traversal of a graph

Pre: The graph G has been created

Post: The function visit has been performed at each vertex of G, where the vertices

are chosen in breadth-first order.

Uses: Queue functions */

void BreadthFirst(Graph G, void (*Visit)(Vertex))

{

Queue Q;

Boolean visited[MAXVERTEX];

Vertex v, w;

Edge *curedge;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

InitializeQueue(&Q);

for (v=0; v < G.n; v++)

if (!visited[v]){

Insert(v, &Q);

do {

Remove(&Q, &v);;

if (!visited[v]){

visited[v]=TRUE;

Visit(v);

}

curedge=G.firstedge[v]; /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint; /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Insert(w, &Q);

curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,_) of V */

}

} while (!Empty(&Q));

}

}

Data Structures and Programming
Techniques

79

Complexity of BFS

• BFS as implemented above (with adjacency
lists) has the same complexity as DFS i.e.,
𝑶(𝒏 + 𝒆).

Data Structures and Programming
Techniques

80

DFS Traversal of a Directed Graph

• During a depth-first traversal of a directed graph, certain edges,
when traversed, lead to unvisited vertices. The edges leading to
new vertices are called tree edges (ακμές δένδρου) and they form
a depth-first spanning forest (πρώτα κατά βάθος δάσος
επικάλυψης) for the given digraph.

• There are also edges called back edges (ακμές οπισθοχώρησης)
that go from a vertex to one of its ancestors in the spanning forest.

• There also edges that do not belong to the spanning forest and go
from a vertex to a proper descendant. These are called forward
edges (ακμές προώθησης).

• Finally, there are edges that go from a vertex to another vertex that
is neither an ancestor nor a descendant that are called cross edges
(εγκάρσιες ακμές).

Data Structures and Programming
Techniques

81

Example

Data Structures and Programming
Techniques

82

E

F

G

B

D

A

C

Example (cont’d)

Data Structures and Programming
Techniques

83

Tree edges

Cross edges

Back edges

E

F G

A

B

C D

There are no forward edges

Classification of Edges

• How do we distinguish among the four types of edges?
• Tree edges are easy to find since they lead to an unvisited vertex

during DFS.
• Let us number the vertices of the digraph in the order in which we

first mark them as visited during a depth first search. For this we
can use an array dfnumber and add the code
dfnumber[v]=count;

count++;

in the function Traverse, immediately after the
statement marking a vertex as visited.
• Let us call this the depth-first numbering (πρώτα κατά βάθος

αρίθμηση) of a digraph.

Data Structures and Programming
Techniques

84

Classification of Edges (cont’d)

• All descendants of a vertex 𝑣 are assigned depth-first
search numbers greater than or equal to the number
assigned to 𝑣. In fact, 𝑤 is a descendant of 𝑣 if and
only if 𝑑𝑓𝑛𝑢𝑚𝑏𝑒𝑟 𝑣 ≤ 𝑑𝑓𝑛𝑢𝑚𝑏𝑒𝑟 𝑤 ≤
𝑑𝑓𝑛𝑢𝑚𝑏𝑒𝑟 𝑣 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 𝑜𝑓 𝑣.

• Thus, we have the following:
– Forward edges go from low-numbered vertices to high-

numbered vertices.
– Back edges go from high-numbered vertices to low-

numbered vertices.
– Cross edges go from high-numbered vertices to low-

numbered vertices.

Data Structures and Programming
Techniques

85

DFS of an Undirected Graph

• During a depth-first search of an undirected
graph 𝐺, all edges become either tree edges or
back edges.

• Tree edges are those edges (𝑣, 𝑤) such that
Traverse with parameter 𝑣 directly calls
Traverse with parameter 𝑤 or vice versa.

• Back edges are those edges (𝑣, 𝑤) such that
Traverse with parameter 𝑣 inspects vertex 𝑤
but does not call Traverse because 𝑤 has
already been visited.

Data Structures and Programming
Techniques

86

Example

Data Structures and Programming
Techniques

87

A

B

D E

C

F G

Example (cont’d)

Data Structures and Programming
Techniques

88

A

B

D E

C

F G

Tree edges

Back edges

DFS of an Undirected Graph

• During a DFS of an undirected graph 𝐺, tree
edges form a depth-first spanning forest of 𝐺.

Data Structures and Programming
Techniques

89

BFS of an Undirected Graph

• We can build a spanning forest when we perform
a breadth-first search as well. We call this the
breadth-first spanning forest of the graph.

• We consider edge (𝑣, 𝑤) to be a tree edge if
vertex 𝑤 is first visited from vertex 𝑣 in the inner
while loop of function BreadthFirst.

• Every edge that is not a tree edge is a cross edge,
that is, it connects two vertices neither of which
is an ancestor of the other.

Data Structures and Programming
Techniques

90

Example

Data Structures and Programming
Techniques

91

A

B

D E

C

F G

Let us execute BFS with start node A.

Example (cont’d)

Data Structures and Programming
Techniques

92

A

B

D E

C

F G

Tree edges

Cross edges

BFS of Directed Graphs

• BFS can also work on directed graphs.
• The algorithm visits vertices level by level and

partitions the edges into two sets: tree edges and non-
tree edges.

• Tree edges define a breadth-first spanning forest.
• Non-tree edges are of two kinds: back edges and cross

edges.
• Back edges connect a vertex to one of its ancestors.

Cross edges connect a vertex to another vertex that is
neither its ancestor nor its descendant.

• There are no forward edges.

Data Structures and Programming
Techniques

93

Directed Acyclic Graphs

• Let G be a directed graph with no cycles. Such
a graph is called acyclic. We abbreviate the
term directed acyclic graph to dag.

• Dags are more general than trees but less
general than arbitrary directed graphs.

Data Structures and Programming
Techniques

94

Example Tree

Data Structures and Programming
Techniques

95

Example Dag

Data Structures and Programming
Techniques

96

Example Dag

Data Structures and Programming
Techniques

97

Applications of Dags

• Dags are useful in representing the syntactic
structure of arithmetic expressions with
common subexpressions.

• Example: Consider the following arithmetic
expression

𝑎 + 𝑏 ∗ 𝑐 + 𝑎 + 𝑏 + 𝑒 ∗ 𝑒 + 𝑓

∗ (𝑎 + 𝑏 ∗ 𝑐)

Data Structures and Programming
Techniques

98

The Dag for the Example

Data Structures and Programming
Techniques

99

*

+

* *

+ +

e fa b

c

+

Applications of Dags

• Dags are also useful for representing partial
orders.

• A partial order 𝑅 on a set 𝑆 is a binary relation
such that
– For all 𝑎 in 𝑆, 𝑎 𝑅 𝑎 is false (irreflexivity)

– For all 𝑎, 𝑏, 𝑐 in 𝑆, if 𝑎 𝑅 𝑏 and 𝑏 𝑅 𝑐 then 𝑎 𝑅 𝑐
(transitivity)

• Two natural examples of partial orders are the
“less than” relation (<) on integers, and the
relation of proper containment (⊂) on sets.

Data Structures and Programming
Techniques

100

Example

• Let 𝑆 = 1, 2, 3 and let 𝑃(𝑆) be the power set
of 𝑆, that is, the set of all subsets of 𝑆. The
relation ⊂ is a partial order on 𝑆.

Data Structures and Programming
Techniques

101

The Dag of the Example

Data Structures and Programming
Techniques

102

{1,2,3}

{1,2} {1,3} {2,3}

{2}{1} {3}

∅

Test for Acyclicity

• Suppose we are given a digraph 𝐺 and we
wish to determine whether 𝑮 is acyclic.

• DFS can be used to answer this question.

• If a back edge is encountered during a DFS
then clearly the graph has a cycle.

• Conversely, if the graph has a cycle then a
back edge will be encountered in any DFS of
the graph. Proof?

Data Structures and Programming
Techniques

103

Proof

• Suppose 𝐺 is cyclic. If we do a DFS of 𝐺, there
will be one vertex 𝑣 having the lowest DFS
number of any vertex on a cycle. Consider an
edge (𝑢, 𝑣) on some cycle containing 𝑣. Since
𝑢 is on the cycle, 𝑢 must be a descendant of 𝑣
in the depth-first spanning forest. Thus, (𝑢, 𝑣)
cannot be a cross edge. Since the DFS number
of 𝑢 is greater than the DFS number of 𝑣,
(𝑢, 𝑣) cannot be a tree edge or a forward
edge. Hence, (𝑢, 𝑣) is a back edge.

Data Structures and Programming
Techniques

104

Topological Ordering of a DAG

• A topological ordering (τοπολογική
ταξινόμηση) of the vertices of a dag G is a
sequential list L of the vertices of G (a linear
ordering) such that if there is a directed path
from vertex A to vertex B in G, then A comes
before B in the list L.

Data Structures and Programming
Techniques

105

Example

• G might be a graph in which the vertices
represent university courses to take and in
which an edge is directed from the vertex for
course A to the vertex for course B if course A
is a prerequisite of B.

• Then a topological ordering of the vertices of
G gives us a possible way to organize one’s
studies.

Data Structures and Programming
Techniques

106

Example

Data Structures and Programming
Techniques

107

2

1 3

4 5

54231

A Topological Ordering

A DAG

Computing a Topological Ordering

• We will compute a list of vertices L that contains the vertices
of G in topological order.

• We will use an array D such that D[v] gives the number of
predecessors p of vertex v in graph G such that p is not in L.

• We will use a queue Q of vertices from where we will take
vertices to process (from the front of the queue).

• The vertices of G in Q will be processed in breadth-first order.
• Initially Q will contain all the vertices of G with no

predecessors.
• When we find a vertex w of G such that D[w]==0, we see

that w has all its predecessors in list L so we add w to the
rear of queue Q so it can be processed.

Data Structures and Programming
Techniques

108

Algorithm for Topological Ordering

void BreadthTopSort(Graph G, List *L)

{

Let G=(V,E) be the input graph.

Let L be a list of vertices.

Let Q be a queue of vertices.

Let D[V] be an array of vertices indexed by vertices

in V.

/* Compute the in-degrees D[x] of the vertices x

in G */

for (each vertex x in V) D[x]=0;

for (each vertex x in V){

for (each successor w in Succ(x)) D[w]++;

}

Data Structures and Programming
Techniques

109

Algorithm for Topological Ordering
(cont’d)

/* Initialize the queue Q to contain all

vertices having zero in-degrees */

Initialize(&Q);

for (each vertex x in V){

if (D[x]==0) Insert(x, &Q);

}

Data Structures and Programming
Techniques

110

Algorithm for Topological Ordering
(cont’d)

/* Initialize the list L to be the empty list */

InitializeList(&L);

/* Process vertices in the queue Q until the queue becomes

empty */

while (!Empty(&Q)){

Remove(&Q,x);

AddToList(x,&L);

for (each successor w in Succ(x)){

D[w]--;

if (D[w]==0) Insert(w, &Q);

}

}

/* The list L now contains the vertices of G in

topological order */

}

Data Structures and Programming
Techniques

111

Implementing Topological Sort in C

• We first need to define a new type for an array
that will be used to store the vertices of a
graph in topological order:

typedef Vertex Toporder[MAXVERTEX];

• We will also use the functions for the ADT
queue that we have defined in a previous
lecture.

Data Structures and Programming
Techniques

112

Topological Sort in C (cont’d)

/* BreadthTopSort: generates breadth-first topological ordering

Pre: G is a directed graph with no cycles implemented with a contiguous list of vertices

and linked adjacency lists.

Post: The function makes a breadth-first traversal of G and generates the resulting

topological order in T

Uses: Queue functions */

void BreadthTopSort(Graph G, Toporder T)

{

int predecessorcount[MAXVERTEX]; /* number of predecessors of each vertex */

Queue Q;

Vertex v, succ;

Edge *curedge;

int place;

/* initialize all the predecessor counts to 0 */

for (v=0; v < G.n; v++)

predecessorcount[v]=0;

/* increase the predecessor count for each vertex that is a successor of another one */

for (v=0; v < G.n; v++)

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge)

predecessorcount[curedge->endpoint]++;

Data Structures and Programming
Techniques

113

Topological Sort in C (cont’d)

/* initialize a queue */

InitializeQueue(&Q);

/* place all vertices with no predecessors into the queue */

for (v=0; v < G.n; v++)

if (predecessorcount[v]==0)

Insert(v, &Q);

/* start the breadth-first traversal */

place=-1;

while (!Empty(&Q)) {

/* visit v by placing it into the topological order */

Remove(&Q, &v);

place++;

T[place]=v;

/* traverse the list of successors of v */

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge){

/* reduce the predecessor count for each successor */

succ=curedge->endpoint;

predecessorcount[succ]--;

if (predecessorcount[succ]==0)

/* succ has no further predecessors, so it is ready to process */

Insert(succ, &Q);

}

}

}

Data Structures and Programming
Techniques

114

Complexity of Topological Sort

• The complexity of topological sort is again
𝑶(𝒏 + 𝒆).

Data Structures and Programming
Techniques

115

Strongly Connected Components

• A strongly connected component (ισχυρά συνεκτική
συνιστώσα) of a directed graph is a maximal set of vertices
in which there is a path from any one vertex in the set to
any other vertex.

• More formally, let 𝐺 = (𝑉, 𝐸) be a directed graph. We can
partition 𝑉 into equivalence classes 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑟, such that
vertices 𝑣 and 𝑤 are equivalent if and only if there is a path
from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣. Let 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑟, be
the set of edges with endpoints in 𝑉𝑖 . The graphs 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖) are called the strongly connected components or
just strong components (ισχυρές συνιστώσες) of 𝐺.

• A directed graph with only one strong component is said to
be strongly connected (ισχυρά συνδεδεμένος).

Data Structures and Programming
Techniques

116

Example Directed Graph

Data Structures and Programming
Techniques

117

A B

D C

The Strong Components of the Digraph

Data Structures and Programming
Techniques

118

A B

D C

Strong Components (cont’d)

• Every vertex of a directed graph 𝐺 is in some strong
component, but certain edges may not be in any
component.

• Such edges, called cross-component edges, go from
one vertex in one component to a vertex in another.

• We can represent the interconnections among
components by constructing a reduced graph
(ελαττωμένο γράφο) for 𝐺. There is an edge from
vertex 𝐶 to vertex 𝐶′ of the reduced graph if there is an
edge in 𝐺 from some vertex in the component 𝐶 to
some vertex in the component 𝐶′.

• The reduced graph is always a dag.

Data Structures and Programming
Techniques

119

Example Directed Graph 𝐺

Data Structures and Programming
Techniques

120

A B

D C

Example Reduced Graph for 𝐺

Data Structures and Programming
Techniques

121

A, B, C

D

Algorithm for Computing Strong
Components

• We can use DFS to compute the strong components of
a given directed graph 𝐺 as follows:
1. Perform a DFS of 𝐺 and number the vertices in order of

completion of the recursive calls.

2. Construct a new directed graph 𝐺𝑟 by reversing the
direction of each edge in 𝐺.

3. Perform a DFS of 𝐺𝑟, starting the search from the highest
numbered vertex according to the numbering assigned in
Step 1. If the DFS does not reach all vertices, start the
next DFS from the highest-numbered remaining vertex.

4. Each tree in the resulting spanning forest is a strongly
connected component of 𝐺.

Data Structures and Programming
Techniques

122

Example Directed Graph 𝐺

Data Structures and Programming
Techniques

123

A B

D C

After Step 1

Data Structures and Programming
Techniques

124

A B

D C

Tree edges

Back edges

4 3

21

Forward edges

The DAG 𝐺𝑟

Data Structures and Programming
Techniques

125

A B

D C

4 3

21

Depth-first Spanning Forest for 𝐺𝑟

Data Structures and Programming
Techniques

126

A B

D C

Tree edges

Back edges

4 3

21

Cross edges

The Strong Components of 𝐺

Data Structures and Programming
Techniques

127

A B

D C

Complexity of Algorithm for
Computing Strong Components

• The complexity of the algorithm we presented
for computing strong components is again
𝑶(𝒏 + 𝒆).

Data Structures and Programming
Techniques

128

Readings

• T. A. Standish. Data Structures , Algorithms and
Software Principles in C.
– Chapter 10

• R. Kruse and C.L. Tondo and B. Leung. Data Structures
and Program Design in C. 2nd edition.
– Chapter 11

• A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data
Structures and Algorithms.
– Chapters 6 and 7

• M. T. Goodrich, R. Tamassia and D. Mount. Data
Structures and Algorithms in C++. 2nd edition.
– Chapter 13

Data Structures and Programming
Techniques

129

