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Graphs

• Graphs are collections of nodes in which various 
pairs are connected by line segments. The nodes 
are usually called vertices (κορυφές) and the line 
segments edges (ακμές).

• Graphs are more general than trees. Graphs are 
allowed to have cycles and can have more than 
one connected component.

• Some authors use the terms nodes (κόμβοι) and 
arcs (τόξα) instead of vertices and edges.
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Example of Graphs (Directed)
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Example of Graphs (Undirected)
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Examples of Graphs

• Transportation networks

• Interesting problem: What is the path with 
one or more stops of shortest overall distance 
connecting a starting city and a destination 
city?
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Examples (cont’d)

• A network of oil pipelines

• Interesting problem: What is the maximum 
possible overall flow of oil from the source to 
the destination?

Data Structures and Programming 
Techniques

6



Examples (cont’d)

• The Internet

• Interesting problem: Deliver an e-mail from 
user A to user B
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Examples (cont’d)

• The Web

• Interesting problem: What is the PageRank of 
a Web site?
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Examples (cont’d)

• The Facebook social network

• Interesting problem: Are John and Mary 
connected? What interesting clusters exist?
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Formal Definitions

• A graph 𝐺 = (𝑉, 𝐸) consists of a set of vertices V and a set of edges
E, where the edges in E are formed from pairs of distinct vertices in 
V.

• If the edges have directions then we have a directed graph 
(κατευθυνόμενο γράφο) or digraph. In this case edges are ordered 
pairs of vertices e.g., 𝑢, 𝑣 and are called directed. If 𝑢, 𝑣 is a 
directed edge then 𝑢 is called its origin and 𝑣 is called its 
destination.

• If the edges do not have directions then we have an undirected 
graph (μη-κατευθυνόμενος γράφο). In this case edges are 
unordered pairs of vertices e.g., 𝑣, 𝑢 and are called undirected. 

• For simplicity, we will use the directed pair notation noting that in 
the undirected case 𝑢, 𝑣 is the same as 𝑣, 𝑢 .

• When we say simply graph, we will mean an undirected graph.
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Example of a Directed Graph
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𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}



Example of an Undirected Graph
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More Definitions

• Two different vertices 𝑣𝑖 and 𝑣𝑗 in a graph 𝐺 = 𝑉, 𝐸 are 
said to be adjacent (γειτονικές) if there exists an edge 
𝑒 𝜖 𝐸 such that 𝑒 = 𝑣𝑖 , 𝑣𝑗 .

• An edge is said to be incident (προσπίπτουσα) on a vertex 
if the vertex is one of the edge’s endpoints.

• A path (μονοπάτι) 𝑝 in a graph 𝐺 = 𝑉, 𝐸 is a sequence of 
vertices of 𝑉 of the form 𝑝 = 𝑣1𝑣2 … 𝑣𝑛, 𝑛 ≥ 2 in which 
each vertex 𝑣𝑖 is adjacent to the next one 𝑣𝑖+1 (for 1 ≤ 𝑖 ≤
𝑛 − 1).

• The length of a path is the number of edges in it.
• A path is simple if each vertex in the path is distinct.
• A cycle is a path 𝑝 = 𝑣1𝑣2 … 𝑣𝑛 of length greater than one 

that begins and ends at the same vertex (i.e., 𝑣1 = 𝑣𝑛).

Data Structures and Programming 
Techniques

13



Definitions (cont’d)

• A directed path is a path such that all edges 
are directed and are traversed along their 
direction.

• A directed cycle is similarly defined.
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Definitions (cont’d)

• A simple cycle is a path that travels through 
three or more distinct vertices and connects 
them into a loop. 

• Formally, if 𝑝 is a path of the form 𝑝 =
𝑣1𝑣2 … 𝑣𝑛, then 𝑝 is a simple cycle if and only 
if 𝑛 > 3, 𝑣1 = 𝑣𝑛 and 𝑣𝑖 ≠ 𝑣𝑗 for distinct 𝑖 and 

𝑗 in the range 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1.

• Simple cycles do not repeat edges.
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Example
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Four simple cycles:  (1,2,3,1)   (4,5,6,7,4)   (4,5,6,4)   (4,6,7,4)



Example (cont’d)
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Two non-simple cycles:  (1,2,1)   (4,5,6,4,7,6,4)



Example (cont’d)
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Connectivity and Components

• Two vertices in a graph 𝐺 = (𝑉, 𝐸) are said to 
be connected (συνδεδεμένες) if there is a 
path from the first to the second in 𝐺.

• Formally, if 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑉, where 𝑥 ≠ 𝑦, 
then 𝑥 and 𝑦 are connected if there exists a 
path 𝑝 = 𝑣1𝑣2 … 𝑣𝑛 in 𝐺 such that 𝑥 = 𝑣1 and 
𝑦 = 𝑣𝑛.
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Connectivity and Components (cont’d)

• In the graph 𝐺 = (𝑉, 𝐸), a connected component
(συνεκτική συνιστώσα) is a subset 𝑆 of the vertices 𝑉
that are all connected to one another.

• A connected component 𝑆 of 𝐺 is a maximal 
connected component (μέγιστη συνεκτική 
συνιστώσα) provided there is no bigger subset 𝑇 of 
vertices in 𝑉 such that 𝑇 properly contains 𝑆 and such 
that 𝑇 itself is a connected component of 𝐺.

• An undirected graph 𝐺 can always be separated into 
maximal connected components 𝑆1, 𝑆2, … , 𝑆𝑛 such that 
𝑆𝑖 ∩ 𝑆𝑗 = ∅ whenever 𝑖 ≠ 𝑗.
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Example of Undirected Graph and its Separation 
into Two Maximal Connected Components
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Connectivity and Components in 
Directed Graphs

• A subset 𝑆 of vertices in a directed graph 𝐺 is 
strongly connected (ισχυρά συνεκτικό) if for 
each pair of distinct vertices (𝑣𝑖 , 𝑣𝑗) in 𝑆, 𝑣𝑖 is 

connected to 𝑣𝑗 and 𝑣𝑗 is connected to 𝑣𝑖 .

• A subset 𝑆 of vertices in a directed graph 𝐺 is 
weakly connected (ασθενώς συνεκτικό) if for 
each pair of distinct vertices (𝑣𝑖 , 𝑣𝑗) in 𝑆, 𝑣𝑖 is 

connected to 𝑣𝑗 or 𝑣𝑗 is connected to 𝑣𝑖 .
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Example: A Strongly Connected 
Digraph
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Example: A Weakly Connected Digraph
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Degree in Undirected Graphs

• In an undirected graph 𝐺 the degree (βαθμός) 
of vertex 𝑥 is the number of edges 𝑒 in which 
𝑥 is one of the endpoints of 𝑒.

• The degree of a vertex 𝑥 is denoted by 
deg 𝑥 .
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Example
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The degree of node 1 is 2. The degree of node 4 is 4. The degree of node 8 is 1.



Predecessors and Successors in 
Directed Graphs

• If 𝑥 is a vertex in a directed graph 𝐺 = (𝑉, 𝐸)
then the set of predecessors (προηγούμενων)
of 𝑥 denoted by 𝑃𝑟𝑒𝑑(𝑥) is the set of all 
vertices 𝑦 ∈ 𝑉 such that 𝑦, 𝑥 ∈ 𝐸.

• Similarly the set of successors (επόμενων) of 
𝑥 denoted by 𝑆𝑢𝑐𝑐(𝑥) is the set of all vertices 
𝑦 ∈ 𝑉 such that 𝑥, 𝑦 ∈ 𝐸.
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In-Degree and Out-Degree in Directed 
Graphs

• The in-degree of a vertex 𝑥 is the number of 
predecessors of 𝑥.

• The out-degree of a vertex 𝑥 is the number of 
successors of 𝑥.

• We can also define the in-degree and the out-
degree by referring to the incoming and outgoing
edges of a vertex.

• The in-degree and out-degree of a vertex 𝑥 are 
denoted by 𝑖𝑛𝑑𝑒𝑔(𝑥) and 𝑜𝑢𝑡𝑑𝑒𝑔(𝑥)
respectively.
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Example
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Proposition

• If 𝐺 is an undirected graph with 𝑚 edges, then



𝑣 𝑖𝑛 𝐺

deg(𝑣) = 2𝑚.

• Proof?
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Proof

• An edge (𝑢, 𝑣) is counted twice in the 
summation above; once by its endpoint 𝑢 and 
one by its endpoint 𝑣. Thus, the total 
contribution of the edges to the degrees of 
the vertices is twice the number of edges.
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Proposition

• If 𝐺 is a directed graph with 𝑚 edges, then



𝑣 𝑖𝑛 𝐺

𝑖𝑛𝑑𝑒 𝑔 𝑣 = 

𝑣 𝑖𝑛 𝐺

𝑜𝑢𝑡𝑑𝑒𝑔(𝑣) = 𝑚.

• Proof?
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Proof

• In a directed graph, an edge (𝑢, 𝑣) contributes 
one unit to the out-degree of its origin vertex 
𝑢 and one unit to the in-degree of its 
destination 𝑣. Thus, the total contribution of 
the edges to the out-degrees of the vertices is 
equal to the number of edges, and similarly 
for the out-degrees.
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Proposition

• Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges. 

If 𝐺 is undirected, then 𝑚 ≤
𝑛 𝑛−1

2
, and if 𝐺 is 

directed, then 𝑚 ≤ 𝑛 𝑛 − 1 .

• Proof?
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Proof

• If 𝐺 is undirected then the maximum degree 
of a vertex is 𝑛 − 1. Therefore, from the 
previous proposition about the sum of the 
degrees, we have 2𝑚 ≤ 𝑛 𝑛 − 1 .

• If 𝐺 is directed then the maximum in-degree 
of a vertex is 𝑛 − 1. Therefore, from the 
previous proposition about the sum of the in-
degrees, we have 𝑚 ≤ 𝑛 𝑛 − 1 .
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More definitions

• A subgraph (υπογράφος) of a graph 𝐺 is a graph 𝐻
whose vertices and edges are subsets of the vertices 
and edges of 𝐺 respectively.

• A spanning subgraph (υπογράφος επικάλυψης) of 𝐺
is a subgraph of 𝐺 that contains all the vertices of 𝐺.

• A forest (δάσος) is a graph without cycles.
• A free tree (ελεύθερο δένδρο) is a connected forest 

i.e., a connected graph without cycles. The trees that 
we studied in earlier lectures are rooted trees (δένδρα 
με ρίζα) and they are different than free trees.

• A spanning tree (δένδρο επικάλυψης) of a graph is a 
spanning subgraph that is a free tree.
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Example
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The thick green lines define a spanning tree of the graph.



Example
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The thick green lines define a forest 
which consists of two free trees.



Graph Representations: Adjacency 
Matrices

• Let 𝐺 = (𝑉, 𝐸) be a graph. Suppose we 
number the vertices in 𝑉 as 𝑣1, 𝑣2, … , 𝑣𝑛.

• The adjacency matrix (πίνακας γειτνίασης) 𝑇
corresponding to 𝐺 is an 𝑛 × 𝑛 matrix such 

that 𝑇 𝑖, 𝑗 = 1 if there is an edge 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸, 

and 𝑇 𝑖, 𝑗 = 0 if there is no such edge in 𝐸.
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Example

0 1 0 0

0 0 1 1

1 0 0 1

1 0 0 0
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Adjacency Matrices

• The adjacency matrix of an undirected graph 
𝐺 is a symmetric matrix i.e., 𝑇 𝑖, 𝑗 = 𝑇[𝑗, 𝑖]
for all 𝑖 and 𝑗 in the range 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

• The adjacency matrix for a directed graph 
need not be symmetric.
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Adjacency Matrices

• The diagonal entries in an adjacency matrix 
(of a directed or undirected graph) are zero, 
since graphs as we have defined them are not 
permitted to have looping self-referential 
edges that connect a vertex to itself.
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Example

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0
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Adjacency Matrices in C

#define MAXVERTEX 10

typedef enum {FALSE, TRUE} Boolean

typedef Boolean

AdjacencyMatrix[MAXVERTEX][MAXVERTEX]

typedef struct graph {

int n    /*number of vertices in graph */

AdjacencyMatrix A;

} Graph;
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Adjacency Sets

• Another way to define a graph 𝐺 = (𝑉, 𝐸) is to 
specify adjacency sets (σύνολα γειτνίασης) for 
each vertex in 𝑉.

• Let 𝑉𝑥 stand for the set of all vertices adjacent to 
𝑥 in an undirected graph 𝐺 or the set of all 
vertices that are successors of 𝑥 in a directed 
graph 𝐺.

• If we give both the vertex set  𝑉 and the 
collection 𝐴 = {𝑉𝑥|𝑥 ∈ 𝑉} of adjacency sets for 
each vertex in 𝑉 then we have given enough 
information to define the graph 𝐺.
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Graph Representations: Adjacency 
Lists

• Another family of representations for a graph 
uses adjacency lists (λίστες γειτνίασης) to 
represent the adjacency set 𝑉𝑥 for each vertex 
𝑥 in the graph.
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Example Directed Graph

1 2 2  3

2 3 3 4  5

3 1 4

4 0

5 1 1
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The sequential adjacency lists for graph 
G. Notice that vertices are listed in their 
natural order.
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Example Directed Graph
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The linked adjacency lists for graph G. 
Notice that vertices in a list are organized 
according to their natural order.
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Example Undirected Graph

1 3 2  3  5

2 4 1  3 4  5

3 3 1  2  4

4 2 2  4

5 2 1  2
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An undirected graph G
The sequential adjacency lists for graph G
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Number



Sequential Adjacency Lists in C

typedef int AdjacencyList[MAXVERTEX];

typedef struct graph{

int n; /*number of vertices in graph */

int degree[MAXVERTEX];

AdjacencyList A[MAXVERTEX];

} Graph;
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Linked Adjacency Lists in C

typedef int Vertex;

typedef struct edge {

Vertex endpoint;

struct edge *nextedge;

} Edge;

typedef struct graph{

int n; /*number of vertices in graph */

Edge *firstedge[MAXVERTEX];

} Graph;
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Linked Adjacency Lists in C (cont’d)

• The previous representation used an array for 
the vertices and linked lists for the adjacency 
lists.

• We can use linked lists for the vertices as well 
as follows.
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Linked Adjacency Lists in C (cont’d)

typedef struct vertex Vertex;

typedef struct edge Edge;

struct vertex {

Edge *firstedge;

Vertex *nextvertex;

}

struct edge {

Vertex *endpoint;

Edge *nextedge;

};

typedef Vertex *Graph;
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Graph Searching

• To search a graph G, we need to visit all 
vertices of G in some systematic order.

• Let us define an enumeration

typedef enum {FALSE, TRUE} Boolean;

• Each vertex v can be a structure with a 
Boolean valued member v.Visited
which is initially FALSE for all vertices of G. 
When we visit v, we will set it to TRUE.

Data Structures and Programming 
Techniques

54



An Algorithm for Graph Searching

void GraphSearch(G,v)

{   

Let G=(V,E) be a graph.

Let C be an empty container.

for (each vertex x in V){

x.Visited=FALSE;

}

Put v into C;

while (C is non-empty){

Remove a vertex x from container C;

if (!(x.Visited)){

Visit(x);

x.Visited=TRUE;

for (each vertex w in Vx){

if (!(w.Visited)) Put w into C;

}

}

}

}
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Graph Searching (cont’d)

• Let us consider what happens when the 
container C is a stack.
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Example
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What is the order vertices are visited?



Example (cont’d)
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The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6 and 5.



Depth-First Search (DFS)

• When C is a stack, the tree in the previous 
example is searched in depth-first order.

• Depth-first search (αναζήτηση πρώτα κατά 
βάθος) at a vertex always goes down (by 
visiting unvisited children) before going across 
(by visiting unvisited brothers and sisters).

• Depth-first search of a graph is analogous to a 
pre-order traversal of an ordered tree.
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Graph Searching (cont’d)

• Let us consider what happens when the 
container C is a queue.
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Example

Data Structures and Programming 
Techniques

61

1

2 3 4

5 6 7 8

What is the order vertices are visited?



Example (cont’d)
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The vertices are visited in the order 1, 2, 3, 4, 5, 6, 7 and 8.



Breadth-First Search (BFS)

• When C is a queue, the tree in the previous example is 
searched in breadth-first order.

• Breadth-first search (αναζήτηση πρώτα κατά πλάτος)
at a vertex always goes broad before going deep.

• Breadth-first traversal of a graph is analogous to a 
traversal of an ordered tree that visits the nodes of the 
tree in level-order.

• BFS subdivides the vertices of a graph in levels. The 
starting vertex  is at level 0, then we have the vertices 
adjacent to the starting vertex at level 1, then the 
vertices adjacent to these vertices at level 2 etc.
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Example
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What is the order of visiting vertices for DFS?



Example (cont’d)
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Depth-first search visits the vertices in the order 1, 4, 8, 6, 5, 7, 3 and 2



Example (cont’d)
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What is the order of visit for BFS?



Example (cont’d)
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Breadth-first search visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.



Exhaustive Search

• Either the stack version or the queue version 
of the algorithm GraphSearch will visit 
every vertex in a graph G provided that G
consists of a single strongly connected 
component.

• If this is not the case, then we can enumerate 
all the vertices of G and run GraphSearch
starting from each one of them in order to 
visit all the vertices of G.
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Exhaustive Search (cont’d)

void ExhaustiveGraphSearch(G)

{

Let G=(V,E) be a graph.

for (each vertex v in G){

GraphSearch(G, v)

}

}
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Theseus in the Labyrinth 

• DFS and BFS can be simulated using a string 
and a can of paint for painting the vertices 
i.e., using a version of the algorithm that 
Theseus might have used in the labyrinth of 
the Minotaur!
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Implementing DFS in C

• We will now show how to implement depth-
first search in C.

• We will use the linked adjacency lists 
representation of a graph.

• We will write a function DepthFirst which 
calls the recursive function Traverse.
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Implementing DFS in C (cont’d)

/* global variable visited */

Boolean visited[MAXVERTEX];

/* DepthFirst: depth-first traversal of a graph

Pre: The graph G has been created.

Post: The function Visit has been performed at each vertex of G in 

depth-first order

Uses: Function Traverse produces the recursive depth-first order */

void DepthFirst(Graph G, void (*Visit)(Vertex x))

{

Vertex v;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

for (v=0; v < G.n; v++)

if (!visited[v]) Traverse(G, v, Visit);

}
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Implementing DFS in C (cont’d)

/* Traverse: recursive traversal of a graph

Pre: v is a vertex of graph G

Post: The depth first traversal, using function Visit, has been

completed for v and for all vertices adjacent to v.

Uses: Traverse recursively, Visit */

void Traverse(Graph G, Vertex v, void (*Visit)(Vertex x))

{

Vertex w;

Edge *curedge;

visited[v]=TRUE;

Visit(v);

curedge=G.firstedge[v];    /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint;      /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Traverse(G, w, Visit);

curedge=curedge->nextedge;  /*curedge is a pointer to the next edge (v,_) of V */

}

}
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Example of Recursive DFS
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What is the order vertices are visited?



Example (cont’d)
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The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is 
different than the order we got when using a stack!



Complexity of DFS

• DFS as implemented above (with adjacency lists) on a graph 
with 𝑒 edges and 𝑛 vertices has complexity 𝑶 𝒏 + 𝒆 .

• To see why observe that on no vertex is Traverse called 
more than once, because as soon as we call Traverse
with parameter 𝑣, we mark 𝑣 visited and we never call 
Traverse on a vertex that has previously been marked as 
visited.

• Thus, the total time spent going down the adjacency lists is 
proportional to the lengths of those lists, that is 𝑂 𝑒 .

• The initialization steps in DepthFirst have complexity 
𝑂 𝑛 .

• Thus, the total complexity is 𝑂 𝑛 + 𝑒 .

Data Structures and Programming 
Techniques

76



Complexity of DFS (cont’d)

• If DFS is implemented using an adjacency matrix, 
then its complexity will be 𝑂 𝑛2 .

• If the graph is dense (πυκνός), that is, it has close 
to 𝑂 𝑛2 edges the difference of the two 
implementations is minor as they would both run 
in 𝑂 𝑛2 time.

• If the graph is sparse (αραιός), that is, it has close 
to 𝑂 𝑛 edges, then the adjacency matrix 
approach would be much slower than the 
adjacency list approach.
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Implementing BFS in C

• Let us now show how to implement breadth-
first search in C.

• The algorithm BreadthFirst makes use of 
a queue which can be implemented using any 
of the implementations we presented in an 
earlier lecture.
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Implementing BFS in C (cont’d)

/* BreadthFirst: breadth-first traversal of a graph

Pre: The graph G has been created

Post: The function visit has been performed at each vertex of G, where the vertices

are chosen in breadth-first order.

Uses: Queue functions */

void BreadthFirst(Graph G, void (*Visit)(Vertex))

{

Queue Q;

Boolean visited[MAXVERTEX];

Vertex v, w;

Edge *curedge;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

InitializeQueue(&Q);

for (v=0; v < G.n; v++)

if (!visited[v]){

Insert(v, &Q);

do {

Remove(&Q, &v);;

if (!visited[v]){

visited[v]=TRUE;

Visit(v);

}

curedge=G.firstedge[v];  /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint;  /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Insert(w, &Q);

curedge=curedge->nextedge;  /*curedge is a pointer to the next edge (v,_) of V */

}

} while (!Empty(&Q));

}

}
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Complexity of BFS

• BFS as implemented above (with adjacency 
lists) has the same complexity as DFS i.e., 
𝑶(𝒏 + 𝒆).
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DFS Traversal of a Directed Graph

• During a depth-first traversal of a directed graph, certain edges, 
when traversed, lead to unvisited vertices. The edges leading to 
new vertices are called tree edges (ακμές δένδρου) and they form 
a depth-first spanning forest (πρώτα κατά βάθος δάσος 
επικάλυψης) for the given digraph.

• There are also edges called back edges (ακμές οπισθοχώρησης)
that go from a vertex to one of its ancestors in the spanning forest.

• There also edges that do not belong to the spanning forest and go 
from a vertex to a proper descendant. These are called forward 
edges (ακμές προώθησης).

• Finally, there are edges that go from a vertex to another vertex that 
is neither an ancestor nor a descendant that are called cross edges
(εγκάρσιες ακμές).
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Example
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Example (cont’d)
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There are no forward edges



Classification of Edges

• How do we distinguish among the four types of edges?
• Tree edges are easy to find since they lead to an unvisited vertex 

during DFS.
• Let us number the vertices of the digraph in the order in which we 

first mark them as visited during a depth first search. For this we 
can use an array dfnumber and add the code
dfnumber[v]=count;

count++;

in the function Traverse, immediately after the 
statement marking a vertex as visited.
• Let us call this the depth-first numbering (πρώτα κατά βάθος 

αρίθμηση) of a digraph.
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Classification of Edges (cont’d)

• All descendants of a vertex 𝑣 are assigned depth-first 
search numbers greater than or equal to the number 
assigned to 𝑣. In fact, 𝑤 is a descendant of 𝑣 if and 
only if 𝑑𝑓𝑛𝑢𝑚𝑏𝑒𝑟 𝑣 ≤ 𝑑𝑓𝑛𝑢𝑚𝑏𝑒𝑟 𝑤 ≤
𝑑𝑓𝑛𝑢𝑚𝑏𝑒𝑟 𝑣 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 𝑜𝑓 𝑣.

• Thus, we have the following:
– Forward edges go from low-numbered vertices to high-

numbered vertices.
– Back edges go from high-numbered vertices to low-

numbered vertices.
– Cross edges go from high-numbered vertices to low-

numbered vertices.
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DFS of an Undirected Graph

• During a depth-first search of an undirected 
graph 𝐺, all edges become either tree edges or 
back edges.

• Tree edges are those edges (𝑣, 𝑤) such that 
Traverse with parameter 𝑣 directly calls 
Traverse with parameter 𝑤 or vice versa.

• Back edges are those edges (𝑣, 𝑤) such that 
Traverse with parameter 𝑣 inspects vertex 𝑤
but does not call Traverse because 𝑤 has 
already been visited.
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Example (cont’d)
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DFS of an Undirected Graph

• During a DFS of an undirected graph  𝐺, tree 
edges form a depth-first spanning forest of 𝐺.
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BFS of an Undirected Graph

• We can build a spanning forest when we perform 
a breadth-first search as well. We call this the 
breadth-first spanning forest of the graph.

• We consider edge (𝑣, 𝑤) to be a tree edge if 
vertex 𝑤 is first visited from vertex 𝑣 in the inner 
while loop of function BreadthFirst.

• Every edge that is not a tree edge is a cross edge, 
that is, it connects two vertices neither of which 
is an ancestor of the other.
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Example
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Let us execute BFS with start node A.



Example (cont’d)
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BFS of Directed Graphs

• BFS can also work on directed graphs.
• The algorithm visits vertices level by level and 

partitions the edges into two sets: tree edges and non-
tree edges.

• Tree edges define a breadth-first spanning forest.
• Non-tree edges are of two kinds: back edges and cross 

edges.
• Back edges connect a vertex to one of its ancestors. 

Cross edges connect a vertex to another vertex that is 
neither its ancestor nor its descendant.

• There are no forward edges.
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Directed Acyclic Graphs

• Let G be a directed graph with no cycles. Such 
a graph is called acyclic. We abbreviate the 
term directed acyclic graph to dag.

• Dags are more general than trees but less 
general than arbitrary directed graphs.
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Example Tree
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Example Dag
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Example Dag
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Applications of Dags

• Dags are useful in representing the syntactic 
structure of arithmetic expressions with 
common subexpressions.

• Example: Consider the following arithmetic 
expression

𝑎 + 𝑏 ∗ 𝑐 + 𝑎 + 𝑏 + 𝑒 ∗ 𝑒 + 𝑓

∗ ( 𝑎 + 𝑏 ∗ 𝑐)
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The Dag for the Example
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Applications of Dags

• Dags are also useful for representing partial 
orders.

• A partial order 𝑅 on a set 𝑆 is a binary relation 
such that
– For all 𝑎 in 𝑆, 𝑎 𝑅 𝑎 is false (irreflexivity)

– For all 𝑎, 𝑏, 𝑐 in 𝑆, if 𝑎 𝑅 𝑏 and 𝑏 𝑅 𝑐 then 𝑎 𝑅 𝑐
(transitivity)

• Two natural examples of partial orders are the 
“less than” relation (<) on integers, and the 
relation of proper containment (⊂) on sets.
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Example

• Let 𝑆 = 1, 2, 3 and let 𝑃(𝑆) be the power set 
of 𝑆, that is, the set of all subsets of 𝑆. The 
relation ⊂ is a partial order on 𝑆.
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The Dag of the Example
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Test for Acyclicity

• Suppose we are given a digraph 𝐺 and we 
wish to determine whether 𝑮 is acyclic.

• DFS can be used to answer this question.

• If a back edge is encountered during a DFS 
then clearly the graph has a cycle.

• Conversely, if the graph has a cycle then a 
back edge will be encountered in any DFS of 
the graph. Proof?
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Proof

• Suppose 𝐺 is cyclic. If we do a DFS of 𝐺, there 
will be one vertex 𝑣 having the lowest DFS 
number of any vertex on a cycle. Consider an 
edge (𝑢, 𝑣) on some cycle containing 𝑣. Since 
𝑢 is on the cycle, 𝑢 must be a descendant of 𝑣
in the depth-first spanning forest. Thus, (𝑢, 𝑣)
cannot be a cross edge. Since the DFS number 
of 𝑢 is greater than the DFS number of 𝑣, 
(𝑢, 𝑣) cannot be a tree edge or a forward 
edge. Hence, (𝑢, 𝑣) is a back edge.
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Topological Ordering of a DAG

• A topological ordering (τοπολογική
ταξινόμηση) of the vertices of a dag G is a 
sequential list L of the vertices of G (a linear 
ordering) such that if there is a directed path 
from vertex A to vertex B in G, then A comes 
before B in the list L.
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Example

• G might be a graph in which the vertices 
represent university courses to take and in 
which an edge is directed from the vertex for 
course A to the vertex for course B if course A
is a prerequisite of B.

• Then a topological ordering of the vertices of 
G gives us a possible way to organize one’s 
studies.
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Computing a Topological Ordering

• We will compute a list of vertices L that contains the vertices 
of G in topological order.

• We will use an array D such that D[v] gives the number of 
predecessors p of vertex v in graph G such that p is not in L.

• We will use a queue Q of vertices from where we will take 
vertices to process (from the front of the queue).

• The vertices of G in Q will be processed in breadth-first order.
• Initially Q will contain all the vertices of G with no 

predecessors.
• When we find a vertex w of G such that D[w]==0, we see 

that w has all its predecessors in list L so we add w to the 
rear of queue Q so it can be processed.
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Algorithm for Topological Ordering

void BreadthTopSort(Graph G, List *L)

{

Let G=(V,E) be the input graph.

Let L be a list of vertices.

Let Q be a queue of vertices.

Let D[V] be an array of vertices indexed by vertices

in V.

/* Compute the in-degrees D[x] of the vertices x 

in G */

for (each vertex x in V) D[x]=0;

for (each vertex x in V){

for (each successor w in Succ(x)) D[w]++;

}
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Algorithm for Topological Ordering 
(cont’d)

/* Initialize the queue Q to contain all 

vertices having zero in-degrees */

Initialize(&Q);

for (each vertex x in V){

if (D[x]==0) Insert(x, &Q);

}
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Algorithm for Topological Ordering 
(cont’d)

/* Initialize the list L to be the empty list */

InitializeList(&L);

/* Process vertices in the queue Q until the queue becomes

empty */

while (!Empty(&Q)){

Remove(&Q,x);

AddToList(x,&L);

for (each successor w in Succ(x)){

D[w]--;

if (D[w]==0) Insert(w, &Q);

}

}

/* The list L now contains the vertices of G in

topological order */

}
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Implementing Topological Sort in C

• We first need to define a new type for an array 
that will be used to store the vertices of a 
graph in topological order:

typedef Vertex Toporder[MAXVERTEX];

• We will also use the functions for the ADT 
queue that we have defined in a previous 
lecture.
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Topological Sort in C (cont’d)

/* BreadthTopSort: generates breadth-first topological ordering

Pre: G is a directed graph with no cycles implemented with a contiguous list of vertices 

and linked adjacency lists.

Post: The function makes a breadth-first traversal of G and generates the resulting 

topological order in T

Uses: Queue functions */

void BreadthTopSort(Graph G, Toporder T)

{

int predecessorcount[MAXVERTEX];    /* number of predecessors of each vertex */

Queue Q;

Vertex v, succ;

Edge *curedge;

int place;

/* initialize all the predecessor counts to 0  */

for (v=0; v < G.n; v++)

predecessorcount[v]=0;

/* increase the predecessor count for each vertex that is a successor of another one */

for (v=0; v < G.n; v++)

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge)

predecessorcount[curedge->endpoint]++;
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Topological Sort in C (cont’d)

/* initialize a queue */

InitializeQueue(&Q);

/* place all vertices with no predecessors into the queue */

for (v=0; v < G.n; v++)

if (predecessorcount[v]==0)

Insert(v, &Q);

/* start the breadth-first traversal */

place=-1;

while (!Empty(&Q)) {

/* visit v by placing it into the topological order */

Remove(&Q, &v);

place++;

T[place]=v;

/* traverse the list of successors of v */

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge){

/* reduce the predecessor count for each successor */

succ=curedge->endpoint;

predecessorcount[succ]--;

if (predecessorcount[succ]==0)

/* succ has no further predecessors, so it is ready to process */

Insert(succ, &Q);

}

}

}
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Complexity of Topological Sort

• The complexity of topological sort is again 
𝑶(𝒏 + 𝒆).
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Strongly Connected Components

• A strongly connected component (ισχυρά συνεκτική 
συνιστώσα) of a directed graph is a maximal set of vertices 
in which there is a path from any one vertex in the set to 
any other vertex.

• More formally, let 𝐺 = (𝑉, 𝐸) be a directed graph. We can 
partition 𝑉 into equivalence classes 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑟, such that 
vertices 𝑣 and 𝑤 are equivalent if and only if there is a path 
from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣. Let 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑟, be 
the set of edges with endpoints in 𝑉𝑖 . The graphs 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖) are called the strongly connected components or 
just strong components (ισχυρές συνιστώσες) of 𝐺.

• A directed graph with only one strong component is said to 
be strongly connected (ισχυρά συνδεδεμένος).
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Example Directed Graph
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The Strong Components of the Digraph
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Strong Components (cont’d)

• Every vertex of a directed graph 𝐺 is in some strong 
component, but certain edges may not be in any 
component.

• Such edges, called cross-component edges, go from 
one vertex in one component to a vertex in another.

• We can represent the interconnections among 
components by constructing a reduced graph 
(ελαττωμένο γράφο) for 𝐺. There is an edge from 
vertex 𝐶 to vertex 𝐶′ of the reduced graph if there is an 
edge in 𝐺 from some vertex in the component 𝐶 to 
some vertex in the component 𝐶′.

• The reduced graph is always a dag.
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Example Directed Graph 𝐺
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Example Reduced Graph for 𝐺
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Algorithm for Computing Strong 
Components

• We can use DFS to compute the strong components of 
a given directed graph 𝐺 as follows:
1. Perform a DFS of 𝐺 and number the vertices in order of 

completion of the recursive calls.

2. Construct a new directed graph 𝐺𝑟 by reversing the 
direction of each edge in 𝐺.

3. Perform a DFS of 𝐺𝑟, starting the search from the highest 
numbered vertex according to the numbering assigned in 
Step 1. If the DFS does not reach all vertices, start the 
next DFS from the highest-numbered remaining vertex.

4. Each tree in the resulting spanning forest is a strongly 
connected component of 𝐺.
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Example Directed Graph 𝐺
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After Step 1
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The DAG 𝐺𝑟
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Depth-first Spanning Forest for 𝐺𝑟
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The Strong Components of 𝐺
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Complexity of Algorithm for 
Computing Strong Components

• The complexity of the algorithm we presented 
for computing strong components is again 
𝑶(𝒏 + 𝒆).
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