
Makefiles

Data Structures and Programming
Techniques

1

The Utility make

• The make utility automatically determines
which pieces of a large program need to be
recompiled, and issues commands to
recompile them.

• It is useful when we write large programs that
are contained in more than one file.

Data Structures and Programming
Techniques

2

Preparing and Running make

• In order to use make, you should create a file named Makefile.
This file describes the relationships among files in your program
and provides commands for updating each file.

• In a program, typically, the executable file is updated from object
files, which in turn are made by compiling source files.

• Once a suitable makefile exists, each time you change some
source files, the simple shell command

 make
 suffices to perform all necessary recompilations.
• The make program uses the makefile in the current directory and

the last-modification times of the files to decide which of the files
need to be updated. For each of those files, it issues the recipes
recorded in the makefile.

Data Structures and Programming
Techniques

3

Rules

• A simple makefile consists of rules with the following syntax:

 target … : prerequisites …
 recipe
 …
 …

• A target or a goal is usually the name of a file that is generated by a program. Examples of targets are
executable or object files. A target can also be the name of an action to carry out, such as ‘clean’.

• A prerequisite is a file that is used as input to create the target. A target often depends on several
files.

• A recipe is an action that make carries out. A recipe may have more than one command.
• Prerequisites are optional. For example, the rule containing the delete command associated with the

target ‘clean’ does not have prerequisites.
• A rule explains how and when to remake certain files which are the targets of the particular rule.

make carries out the recipe on the prerequisites to create or update the target.

Data Structures and Programming
Techniques

4

Example

pqsort : sorting.o PQImplementation.o
gcc sorting.o PQImplementation.o -o pqsort

sorting.o :sorting.c PQInterface.h PQTypes.h
gcc -c sorting.c

PQImplementation.o :PQImplementation.c PQInterface.h
PQTypes.h

gcc -c PQImplementation.c

clean:
rm pqsort sorting.o PQImplementation.o

Data Structures and Programming
Techniques

5
Mind the tabs!!!

Comments

• In this example makefile, the targets include the executable file pqsort, and the
object files sorting.o and PQImplementation.o.

• The prerequisites are files such as sorting.c and PQInterface.h and
PQTypes.h

• Recipes include commands like gcc -c sorting.c and gcc -c
PQImplementation.c

• A recipe may follow each line that contains a target and prerequisites. These recipes
say how to update the target file. Important: A tab character must come at the
beginning of every line that contains a recipe to distinguish recipes from other lines
in the makefile.

• The target clean is not a file, but merely the name of an action. Notice that clean
is not a prerequisite of any other rule. Consequently, make never does anything
with it unless you tell it specifically. Note also that the rule for clean does not have
any prerequisites, so the only purpose of the rule is to run the specified recipe.
Targets that do not refer to files but are just actions are called phony targets.

Data Structures and Programming
Techniques

6

How make is invoked

• For the previous example, after some of the
source .c files have changed, and we would
like to create a new executable, we just write
make on the command line.

Data Structures and Programming
Techniques

7

How make Processes a Makefile

• When make is called, it reads the makefile in the
current directory and starts processing the first rule of
the makefile. In our case, this is the rule for the
executable file pqsort.

• However, before make can process this rule, it should
process the rules that update the files on which
pqsort depends i.e., sorting.o and
PQImplementation.o.

• These in turn depend on files such as sorting.c,
PQInterface.h and PQTypes.h which are not
the targets of any rule so the recursion stops here.

Data Structures and Programming
Techniques

8

Variables

• Variables allow a text string to be defined once
and substituted in multiple places later.

• For example, it is standard practice for every
makefile to have a variable named objects,
which is defined to be a list of all object file
names.

• We can define this variable by writing
 objects=sorting.o PQImplementation.o
• Then the variable can be used in the makefile

using the notation $(variable).

Data Structures and Programming
Techniques

9

Example (cont’d)

objects=sorting.o PQImplementation.o

pqsort : $(objects)
gcc $(objects) -o pqsort

sorting.o :sorting.c PQInterface.h PQTypes.h
gcc -c sorting.c

PQImplementation.o :PQImplementation.c PQInterface.h
PQTypes.h

gcc -c PQImplementation.c

clean:
rm pqsort $(objects)

Data Structures and Programming
Techniques

10

Letting make Deduce the Recipes

• It is not necessary to spell out the recipes for
compiling the individual C source files,
because make can figure them out.

• make has an implicit rule for updating a .o
file from a correspondingly named .c file
using a $(CC)-c command
(default CC=cc not gcc).

• So we can write our example as follows.
Data Structures and Programming

Techniques
11

Example (cont’d)

objects=sorting.o PQImplementation.o

pqsort : $(objects)
gcc $(objects) -o pqsort

sorting.o : PQInterface.h PQTypes.h
PQImplementation.o : PQInterface.h PQTypes.h

clean:
rm pqsort $(objects)

Data Structures and Programming
Techniques

12

Rules for Cleaning the Directory

• We can use makefiles to do other things except compiling
programs. For example, we can have a recipe that deletes all the
object files and executables so that the directory is clean.

• In our example, this is done by the following rule:
 clean:
 rm pqsort $(objects)
• clean here is called a phony target.
• To avoid problems with files with the name clean in the same

directory, you can write the above rule as follows:
 .PHONY clean
 clean:
 rm pqsort $(objects)

Data Structures and Programming
Techniques

13

Rules for Cleaning the Directory
(cont’d)

• You can execute the above rule by executing
the shell command

 make clean

Data Structures and Programming
Techniques

14

Readings

• These slides were created by copying
(sometimes verbatim!) material from the
manual
http://www.gnu.org/software/make/manual/
make.html .

• Read this manual for more information (just
reading Chapter 2 will suffice).

Data Structures and Programming
Techniques

15

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

