
Multi-Way Search Trees

1
Data Structures and Programming

Techniques

Multi-Way Search Trees

• Multi-way trees are trees such that each internal
node can have many children.

• Let us assume that the entries we store in a
search tree are pairs of the form (𝑘, 𝑥) where 𝑘 is
the key and 𝑥 the value associated with the key.

• Example: Assume we store information about
students. The key can be the student ID while the
value can be information such as name, year of
study etc.

Data Structures and Programming
Techniques

2

Definitions

• A tree is ordered if there is a linear ordering
defined for the children of each node; that is,
we can identify children of a node as being the
first, the second, third and so on.

• Let 𝑣 be a node of an ordered tree. We say
that 𝑣 is a 𝒅-node if 𝑣 has 𝑑 children.

Data Structures and Programming
Techniques

3

Definitions (cont’d)

• A multi-way search tree is an ordered tree 𝑇 that
has the following properties:
– Each internal node of 𝑇 has at least 2 children. That is,

each internal node is a 𝑑-node such that 𝑑 ≥ 2.

– Each internal 𝑑-node of 𝑇 with children 𝑣1, ⋯ , 𝑣𝑑
stores an ordered set of 𝑑 − 1 key-value entries
𝑘1, 𝑥1 , ⋯ , 𝑘𝑑−1, 𝑥𝑑−1 , where 𝑘1 ≤ ⋯ ≤ 𝑘𝑑−1.

– Let us conveniently define 𝑘0 = −∞ and 𝑘𝑑 = +∞.
For each entry (𝑘, 𝑥) stored at a node in the subtree
of 𝑣 rooted at 𝑣𝑖 , 𝑖 = 1,⋯ , 𝑑, we have that 𝑘𝑖−1 ≤
𝑘 ≤ 𝑘𝑖 .

Data Structures and Programming
Techniques

4

Definitions (cont’d)

• By the above definition, the external nodes of a
multi-way search tree do not store any entries
and are “dummy” nodes (i.e., our trees are
extended trees).

• When 𝑚 ≥ 2 is the maximum number of
children that a node is allowed to have, then we
have an 𝒎-way search tree.

• A binary search tree is a special case of a multi-
way search tree, where each internal node stores
one entry and has two children (i.e., 𝑚 = 2).

Data Structures and Programming
Techniques

5

Example Multi-Way Search Tree (𝑚 =
3)

Data Structures and Programming
Techniques

6

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Proposition

• Let 𝑇 be an 𝑚-way search tree with height ℎ,
𝑛 entries and 𝑛𝐸 external nodes. Then, the
following inequalities hold:

1. ℎ ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ 𝑛

3. 𝑛𝐸 = 𝑛 + 1

• Proof?

Data Structures and Programming
Techniques

7

Proof

• We will prove (1) first.

• The lower bound can be seen by considering
an 𝑚-way search tree like the one given on
the next slide where we have one internal
node and one entry in each node for levels
0, 1, 2,⋯ , ℎ − 1 and level ℎ contains only
external nodes.

Data Structures and Programming
Techniques

8

Proof (cont’d)

Data Structures and Programming
Techniques

9

ℎ

ℎ − 1

2

1

0

⋮

Proof (cont’d)

• For the upper bound, consider an 𝑚-way search
tree of height ℎ where each internal node in the
levels 0 to ℎ − 1 has exactly 𝑚 children (the
external nodes are at level ℎ).

• These internal nodes are σ𝑖=0
ℎ−1𝑚𝑖 =

𝑚ℎ−1

𝑚−1
in

total.

• Since each of these nodes has 𝑚 − 1 entries, the
total number of entries in the internal nodes is
𝑚ℎ − 1.

Data Structures and Programming
Techniques

10

Proof (cont’d)

• To prove the lower bound of (2), rewrite (1)
and take logarithms in base 𝑚. The upper
bound in (2) is the same as the lower bound in
(1).

Data Structures and Programming
Techniques

11

Proof (cont’d)

• We will prove (3) by induction on the height
ℎ of the tree.

• Base case: Let ℎ = 1. Then there is a single
root node with 𝑛 entries and 𝑛 + 1 external
nodes and the proposition holds.

Data Structures and Programming
Techniques

12

Proof (cont’d)

• Inductive step: Let ℎ > 1. If the root stores 𝑚
entries then it has 𝑚 + 1 subtrees for which the
inductive hypothesis holds. Therefore, each such
subtree 𝑖 has 𝑝𝑖 entries and 𝑝𝑖 + 1 external
nodes.

Therefore the tree has 𝐴 = 𝑚 +(σ𝑖=1
𝑚+1 𝑝𝑖) entries and

𝐵 = σ𝑖=1
𝑚+1(𝑝𝑖+1) = 𝑚 + 1 + (σ𝑖=1

𝑚+1 𝑝𝑖) = 𝐴 + 1
external nodes.

Data Structures and Programming
Techniques

13

Searching in a Multi-Way Search Tree

• Let 𝑇 be a multi-way search tree and 𝑘 be a key.
• The algorithm for searching for an entry with key 𝑘 is

simple.
• We trace a path in 𝑇 starting at the root.
• When we are at a 𝑑-node 𝑣 during the search, we

compare the key 𝑘 with the keys 𝑘1, ⋯ , 𝑘𝑑−1 stored at
𝑣.

• If 𝑘 = 𝑘𝑖, for some 𝑖, the search is successfully
completed. Otherwise, we continue the search in the
child 𝑣𝑖 of 𝑣 such that 𝑘𝑖−1 < 𝑘 < 𝑘𝑖 .

• If we reach an external node, then we know that there
is no entry with key 𝑘 in 𝑇.

Data Structures and Programming
Techniques

14

Example Multi-Way Search Tree

Data Structures and Programming
Techniques

15

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Search for Key 12

Data Structures and Programming
Techniques

16

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Unsuccessful search

Search for Key 24

Data Structures and Programming
Techniques

17

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Successful search

Insertion in a Multi-Way Search Tree

• If we want to insert a new pair (𝑘, 𝑥) into a multi-way
search tree, then we start by searching for this entry.

• If we find the entry, then we do not need to reinsert it.

• If we end up in an external node, then the entry is not
in the tree. In this case, we return to the parent 𝑣 of
the external node and attempt to insert the key there.

• If 𝑣 has space for one more key then we insert the
entry there. If not, we create a new node, we insert the
entry in this node and make this node a child of 𝑣 in
the appropriate position.

Data Structures and Programming
Techniques

18

Insert Key 28 (𝑚 = 3)

Data Structures and Programming
Techniques

19

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Unsuccessful search

Key 28 Inserted

Data Structures and Programming
Techniques

20

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17

Insert Key 32

Data Structures and Programming
Techniques

21

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17

Unsuccessful search

Key 32 Inserted

Data Structures and Programming
Techniques

22

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

Insert Key 12

Data Structures and Programming
Techniques

23

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

Unsuccessful Search

Key 12 Inserted

Data Structures and Programming
Techniques

24

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

12

Deletion from a Multi-Way Search Tree

• The algorithm for deletion from a multi-way
search tree is left as an exercise.

Data Structures and Programming
Techniques

25

Complexity of Operations

• Let us consider the time to search a 𝑚-way
search tree for a given key.

• The time spent at a 𝑑-node depends on the
implementation of the node. If we use a sorted
array then, using binary search, we can search a
node in 𝑂(log 𝑑) time.

• Thus the time for a search operation in the tree is
𝑂 ℎ log𝑚 .

• The complexity of insertion and deletion is also
𝑂 ℎ log𝑚 .

Data Structures and Programming
Techniques

26

Efficiency Considerations

• We know that maintaining perfect balance in
binary search trees yields shortest average search
paths, but the attempts to maintain perfect
balance when we insert or delete nodes can incur
costly rebalancing in which every node of the tree
needs to be rearranged.

• AVL trees showed us one way to solve this
problem by abandoning the goal of perfect
balance and adopt the goal of keeping the trees
“almost balanced”.

Data Structures and Programming
Techniques

27

Efficiency Considerations (cont’d)

• Multi-way search trees give us another way to
solve this problem.

• The primary efficiency goal for a multi-way search
tree is to keep the height as small as possible but
permit the number of keys at each node to vary.

• We want the height of the tree ℎ to be a
logarithmic function of 𝑛, the total number of
entries stored in the tree.

• A search tree with logarithmic height is called a
balanced search tree.

Data Structures and Programming
Techniques

28

Balanced Multi-way Search Trees

• We will study two kinds of balanced multi-way
search trees:

– 2-3 trees

– 2-3-4 trees or (2,4) trees.

Data Structures and Programming
Techniques

29

2-3 Trees

• A 2-3 tree is a multi-way search tree which has
the following properties:

• Size property: Each internal node contains
one or two entries, and has either two or
three children.

• Depth property: All leaves of the tree are
empty trees that have the same depth (lie on
a single bottom level).

Data Structures and Programming
Techniques

30

Example of 2-3 Tree

H

NJD

A E F I K L O P

Data Structures and Programming
Techniques

31

Searching in 2-3 Trees

• To search for the key L, for example, we start
at the root and since L > H, we follow the
pointer to the right subtree of the root node.

• Now we note that L lies between J and N, so
we follow the middle pointer between the
nodes J and N to the node containing the keys
K and L.

• L is found and the search terminates.

Data Structures and Programming
Techniques

32

Search for Key L

H

NJD

A E F I K L O P

Data Structures and Programming
Techniques

33

Insertion of New Keys

• Suppose we want to insert the new key B into the tree.
• Since B<H, we follow the left pointer from the root

node to the node containing D in the second row.
• Then we follow the left pointer of D’s node to the node

containing A.
• Since B>A, we follow the right pointer of A’s node

which lead us to an empty tree (an external node).
• Then we go back to the parent of the external node

and try to store the new key there.
• The node containing A has room for one more key so

we store key B there. We also add a new empty child to
this node.

Data Structures and Programming
Techniques

34

Example: Insert B

H

NJD

A E F I K L O P

Data Structures and Programming
Techniques

35

Example: Insert B

H

NJD

A E F I K L O P

Data Structures and Programming
Techniques

36

Example: Result

H

NJD

A E F I K L O PB

Data Structures and Programming
Techniques

37

Insertion of New Keys (cont’d)

• Let us now insert key M. This leads to the attempt
to add M to the node containing K and L which
now overflows with keys K, L and M.

• The strategy for such cases is to split the
overflowed node into two nodes and pass the
middle key to the parent.

• Hence we split the overflowed node into two new
nodes containing K and M respectively.

• We also pass the middle key L to the parent node
containing J and N.

Data Structures and Programming
Techniques

38

Insertion of New Keys (cont’d)

• The attempt to add L to this parent node
results in a new overflowed node in which the
key L lies between keys J and N.

• So we split this parent node into new nodes
containing J and N respectively, and we pass
the middle key L up to the root.

• The root has room for L so we store it there.

Data Structures and Programming
Techniques

39

Example: Insert M

H

NJD

A E F I K L O PB

Data Structures and Programming
Techniques

40

Example: Insert M (cont’d)

H

NJD

A E F I K L O PB

Data Structures and Programming
Techniques

41

M overflows
this node

Example: Insert M (cont’d)

H

NJD

A E F I O PB

Data Structures and Programming
Techniques

42

The node is split in
two and L is passed
to the parent node

MK

L

Example: Insert M (cont’d)

H

NJD

A E F I O PB

Data Structures and Programming
Techniques

43

L overflows
this node

MK

L

Example: Insert M (cont’d)

H

NJD

A E F I M
O PB K

L

Data Structures and Programming
Techniques

44

The node is split in
two and L is passed
up to the parent

Example: Result

H

NJD

A E F I M
O PB K

L

Data Structures and Programming
Techniques

45

L is inserted in the root node

Insertion of New Keys (cont’d)

• Let us now insert key Q. Q should be entered
in the node containing O and P which now
overflows.

• Thus, this node is split up to two nodes one
containing O and the other containing R, and
the middle key is passed up towards the
parent node.

• The parent node has only key N so there is
space for P and it is inserted there.

Data Structures and Programming
Techniques

46

Example: Insert Q

H

NJD

A E F I M
O PB K

L

Data Structures and Programming
Techniques

47

Q overflows
this node

Example: Insert Q (cont’d)

H

NJD

A E F I M PB K

L

Data Structures and Programming
Techniques

48

P

O Q

This node is split up
and P is passed up

Example: Result

H

NJD

A E F I M PB K

L

Data Structures and Programming
Techniques

49

P

O Q

Insertion of New Keys (cont’d)

• Let us now insert key R. R is inserted in the
node with Q where there is space.

Data Structures and Programming
Techniques

50

Example: Insert R

H

NJD

A E F I M PB K

L

Data Structures and Programming
Techniques

51

P

O Q R

Inserting New Keys (cont’d)

• Let us now insert key S. S should be inserted in
the node with Q and R.

• This node overflows. Thus, it is split into two
nodes one containing Q and the other containing
S and R is passed up to the parent node.

• R now oveflows this node where N and P are also
stored. Thus, this node is split into two nodes one
containing N and the other containing R and the
middle key P is sent up to the parent (the root).

Data Structures and Programming
Techniques

52

Inserting New Keys (cont’d)

• The root now overflows with the addition of P
so it is split into two nodes one containing H
and the other containing P and the middle key
L is used to create a new root.

• Thus, we have added one more level to the
tree.

Data Structures and Programming
Techniques

53

Example: Insert S

H

NJD

A E F I M PB K

L

Data Structures and Programming
Techniques

54

P

O Q R

S overflows
this node

Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L

Data Structures and Programming
Techniques

55

P

O Q

R

S

This node is split
and R is sent up

Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L

Data Structures and Programming
Techniques

56

P

O Q

R

S

R overflows this
node

Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L

Data Structures and Programming
Techniques

57

This node is split up
and P is sent up

O Q S

R

P

Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L

Data Structures and Programming
Techniques

58

P overflows the root

O Q S

R

P

Example: Result

H

NJD

A E F I M
B K

Data Structures and Programming
Techniques

59

O Q S

The root splits and
L becomes the new root

R

P

L

Complexity of Insertion in 2-3 Trees

• When we insert a key at level 𝑘, in the worst case we need
to split 𝑘 + 1 nodes (one at each of the 𝑘 levels plus the
root).

• A 2-3 tree containing 𝑛 keys with the maximum number of
levels takes the form of a binary tree where each internal
node has one key and two children.

• In such a tree 𝑛 = 2𝑘+1 − 1 where 𝑘 is the number of the
lowest level.

• This implies that 𝑘 + 1 = log(𝑛 + 1) from which we see
that the splits are in the worst case 𝑂 log 𝑛 .

• So insertion in a 2-3 tree takes at worst 𝑶 𝐥𝐨𝐠𝒏 time.
• Similarly we can prove that searches and deletions take
𝑶 𝐥𝐨𝐠𝒏 time.

Data Structures and Programming
Techniques

60

(2,4) Trees

• A (2,4) tree or 2-3-4 tree is a multi-way search
tree which has the following two properties:

– Size property: Every internal node contains at
least one and at most three keys, and has at least
two and at most four children.

– Depth property: All the external nodes are empty
trees that have the same depth (lie on a single
bottom level).

Data Structures and Programming
Techniques

61

Result

• Proposition. The height of a (2,4) tree storing
𝑛 entries is 𝑂 log 𝑛 .

• Proof: Let ℎ be the height of a (2,4) tree 𝑇
storing 𝑛 entries. We justify the proposition by
showing that

1

2
log(𝑛 + 1) ≤ ℎ

and

ℎ ≤ log(𝑛 + 1).

Data Structures and Programming
Techniques

62

Result (cont’d)

• Note that by the size property, we have at most 4
nodes at depth 1, at most 42nodes at depth 2,
and so on. Thus, the number of external nodes of
𝑇 is at most 4ℎ.

• Similarly, by the size property, we have at least 2
nodes at depth 1, at least 22 nodes at depth 2,
and so on. Thus, the number of external nodes in
𝑇 is at least 2ℎ.

• We also know that the number of external nodes
is 𝑛 + 1.

Data Structures and Programming
Techniques

63

Result (cont’d)

• Therefore, we obtain
2ℎ ≤ 𝑛 + 1

and
𝑛 + 1 ≤ 4ℎ.

• Taking the logarithm in base 2 of each of the
above terms, we get that

ℎ ≤ log(𝑛 + 1)
and

log(𝑛 + 1) ≤ 2ℎ.
• These inequalities prove our claims.

Data Structures and Programming
Techniques

64

Insertion in (2,4) Trees

• To insert a new entry (𝑘, 𝑥), with key 𝑘, into a
(2,4) tree 𝑇, we first perform a search for 𝑘.

• Assuming that 𝑇 has no entry with key 𝑘, this
search terminates unsuccessfully at an
external node 𝑧.

• Let 𝑣 be the parent of 𝑧. We insert the new
entry into node 𝑣 and add a new child (an
external node) to 𝑣 on the left of 𝑧.

Data Structures and Programming
Techniques

65

Insertion (cont’d)

• Our insertion method preserves the depth
property, since we add a new external node at
the same level as existing external nodes.

• But it might violate the size property. If a node 𝑣
was previously a 4-node, then it may become a 5-
node after the insertion which causes the tree to
longer be a (2,4) tree.

• This type of violation of the size property is called
an overflow node at node 𝑣, and it must be
resolved in order to restore the properties of a
(2,4) tree.

Data Structures and Programming
Techniques

66

Dealing with Overflow Nodes

• Let 𝑣1, ⋯ , 𝑣5 be the children of 𝑣, and let 𝑘1, ⋯ , 𝑘4 be
the keys stored at 𝑣. To remedy the overflow at node 𝑣,
we perform a split operation on 𝑣 as follows.

• Replace 𝑣 with two nodes 𝑣′ and 𝑣′′, where
– 𝑣′ is a 3-node with children 𝑣1, 𝑣2, 𝑣3 storing keys 𝑘1 and
𝑘2

– 𝑣′′ is a 2-node with children 𝑣4, 𝑣5, storing key 𝑘4.

• If 𝑣 was the root of 𝑇, create a new root node 𝑢. Else,
let 𝑢 be the parent of 𝑣.

• Insert key 𝑘3 into 𝑢 and make 𝑣′ and 𝑣′′ children of 𝑢,
so that if 𝑣 was child 𝑖 of 𝑢, then 𝑣′ and 𝑣′′ become
children 𝑖 and 𝑖 + 1 of 𝑢, respectively.

Data Structures and Programming
Techniques

67

Overflow at a 5-node

Data Structures and Programming
Techniques

68

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑘1 𝑘2 𝑘3 𝑘4

ℎ1 ℎ2 𝑢

𝑣 = 𝑢2
𝑢3𝑢1

The third key of 𝑣 inserted into the
parent node 𝑢

Data Structures and Programming
Techniques

69

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑘1 𝑘2 𝑘4

ℎ1 ℎ2 𝑢

𝑣 = 𝑢2
𝑘3

𝑢1 𝑢3

Node 𝑣 replaced with a 3-node 𝑣′ and
a 2-node 𝑣′′

Data Structures and Programming
Techniques

70

𝑣1 𝑣2 𝑣3 𝑣4
𝑣5

ℎ1 𝑘3 ℎ2 𝑢

𝑢1 𝑢4
𝑘1 𝑘2 𝑘4

𝑣′ = 𝑢2 𝑣′′ = 𝑢3

Example

• Let us now see an example of a few insertions
into an initially empty (2,4) tree.

Data Structures and Programming
Techniques

71

Insert 4

Data Structures and Programming
Techniques

72

4

Insert 6

Data Structures and Programming
Techniques

73

4 6

Insert 12

Data Structures and Programming
Techniques

74

4 6 12

Insert 15 - Overflow

Data Structures and Programming
Techniques

75

4 6 12 15

Creation of New Root Node

Data Structures and Programming
Techniques

76

4 6 15

12

Split

Data Structures and Programming
Techniques

77

4 6

12

15

Insert 3

Data Structures and Programming
Techniques

78

3 4 6

12

15

Insert 5 - Overflow

Data Structures and Programming
Techniques

79

3 4 5 6

12

15

5 is Sent to the Parent Node

Data Structures and Programming
Techniques

80

3 4 6

12

15

5

Split

Data Structures and Programming
Techniques

81

3 4

5 12

156

Insert 10

Data Structures and Programming
Techniques

82

3 4

5 12

156 10

Insert 8

Data Structures and Programming
Techniques

83

3 4

5 12

156 8 10

Insertion (cont’d)

• Let us now see a more complicated example
of insertion in a (2,4) tree.

Data Structures and Programming
Techniques

84

Initial Tree

Data Structures and Programming
Techniques

85

3 4

5 10 12

6 8 11 13 14 15

Insert 17 - Overflow

Data Structures and Programming
Techniques

86

3 4

5 10 12

6 8 11
13 14 15 17

15 is Sent to the Parent Node

Data Structures and Programming
Techniques

87

3 4

5 10 12

6 8 11
13 14 17

15

Split

Data Structures and Programming
Techniques

88

3 4

5 10 12 15

6 8 11
13 14 17

Overflow at the Root

Data Structures and Programming
Techniques

89

3 4

5 10 12 15

6 8 11
13 14 17

Creation of New Root

Data Structures and Programming
Techniques

90

3 4

5 10 15

6 8 11
13 14 17

12

Split

Data Structures and Programming
Techniques

91

3 4 6 8 11
13 14 17

12

5 10 15

Final Tree

Data Structures and Programming
Techniques

92

3 4 6 8 11
13 14 17

12

5 10 15

Complexity Analysis of Insertion

• A split operation affects a constant number of nodes
of the tree and a constant number of entries stored at
such nodes. Thus, it can be implemented in 𝑶(𝟏) time.

• As a consequence of a split operation on node 𝑣, a new
overflow may arise at the parent 𝑢 of 𝑣. A split
operation either eliminates the overflow or it
propagates it into the parent of the current node.
Hence, the number of split operations is bounded by
the height of the tree, which is 𝑂 log 𝑛 .

• Therefore, the total time to perform an insertion is
𝑶 𝒍𝒐𝒈𝒏 .

Data Structures and Programming
Techniques

93

Removal in (2,4) Trees

• Let us now consider the removal of an entry with key 𝑘 from a (2,4)
tree 𝑇.

• Removing such an entry can always be reduced to the case where
the entry to be removed is stored at a node 𝑣 whose children are
external nodes.

• Suppose that the entry we wish to remove is stored in the 𝑖-th
entry (𝑘𝑖 , 𝑥𝑖) at a node 𝑧 that has only internal nodes as children. In
this case, we swap the entry (𝑘𝑖 , 𝑥𝑖) with an appropriate entry that
is stored at a node 𝑣 with external-node children as follows:
– We find the right-most internal node 𝑣 in the subtree rooted at the 𝑖-

th child of 𝑧, noting that the children of node 𝑣 are all external nodes.
– We swap the entry (𝑘𝑖 , 𝑥𝑖) at 𝑧 with the last entry of 𝑣. The key of this

entry is the predecessor of 𝑘𝑖 in the natural ordering of the keys of the
tree.

Data Structures and Programming
Techniques

94

Removal (cont’d)

• Once we ensure that the entry to be removed is
stored at a node 𝑣 with only external-node
children, we simply remove the entry from 𝑣 and
remove the 𝑖-th external node of 𝑣.

• Removing an entry from a node 𝑣 preserves the
depth property, because we always remove an
external node child from a node 𝑣 with only
external-node children.

• However, we might violate the size property at 𝑣.

Data Structures and Programming
Techniques

95

Removal (cont’d)

• If 𝑣 was previously a 2-node, then, after the removal, it becomes a
1-node with no entries.

• This type of violation of the size property is called an underflow
node at 𝑣.

• To remedy an underflow, we check whether an immediate sibling
of 𝒗 is a 3-node or a 4-node. If we find such a sibling 𝑤, then we
perform a transfer operation, in which we move a child of 𝑤 to 𝑣, a
key of 𝑤 to the parent 𝑢 of 𝑣 and 𝑤, and a key of 𝑢 to 𝑣.

• If 𝑣 has only one sibling and this sibling is a 2-node, or if both
immediate siblings of 𝑣 are 2-nodes, then we perform a fusion
operation, in which we merge 𝑣 with a sibling, creating a new node
𝑣′, and move a key from the parent 𝑢 of 𝑣 to 𝑣′.

Data Structures and Programming
Techniques

96

Removal (cont’d)

• A fusion operation at a node 𝑣 may cause a new
underflow to occur at the parent 𝑢 of 𝑣, which in
turn triggers a transfer or fusion at 𝑢.

• Hence, the number of fusion operations is
bounded by the height of the tree which is
𝑂 log 𝑛 .

• Therefore, a removal operation can take
𝑶 𝒍𝒐𝒈𝒏 time in the worst case.

• If an underflow propagates all the way up to the
root, then the root is simply deleted.

Data Structures and Programming
Techniques

97

Examples

• Let us now see some examples of removal
from a (2,4) tree.

Data Structures and Programming
Techniques

98

Initial Tree

Data Structures and Programming
Techniques

99

4 6 8 11
13 14 17

12

5 10 15

Remove 4

Data Structures and Programming
Techniques

100

4

6 8 11
13 14 17

12

5 10 15

𝑣

Transfer

Data Structures and Programming
Techniques

101

8 11
13 14 17

12

10 15

6

5

𝑣

𝑤

𝑢

After the Transfer

Data Structures and Programming
Techniques

102

8 11
13 14 17

12

6 10 15

5𝑣

𝑤

𝑢

Remove 12

Data Structures and Programming
Techniques

103

8 11
13 14 17

12

6 10 15

5𝑣

𝑤

𝑢

Remove 12

Data Structures and Programming
Techniques

104

8

11

13 14 17

12

6 10 15

5𝑣

𝑤

Fusion of 𝑤 and 𝑣

Data Structures and Programming
Techniques

105

8 13 14 17

6 15

5𝑣

𝑤

11

𝑣

10

𝑢

After the Fusion

Data Structures and Programming
Techniques

106

8 10 13 14 17

6 15

5

11

Remove 13

Data Structures and Programming
Techniques

107

8 10 14 17

6 15

5

11

13

After the Removal of 13

Data Structures and Programming
Techniques

108

8 10 14 17

6 15

5

11

Remove 14 - Underflow

Data Structures and Programming
Techniques

109

8 10

14

17

6 15

5

11

Fusion

Data Structures and Programming
Techniques

110

8 10 17

6

15

5

𝑣

11

𝑢

Underflow at 𝑢

Data Structures and Programming
Techniques

111

8 10 15 17

6

5

11

𝑢

Fusion

Data Structures and Programming
Techniques

112

8 10 15 17

6

5

11 𝑢

Remove the Root

Data Structures and Programming
Techniques

113

8 10 15 17

6 11

5

Final Tree

Data Structures and Programming
Techniques

114

8 10 15 17

6 11

5

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.
– Section 9.9

• M. T. Goodrich, R. Tamassia and D. Mount.
Data Structures and Algorithms in C++.
– Section 10.4

• R. Sedgewick. Αλγόριθμοι σε C. 3η

Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος.
– Section 13.3

Data Structures and Programming
Techniques

115

