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Multi-Way Search Trees

• Multi-way trees are trees such that each internal 
node can have many children.

• Let us assume that the entries we store in a 
search tree are pairs of the form (𝑘, 𝑥) where 𝑘 is 
the key and 𝑥 the value associated with the key.

• Example: Assume we store information about 
students. The key can be the student ID while the 
value can be information such as name, year of 
study etc.
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Definitions

• A tree is ordered if there is a linear ordering 
defined for the children of each node; that  is, 
we can identify children of a node as being the 
first, the second, third and so on.

• Let 𝑣 be a node of an ordered tree. We say 
that 𝑣 is a 𝒅-node if 𝑣 has 𝑑 children.
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Definitions (cont’d)

• A multi-way search tree is an ordered tree 𝑇 that 
has the following properties:
– Each internal node of 𝑇 has at least 2 children. That is, 

each internal node is a 𝑑-node such that 𝑑 ≥ 2.

– Each internal 𝑑-node of 𝑇 with children 𝑣1, ⋯ , 𝑣𝑑
stores an ordered set of 𝑑 − 1 key-value entries 
𝑘1, 𝑥1 , ⋯ , 𝑘𝑑−1, 𝑥𝑑−1 , where 𝑘1 ≤ ⋯ ≤ 𝑘𝑑−1.

– Let us conveniently define 𝑘0 = −∞ and 𝑘𝑑 = +∞.
For each entry (𝑘, 𝑥) stored at a node in the subtree
of 𝑣 rooted at 𝑣𝑖 , 𝑖 = 1,⋯ , 𝑑, we have that 𝑘𝑖−1 ≤
𝑘 ≤ 𝑘𝑖 .
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Definitions (cont’d)

• By the above definition, the external nodes of a 
multi-way search tree do not store any entries 
and are “dummy” nodes (i.e., our trees are 
extended trees).

• When 𝑚 ≥ 2 is the maximum number of 
children that a node is allowed to have, then we 
have an 𝒎-way search tree.

• A binary search tree is a special case of a multi-
way search tree, where each internal node stores 
one entry and has two children (i.e., 𝑚 = 2).
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Example Multi-Way Search Tree (𝑚 =
3)
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Proposition

• Let 𝑇 be an 𝑚-way search tree with height ℎ,
𝑛 entries and 𝑛𝐸 external nodes. Then, the 
following inequalities hold:

1. ℎ ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ 𝑛

3. 𝑛𝐸 = 𝑛 + 1

• Proof?
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Proof

• We will prove (1) first. 

• The lower bound can be seen by considering 
an 𝑚-way search tree like the one given on 
the next slide where we have one internal 
node and one entry in each node for levels 
0, 1, 2,⋯ , ℎ − 1 and level ℎ contains only 
external nodes.
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Proof (cont’d)
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Proof (cont’d)

• For the upper bound, consider an 𝑚-way search 
tree of height ℎ where each internal node in the 
levels 0 to ℎ − 1 has exactly 𝑚 children (the 
external nodes are at level ℎ ).

• These internal nodes are  σ𝑖=0
ℎ−1𝑚𝑖 =

𝑚ℎ−1

𝑚−1
in 

total. 

• Since each of these nodes has 𝑚 − 1 entries, the 
total number of entries in the internal nodes is 
𝑚ℎ − 1.
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Proof (cont’d)

• To prove the lower bound of (2), rewrite (1) 
and take logarithms in base 𝑚. The upper 
bound in (2) is the same as the lower bound in 
(1).
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Proof (cont’d)

• We will prove (3) by induction on the height 
ℎ of the tree.

• Base case: Let ℎ = 1. Then there is a single 
root node with 𝑛 entries and 𝑛 + 1 external 
nodes and the proposition holds.
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Proof (cont’d)

• Inductive step: Let ℎ > 1. If the root stores 𝑚
entries then it has 𝑚 + 1 subtrees for which the 
inductive hypothesis holds. Therefore, each such 
subtree 𝑖 has  𝑝𝑖 entries and 𝑝𝑖 + 1 external 
nodes.  

Therefore the tree has 𝐴 = 𝑚 +(σ𝑖=1
𝑚+1 𝑝𝑖) entries and

𝐵 = σ𝑖=1
𝑚+1(𝑝𝑖+1) = 𝑚 + 1 + (σ𝑖=1

𝑚+1 𝑝𝑖) = 𝐴 + 1
external nodes.
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Searching in a Multi-Way Search Tree

• Let 𝑇 be a multi-way search tree and 𝑘 be a key.
• The algorithm for searching for an entry with key 𝑘 is 

simple.
• We trace a path in 𝑇 starting at the root.
• When we are at a 𝑑-node 𝑣 during the search, we 

compare the key 𝑘 with the keys 𝑘1, ⋯ , 𝑘𝑑−1 stored at 
𝑣. 

• If 𝑘 = 𝑘𝑖, for some 𝑖, the search is successfully 
completed. Otherwise, we continue the search in the 
child 𝑣𝑖 of 𝑣 such that 𝑘𝑖−1 < 𝑘 < 𝑘𝑖 .

• If we reach an external node, then we know that there 
is no entry with key 𝑘 in 𝑇.
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Example Multi-Way Search Tree

Data Structures and Programming 
Techniques

15

22

5     10 25

3       4 6      8 14 2723     24

11     13 17



Search for Key 12
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Search for Key 24
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Insertion in a Multi-Way Search Tree

• If we want to insert a new pair (𝑘, 𝑥) into a multi-way 
search tree, then we start by searching for this entry.

• If we find the entry, then we do not need to reinsert it.

• If we end up in an external node, then the entry is not 
in the tree. In this case, we return to the parent 𝑣 of 
the external node and attempt to insert the key there.

• If 𝑣 has space for one more key then we insert the 
entry there. If not, we create a new node, we insert the 
entry in this node and make this node a child of 𝑣 in 
the appropriate position.
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Insert Key 28 (𝑚 = 3)
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Key 28 Inserted
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Insert Key 32
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Key 32 Inserted
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Insert Key 12
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Key 12 Inserted
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Deletion from a Multi-Way Search Tree

• The algorithm for deletion from a multi-way 
search tree is left as an exercise.
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Complexity of Operations

• Let us consider the time to search a 𝑚-way 
search tree for a given key.

• The time spent at a 𝑑-node depends on the 
implementation of the node. If we use a sorted 
array then, using binary search, we can search a 
node in 𝑂(log 𝑑) time.

• Thus the time for a search operation in the tree is 
𝑂 ℎ log𝑚 .

• The complexity of insertion and deletion is also 
𝑂 ℎ log𝑚 .
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Efficiency Considerations

• We know that maintaining perfect balance in 
binary search trees yields shortest average search 
paths, but the attempts to maintain perfect 
balance when we insert or delete nodes can incur 
costly rebalancing in which every node of the tree 
needs to be rearranged.

• AVL trees showed us one way to solve this 
problem by abandoning the goal of perfect 
balance and adopt the goal of keeping the trees 
“almost balanced”.
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Efficiency Considerations (cont’d)

• Multi-way search trees give us another way to 
solve this problem.

• The primary efficiency goal for a multi-way search 
tree is to keep the height as small as possible but 
permit the number of keys at each node to vary.

• We want the height of the tree ℎ to be a 
logarithmic function of 𝑛, the total number of 
entries stored in the tree.

• A search tree with logarithmic height is called a 
balanced search tree.
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Balanced Multi-way Search Trees

• We will study two kinds of balanced multi-way 
search trees:

– 2-3 trees

– 2-3-4 trees or (2,4) trees.
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2-3 Trees

• A 2-3 tree is a multi-way search tree which has 
the following properties:

• Size property: Each internal node contains 
one or two entries, and has either two or 
three children.

• Depth property: All leaves of the tree are 
empty trees that have the same depth (lie on 
a single bottom level).
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Example of 2-3 Tree

H
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A E F I K L O P
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Searching in 2-3 Trees

• To search for the key L, for example, we start 
at the root and since L > H, we follow the 
pointer to the right subtree of the root node. 

• Now we note that L lies between J and N, so 
we follow the middle pointer between the 
nodes J and N to the node containing the keys 
K and L.

• L is found and the search terminates.
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Search for Key L

H

NJD

A E F I K L O P
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Insertion of New Keys

• Suppose we want to insert the new key B into the tree.
• Since B<H, we follow the left pointer from the root 

node to the node containing D in the second row.
• Then we follow the left pointer of D’s node to the node 

containing A.
• Since B>A, we follow the right pointer of A’s node 

which lead us to an empty tree (an external node). 
• Then we go back to the parent of the external node 

and try to store the new key there. 
• The node containing A has room for one more key so 

we store key B there. We also add a new empty child to 
this node.

Data Structures and Programming 
Techniques

34



Example: Insert B

H

NJD

A E F I K L O P
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Example: Insert B

H

NJD

A E F I K L O P
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Example: Result

H

NJD

A E F I K L O PB
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Insertion of New Keys (cont’d)

• Let us now insert key M. This leads to the attempt 
to add M to the node containing K and L which 
now overflows with keys K, L and M.

• The strategy for such cases is to split the 
overflowed node into two nodes and pass the 
middle key to the parent.

• Hence we split the overflowed node into two new 
nodes containing K and M respectively.

• We also pass the middle key L to the parent node 
containing J and N.
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Insertion of New Keys (cont’d)

• The attempt to add L to this parent node 
results in a new overflowed node in which the 
key L lies between keys J and N.

• So we split this parent node into new nodes 
containing J and N respectively, and we pass 
the middle key L up to the root.

• The root has room for L so we store it there.
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Example: Insert M
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Example: Insert M (cont’d)

H

NJD

A E F I K L O PB
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Example: Insert M (cont’d)

H

NJD

A E F I O PB
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Example: Insert M (cont’d)

H

NJD

A E F I O PB
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Example: Insert M (cont’d)

H

NJD

A E F I M
O PB K

L

Data Structures and Programming 
Techniques

44

The node is split in 
two and L is passed
up to the parent



Example: Result

H

NJD

A E F I M
O PB K

L
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Insertion of New Keys (cont’d)

• Let us now insert key Q. Q should be entered 
in the node containing O and P which now 
overflows.

• Thus, this node is split up to two nodes one 
containing O and the other containing R, and 
the middle key is passed up towards the 
parent node.

• The parent node has only key N so there is 
space for P and it is inserted there.
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Example: Insert Q

H

NJD

A E F I M
O PB K

L
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Example: Insert Q (cont’d)

H

NJD

A E F I M PB K

L
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Example: Result

H

NJD

A E F I M PB K

L
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Insertion of New Keys (cont’d)

• Let us now insert key R. R is inserted in the 
node with Q where there is space.
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Example: Insert R

H

NJD

A E F I M PB K
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Inserting New Keys (cont’d)

• Let us now insert key S. S should be inserted in 
the node with Q and R.

• This node overflows. Thus, it is split into two 
nodes one containing Q and the other containing 
S and R is passed up to the parent node.

• R now oveflows this node where N and P are also 
stored. Thus, this node is split into two nodes one 
containing N and the other containing R and the 
middle key P is sent up to the parent (the root).
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Inserting New Keys (cont’d)

• The root now overflows with the addition of P 
so it is split into two nodes one containing H 
and the other containing P and the middle key 
L is used to create a new root.

• Thus, we have added one more level to the 
tree. 
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Example: Insert S

H

NJD

A E F I M PB K

L
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Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L
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Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L
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Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L
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Example: Insert S (cont’d)

H

NJD

A E F I M
B K

L
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Example: Result

H

NJD

A E F I M
B K
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Complexity of Insertion in 2-3 Trees

• When we insert a key at level 𝑘, in the worst case we need 
to split 𝑘 + 1 nodes (one at each of the 𝑘 levels plus the 
root).

• A 2-3 tree containing 𝑛 keys with the maximum number of 
levels takes the form of a binary tree where each internal 
node has one key and two children. 

• In such a tree 𝑛 = 2𝑘+1 − 1 where 𝑘 is the number of the 
lowest level.

• This implies that 𝑘 + 1 = log(𝑛 + 1) from which we see 
that the splits are in the worst case 𝑂 log 𝑛 .

• So insertion in a 2-3 tree takes at worst 𝑶 𝐥𝐨𝐠𝒏 time.
• Similarly we can prove that searches and deletions take 
𝑶 𝐥𝐨𝐠𝒏 time.
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(2,4) Trees

• A (2,4) tree or 2-3-4 tree is a multi-way search 
tree which has the following two properties:

– Size property: Every internal node contains at 
least one and at most three keys, and has at least 
two and at most four children.

– Depth property: All the external nodes are empty 
trees that have the same depth (lie on a single 
bottom level).
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Result

• Proposition. The height of a (2,4) tree storing 
𝑛 entries is 𝑂 log 𝑛 .

• Proof: Let ℎ be the height of a (2,4) tree 𝑇
storing 𝑛 entries. We justify the proposition by 
showing that

1

2
log(𝑛 + 1) ≤ ℎ

and 

ℎ ≤ log(𝑛 + 1).
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Result (cont’d)

• Note that by the size property, we have at most 4 
nodes at depth 1, at most 42nodes at depth 2, 
and so on. Thus, the number of external nodes of 
𝑇 is at most 4ℎ. 

• Similarly, by the size property, we have at least 2 
nodes at depth 1, at least 22 nodes at depth 2, 
and so on. Thus, the number of external nodes in 
𝑇 is at least 2ℎ.

• We also know that the number of external nodes 
is 𝑛 + 1.
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Result (cont’d)

• Therefore, we obtain
2ℎ ≤ 𝑛 + 1

and
𝑛 + 1 ≤ 4ℎ.

• Taking the logarithm in base 2 of each of the 
above terms, we get that

ℎ ≤ log(𝑛 + 1)
and

log(𝑛 + 1) ≤ 2ℎ.
• These inequalities prove our claims.
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Insertion in (2,4) Trees

• To insert a new entry (𝑘, 𝑥), with key 𝑘, into a 
(2,4) tree 𝑇, we first perform a search for 𝑘.

• Assuming that 𝑇 has no entry with key 𝑘, this 
search terminates unsuccessfully at an 
external node 𝑧. 

• Let 𝑣 be the parent of 𝑧. We insert the new 
entry into node 𝑣 and add a new child (an 
external node) to 𝑣 on the left of 𝑧.
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Insertion (cont’d)

• Our insertion method preserves the depth 
property, since we add a new external node at 
the same level as existing external nodes.

• But it might violate the size property. If a node 𝑣
was previously a 4-node, then it may become a 5-
node after the insertion which causes the tree to 
longer be a (2,4) tree.

• This type of violation of the size property is called 
an overflow node at node 𝑣, and it must be 
resolved in order to restore the properties of a 
(2,4) tree.
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Dealing with Overflow Nodes

• Let 𝑣1, ⋯ , 𝑣5 be the children of 𝑣, and let 𝑘1, ⋯ , 𝑘4 be 
the keys stored at 𝑣. To remedy the overflow at node 𝑣, 
we perform a split operation on 𝑣 as follows.

• Replace 𝑣 with two nodes 𝑣′ and 𝑣′′, where
– 𝑣′ is a 3-node with children 𝑣1, 𝑣2, 𝑣3 storing keys 𝑘1 and 
𝑘2

– 𝑣′′ is a 2-node with children 𝑣4, 𝑣5, storing key 𝑘4.

• If 𝑣 was the root of 𝑇, create a new root node 𝑢. Else, 
let 𝑢 be the parent of 𝑣.

• Insert key 𝑘3 into 𝑢 and make 𝑣′ and 𝑣′′ children of 𝑢, 
so that if 𝑣 was child 𝑖 of 𝑢, then 𝑣′ and 𝑣′′ become 
children 𝑖 and 𝑖 + 1 of 𝑢, respectively.
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Overflow at a 5-node
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The third key of 𝑣 inserted into the 
parent node 𝑢
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𝑢1 𝑢3



Node 𝑣 replaced with a 3-node 𝑣′ and 
a 2-node 𝑣′′
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Example

• Let us now see an example of a few insertions 
into an initially empty (2,4) tree.
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Insert 4
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Insert 6

Data Structures and Programming 
Techniques

73

4   6



Insert 12
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Insert 15 - Overflow
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Creation of New Root Node
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Split
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Insert 3
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Insert 5 - Overflow
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5 is Sent to the Parent Node
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Split

Data Structures and Programming 
Techniques

81

3   4

5     12

156



Insert 10
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Insert 8
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Insertion (cont’d)

• Let us now see a more complicated example 
of insertion in a (2,4) tree.
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Initial Tree
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Insert 17 - Overflow
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15 is Sent to the Parent Node
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Overflow at the Root
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Creation of New Root
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Split
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Complexity Analysis of Insertion

• A split operation affects a constant number of nodes 
of the tree and a constant number of entries stored at 
such nodes. Thus, it can be implemented in 𝑶(𝟏) time.

• As a consequence of a split operation on node 𝑣, a new 
overflow may arise at the parent 𝑢 of 𝑣. A split 
operation either eliminates the overflow or it 
propagates it into the parent of the current node. 
Hence, the number of split operations is bounded by 
the height of the tree, which is 𝑂 log 𝑛 .

• Therefore, the total time to perform an insertion is 
𝑶 𝒍𝒐𝒈𝒏 .
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Removal in (2,4) Trees

• Let us now consider the removal of an entry with key 𝑘 from a (2,4) 
tree 𝑇.

• Removing such an entry can always be reduced to the case where 
the entry to be removed is stored at a node 𝑣 whose children are 
external nodes.

• Suppose that the entry we wish to remove is stored in the 𝑖-th
entry (𝑘𝑖 , 𝑥𝑖) at a node 𝑧 that has only internal nodes as children. In 
this case, we swap the entry (𝑘𝑖 , 𝑥𝑖) with an appropriate entry that 
is stored at a node 𝑣 with external-node children as follows:
– We find the right-most internal node 𝑣 in the subtree rooted at the 𝑖-

th child of 𝑧, noting that the children of node 𝑣 are all external nodes. 
– We swap the entry (𝑘𝑖 , 𝑥𝑖) at 𝑧 with the last entry of 𝑣. The key of this 

entry is the predecessor of 𝑘𝑖 in the natural ordering of the keys of the 
tree.
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Removal (cont’d)

• Once we ensure that the entry to be removed is 
stored at a node 𝑣 with only external-node 
children, we simply remove the entry from 𝑣 and 
remove the 𝑖-th external node of 𝑣.

• Removing an entry from a node 𝑣 preserves the 
depth property, because we always remove an 
external node child from a node 𝑣 with only 
external-node children.

• However, we might violate the size property at 𝑣.
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Removal (cont’d)

• If 𝑣 was previously a 2-node, then, after the removal, it becomes a 
1-node with no entries.

• This type of violation of the size property is called an underflow
node at 𝑣.

• To remedy an underflow, we check whether an immediate sibling 
of 𝒗 is a 3-node or a 4-node. If we find such a sibling 𝑤, then we 
perform a transfer operation, in which we move a child of 𝑤 to 𝑣, a 
key of 𝑤 to the parent 𝑢 of 𝑣 and 𝑤, and a key of 𝑢 to 𝑣.

• If 𝑣 has only one sibling and this sibling is a 2-node, or if both 
immediate siblings of 𝑣 are 2-nodes, then we perform a fusion
operation, in which we merge 𝑣 with a sibling, creating a new node 
𝑣′, and move a key from the parent 𝑢 of 𝑣 to 𝑣′.
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Removal (cont’d)

• A fusion operation at a node 𝑣 may cause a new 
underflow to occur at the parent 𝑢 of 𝑣, which in 
turn triggers a transfer or fusion at 𝑢.

• Hence, the number of fusion operations is 
bounded by the height of the tree which is 
𝑂 log 𝑛 .

• Therefore, a removal operation can take 
𝑶 𝒍𝒐𝒈𝒏 time in the worst case.

• If an underflow propagates all the way up to the 
root, then the root is simply deleted.
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Examples

• Let us now see some examples of removal 
from a (2,4) tree.
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After the Transfer
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Fusion of 𝑤 and 𝑣
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Underflow at 𝑢
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– Section 9.9
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– Section 10.4
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