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Weighted Graphs

• Weighted graphs are directed graphs in which 
numbers called weights are attached to the 
directed edges.

• Example: Let the vertices of a graph represent 
cities on a map. The weight on an edge 
connecting city A to city B can be the travel 
distance from A to B, the cost of an airline ticket 
to go from A to B, or the time required to travel 
from A to B.
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Weighted Graphs (cont’d)

• To represent a weighted directed graph 𝐺, we 
can use an adjacency matrix 𝑇 in which:
– 𝑇 𝑖, 𝑗 = 𝑤𝑖𝑗 if there exists an edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) of 

weight 𝑤𝑖𝑗 .

– 𝑇 𝑖, 𝑖 = 0

– 𝑇 𝑖, 𝑗 = ∞ if there is no edge from 𝑣𝑖 to 𝑣𝑗 .

• We will assume that all weights 𝑤𝑖𝑗 are non-negative 
numbers.
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Example Weighted Graph
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Adjacency Matrix for the Example 
Graph

1 2 3 4 5 6

1 0 3 ∞ ∞ ∞ 5

2 ∞ 0 7 ∞ ∞ 10

3 ∞ ∞ 0 5 1 ∞

4 ∞ ∞ ∞ 0 6 ∞

5 ∞ ∞ ∞ ∞ 0 7

6 ∞ ∞ 8 2 ∞ 0
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Shortest Paths (Συντομότερα 
Μονοπάτια)

• The length of a path P is the sum of the 
weights of the edges of P.

• A very interesting problem in a directed 
weighted graph is to find the shortest path 
from a vertex A to a vertex B.
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The Shortest Path from Vertex 1 to 
Vertex 5
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The Single Source Shortest Paths 
Problem

• Let 𝐺 = (𝑉, 𝐸) be a directed graph in which 
each edge has a non-negative weight, and one 
vertex is specified as the source (αφετηρία).

• The single source shortest paths problem (το 
πρόβλημα των συντομότερων μονοπατιών 
κοινής αφετηρίας) is to determine the length 
of the shortest path from the source to each 
vertex in 𝑉.
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Dijkstra’s Greedy Algorithm for the 
Single Source Shortest Paths Problem
• Let 𝐺 = (𝑉, 𝐸) our graph.
• We start with a vertex set 𝑊 = {𝑠}

containing only the source.
• We will progressively enlarge 𝑊 by adding one 

new vertex at a time, until 𝑊 includes all vertices 
of 𝑉.

• The vertex we add at each stage is the vertex 𝑤 in 
𝑉 −𝑊, which is at a minimum distance from the 
source among all vertices in 𝑉 −𝑊 that have not 
been added to 𝑊 (this is a greedy choice).
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Dijkstra’s Algorithm (cont’d)

• We keep track of the minimum distance from 
the source 𝑠 at each stage by using an array 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 = Δ 𝑢 which keeps 
track of the shortest distance from 𝑠 to each 
vertex 𝑢 in 𝑊 and also each vertex 𝑢 in 𝑉 −𝑊
using a path 𝑝 starting at 𝑠, such that all 
vertices of path 𝑝 lie in 𝑊, except the last 
vertex 𝑢 which lies outside 𝑊.
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Dijkstra’s Algorithm (cont’d)

• Every time we add a new vertex to 𝑊, we 
update the array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑢]. This 
distance is updated in case it is bigger than the 
length of the path from the source to 𝑢 going 
through 𝑤 which is 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 +
𝑇[𝑤, 𝑢]. This operation is called relaxation
(χαλάρωση).
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Example Graph
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Expanding the Vertex Set W in Stages

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

6 {1,2,6,4,3,5} {} 5 11 0 3 10 7 11 5
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// Δεδομένα
src: αρχικός κόμβος
dest: τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο v
W[v]     : 1 αν ο v είναι στο σύνολο W, 0 διαφορετικά
dist[v]  : ο πίνακας Δ/ShortestDistance
prev[v]  : ο προηγούμενος του v στο βέλτιστο μονοπάτι

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
for each vertex v in Graph:
    dist[v] = INT_MAX    // infinity
    prev[v] = NULL
    W[v] = 0

dist[src] = 0



// Κυρίως αλγόριθμος
while true:
    u = vertex with minimum dist[u], among those with W[u] = 0
    W[u] = 1
    if u == dest
        stop
        // optimal cost = dist[dest]
        // optimal path = dest<-prev[dest]<-...<-src (inverse)

    for each neighbor v of u:
        if W[v] == 1
            continue
        alt = dist[u] + weight(u,v) // cost of src->...->u->v
        if alt < dist[v]:
            dist[v] = alt
            prev[v] = u



// Δεδομένα
src: αρχικός κόμβος
dest: τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο v
W[v]     : 1 αν ο v είναι στο σύνολο W, 0 διαφορετικά
dist[v]  : ο πίνακας Δ/ShortestDistance
prev[v]  : ο προηγούμενος του v στο βέλτιστο μονοπάτι
PQ       : Pr. Queue, κάθε κόμβος v εισάγεται με priority dist[v]

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
prev[src] = NULL
dist[src] = 0
Insert(PQ, src, 0)



// Κυρίως αλγόριθμος
while PQ is not empty:
    u = Remove(PQ)  // u with minimal dist[u]
    if exists(W[v])

continue
    W[u] = 1
    if u == dest
        stop     // optimal cost/path same as before

    for each neighbor v of u:
        if exists(W[v])
            continue
        alt = dist[u] + weight(u,v) // cost of src->...->u->v
        if !exists(dist[v]) OR alt < dist[v]:
            dist[v] = alt

 prev[v] = u
            Insert(PQ, v, alt)      // Προαιρετικά: replace

stop // PQ άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι



Δύο βασικές ιδιότητες

1. ∀ είναι το κόστος του
συντο ότερου ονοπατιού που
περνάει όνο από το

2. Για κορυφές ∈ το συντο ότερο
συνολικά ονοπάτι περνάει όνο
από το

Απόδειξη επαγωγή στο έγεθος του



Proof of Correctness

• We will first prove that when 𝑤 is selected, 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] gives us the length of 
the shortest path from the source to 𝑤.

• We will also prove that, at each stage, after 𝑊
is enlarged by the addition of 𝑤 and shortest 
distances updated, 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑢]
gives the distance of the shortest path from 𝑠
to every vertex 𝑢 in 𝑉 −𝑊 via intermediaries 
lying wholly in 𝑊.
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Proof (cont’d)

• So first consider when we are ready to enlarge 
the vertex set 𝑊 by choosing a new vertex 𝑤
to add to it.

• We will prove that 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤]
gives us the length of the shortest path from 𝑠
to 𝑤.
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Proof (cont’d)

• Let us assume that this is not the case i.e., 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] is not the length of the shortest 
path from 𝑠 to 𝑤.

• Then, there must exist some shorter path 𝑝, which 
starts at 𝑠 and contains a vertex in 𝑉 −𝑊 other than 
𝑤.

• We can start at the source 𝑠 and proceed along path 𝑝, 
passing through vertices in 𝑊, until we come to the 
first vertex 𝑟, that is not in 𝑊.

• Now notice that the length of the initial portion of the 
path 𝑝 from 𝑠 to  𝑟 is shorter than the length of the 
entire path  𝑝 from 𝑠 to 𝑤.
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Hypothetical Shorter Path to 𝑤
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Proof (cont’d)

• Since we assumed that the length of path 𝑝 was shorter 
than 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤], the length of the path from 𝑠
to 𝑟 is shorter than 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 also.

• Moreover, the path from 𝑠 to 𝑟 has all its vertices except 
for 𝑟 lying in 𝑊.

• Thus we would have 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟 <
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 when 𝑤 was chosen as the next 
vertex to add to 𝑊.

• But this contradicts the choice of 𝑤 and would have meant 
that we would have chosen 𝑟 instead.

• Since we reached a contradiction, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 is 
the length of the shortest path from 𝑠 to 𝑤. 
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Proof (cont’d)

• Now we need to verify that 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 gives the shortest 
distance from 𝑠 to every vertex 𝑢 in 𝑉 −𝑊 traveling via 
intermediaries in 𝑊 after the new vertex 𝑤 has been added to 𝑊.

• Observe that when we add a new vertex 𝑤 to 𝑊, we adjust the 
shortest distances to take into account of the possibility that there 
is now a shorter path to 𝑢 going through 𝑤.

• If that path goes through the old 𝑊 to 𝑤 and then immediately to 
𝑢, its length will be compared with 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 and 
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 will be reduced if the new path is shorter.

• The only other possibility for a shorter path is shown on the next 
slide where the path travels to 𝑤, then back into the old 𝑊, to 
some member 𝑥 of the old 𝑊, then to 𝑢.
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Impossible Shortest Path
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Proof (cont’d)

• But there really cannot be such a path. Since 𝑥
was placed in 𝑊 before 𝑤, the shortest of all 
paths from the source to 𝑥 runs through the old 
𝑊 alone. Therefore, the path to 𝑥 through 𝑤
shown on the figure is no shorter than the path 
directly to 𝑥 through 𝑊. As a result, the length of 
the path from the source to 𝑤, 𝑥 and 𝑢 is no less 
from the old value of 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 . 

• Thus, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 cannot be reduced by 
the algorithm due to a path through 𝑤 and 𝑥, and 
we need not consider the length of such paths.
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Time Complexity

• If we use an adjacency matrix to represent the 
digraph, Dijkstra’s algorithm runs in 𝑶(𝒏𝟐) time 
where 𝑛 is the number of vertices of the graph.

• The initialization stage runs through 𝑛 − 1
vertices and takes time 𝑂 𝑛 .

• The while-loop runs through the 𝑛 − 1 vertices of 
𝑉 − {𝑠} one at a time, and for each such vertex, 
the selection of the new vertex at minimum 
distance, as well as the updating of the distances 
takes time proportional to the number of vertices 
in 𝑉 −𝑊. Therefore, the loop takes 𝑂(𝑛2) time.
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Time Complexity (cont’d)

• If 𝒆 is much less than 𝒏𝟐 it is better to use the 
adjacency list representation of the graph and a 
priority queue to organize the vertices in 𝑉 −𝑊.

• Then, the updating of the array 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 can be done by going down 
the adjacency list of 𝑤 and updating the 
distances in the priority queue. A total of 𝑒
updates will be made, each at cost 𝑂(log 𝑛) if the 
priority queue is implemented as a heap, so the 
total time for updates is 𝑂(𝑒 log 𝑛).
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Time Complexity (cont’d)

• The time to initialize the priority queue is 
𝑂 𝑛 .

• The time needed to select 𝑤 is 𝑂 log 𝑛 since 
it involves finding and removing the minimum 
element  in a heap.

• Thus, the total time of the algorithm is 
𝑶(𝒆 𝒍𝒐𝒈𝒏) which is considerably better than 
𝑂(𝑛2) for sparse graphs.
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The All-Pairs Shortest Path Problem

• Suppose we have a weighted digraph that gives the 
flying time on certain routes containing cities, and 
we wish to construct a table that gives the shortest 
time required to fly from any one city to any other.

• This is an instance of the all-pairs shortest path 
problem.
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The All-Pairs Shortest Path Problem 
(cont’d)

• More formally, let 𝐺 = (𝑉, 𝐸) be a weighted 
directed graph in which each edge (𝑣,𝑤) has a 
non-negative weight 𝐶[𝑣, 𝑤]. The all-pairs 
shortest path problem is to find for each pair of 
vertices 𝑣,𝑤, the shortest path from 𝑣 to 𝑤.

• We could solve this problem by running Dijkstra’s
algorithm with each vertex in turn as a source.

• We will present a more direct way of solving the 
problem due to R. W. Floyd.
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Floyd’s Algorithm

• Let us assume that vertices in 𝑉 are numbered 
with 1,2, … , 𝑛. The algorithm uses an 𝑛 × 𝑛
matrix 𝐴 in which to compute the lengths of 
the shortest paths.

• We initially set 𝐴 𝑖, 𝑗 = 𝐶[𝑖, 𝑗] for all 𝑖 ≠ 𝑗.

• If there is no edge from 𝑖 to 𝑗, we assume 
𝐶 𝑖, 𝑗 = ∞.

• Each diagonal element of 𝐴 is set to 0.
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Floyd’s Algorithm (cont’d)

• The algorithm makes 𝑛 iterations over the matrix 
𝐴.

• After the 𝒌-th iteration, 𝐴[𝑖, 𝑗] will have as value 
the smallest length of any path from vertex 𝑖 to 
vertex 𝑗 that does not pass through a vertex 
numbered higher than 𝑘.

• In the 𝑘-th iteration, we use the following 
formulas to compute 𝐴:

𝐴𝑘 𝑖, 𝑗 = 𝑚𝑖𝑛 ቊ
𝐴𝑘−1[𝑖, 𝑗]

𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗]
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The 𝑘-th Iteration Graphically
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𝐴𝑘−1[𝑖, 𝑘]
𝐴𝑘−1[𝑘, 𝑗]

𝐴𝑘−1[𝑖, 𝑗]



Floyd’s Algorithm (cont’d)

void APSP(void)

{ 

int i,j,k;

int A[MAX][MAX], C[MAX][MAX];

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

A[i][j]=C[i][j];

for (i=0; i<=MAX-1; i++)

A[i][i]=0;

for (k=0; k<=MAX-1; k++)

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

if (A[i][k]+A[k][j] < A[i][j])

A[i][j]=A[i][k]+A[k][j];

}

Data Structures and Programming 
Techniques

42



Time Complexity

• The running time of Floyd’s algorithm is 
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.
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Transitive Closure (Μεταβατική 
Κλειστότητα)

• In some problems we may be interested in 
determining only whether there exists a path 
of length one or more from vertex 𝑖 to vertex 𝑗
of directed graph 𝐺.

• The algorithm for this problem is a 
modification of Floyd’s algorithm, which 
historically predates Floyd’s algorithm, called 
Warshall’s algorithm.
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Transitive Closure (cont’d)

• Suppose our weight matrix 𝐶 is just the 
adjacency matrix of graph 𝐺. That is,  𝐶 𝑖, 𝑗 =
1 if there is an edge from 𝑖 to 𝑗, and 0 
otherwise.

• We wish to compute the matrix 𝐴 such that 
𝐴 𝑖, 𝑗 = 1 if there is a path of length one or 
more from 𝑖 to 𝑗, and 0 otherwise.

• 𝐴 is often called the transitive closure of the 
adjacency matrix.
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Transitive Closure (cont’d)

• The transitive closure can be computed using a 
procedure similar to the one we used for the all-pairs 
shortest path problem.

• We apply the following formula in the 𝑘-th pass over 
the Boolean matrix 𝐴:

𝐴𝑘 𝑖, 𝑗 = 𝐴𝑘−1 𝑖, 𝑗 𝑜𝑟 (𝐴𝑘−1 𝑖, 𝑘 𝑎𝑛𝑑 𝐴𝑘−1 𝑘, 𝑗 )

• The formula states that there is a path from 𝑖 to 𝑗 not 
passing through a vertex numbered higher than 𝑘 if
– there is already a path from 𝑖 to 𝑗 not passing through a 

vertex number higher than 𝑘 − 1 or
– there is a path from 𝑖 to 𝑘 not passing through a vertex 

numbered higher than 𝑘 − 1 and a path from 𝑘 to 𝑗 not 
passing through a vertex numbered higher than 𝑘 − 1.
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Transitive Closure (cont’d)

void TransitiveClosure(void)

{ 

int i,j,k;

int A[MAX][MAX], C[MAX][MAX];

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

A[i][j]=C[i][j];

for (k=0; k<=MAX-1; k++)

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

if (!A[i][j])

A[i][j]=A[i][k] && A[k][j];

} 
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Time Complexity

• The running time of Warshall’s algorithm is 
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.
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Readings

• T. A. Standish. Data Structures , Algorithms 
and Software Principles in C.

– Chapter 10

• A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data 
Structures and Algorithms. 

– Chapters 6 and 7
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