
Γράφοι ε
Βάρη

Weighted Graphs

• Weighted graphs are directed graphs in which
numbers called weights are attached to the
directed edges.

• Example: Let the vertices of a graph represent
cities on a map. The weight on an edge
connecting city A to city B can be the travel
distance from A to B, the cost of an airline ticket
to go from A to B, or the time required to travel
from A to B.

Data Structures and Programming
Techniques

2

Weighted Graphs (cont’d)

• To represent a weighted directed graph 𝐺, we
can use an adjacency matrix 𝑇 in which:
– 𝑇 𝑖, 𝑗 = 𝑤𝑖𝑗 if there exists an edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) of

weight 𝑤𝑖𝑗 .

– 𝑇 𝑖, 𝑖 = 0

– 𝑇 𝑖, 𝑗 = ∞ if there is no edge from 𝑣𝑖 to 𝑣𝑗 .

• We will assume that all weights 𝑤𝑖𝑗 are non-negative
numbers.

Data Structures and Programming
Techniques

3

Example Weighted Graph

Data Structures and Programming
Techniques

4

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Adjacency Matrix for the Example
Graph

1 2 3 4 5 6

1 0 3 ∞ ∞ ∞ 5

2 ∞ 0 7 ∞ ∞ 10

3 ∞ ∞ 0 5 1 ∞

4 ∞ ∞ ∞ 0 6 ∞

5 ∞ ∞ ∞ ∞ 0 7

6 ∞ ∞ 8 2 ∞ 0

Data Structures and Programming
Techniques

5

Shortest Paths (Συντομότερα
Μονοπάτια)

• The length of a path P is the sum of the
weights of the edges of P.

• A very interesting problem in a directed
weighted graph is to find the shortest path
from a vertex A to a vertex B.

Data Structures and Programming
Techniques

6

The Shortest Path from Vertex 1 to
Vertex 5

Data Structures and Programming
Techniques

7

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

The Single Source Shortest Paths
Problem

• Let 𝐺 = (𝑉, 𝐸) be a directed graph in which
each edge has a non-negative weight, and one
vertex is specified as the source (αφετηρία).

• The single source shortest paths problem (το
πρόβλημα των συντομότερων μονοπατιών
κοινής αφετηρίας) is to determine the length
of the shortest path from the source to each
vertex in 𝑉.

Data Structures and Programming
Techniques

8

Dijkstra’s Greedy Algorithm for the
Single Source Shortest Paths Problem
• Let 𝐺 = (𝑉, 𝐸) our graph.
• We start with a vertex set 𝑊 = {𝑠}

containing only the source.
• We will progressively enlarge 𝑊 by adding one

new vertex at a time, until 𝑊 includes all vertices
of 𝑉.

• The vertex we add at each stage is the vertex 𝑤 in
𝑉 −𝑊, which is at a minimum distance from the
source among all vertices in 𝑉 −𝑊 that have not
been added to 𝑊 (this is a greedy choice).

Data Structures and Programming
Techniques

9

Dijkstra’s Algorithm (cont’d)

• We keep track of the minimum distance from
the source 𝑠 at each stage by using an array
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 = Δ 𝑢 which keeps
track of the shortest distance from 𝑠 to each
vertex 𝑢 in 𝑊 and also each vertex 𝑢 in 𝑉 −𝑊
using a path 𝑝 starting at 𝑠, such that all
vertices of path 𝑝 lie in 𝑊, except the last
vertex 𝑢 which lies outside 𝑊.

Data Structures and Programming
Techniques

10

Dijkstra’s Algorithm (cont’d)

• Every time we add a new vertex to 𝑊, we
update the array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑢]. This
distance is updated in case it is bigger than the
length of the path from the source to 𝑢 going
through 𝑤 which is 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 +
𝑇[𝑤, 𝑢]. This operation is called relaxation
(χαλάρωση).

Data Structures and Programming
Techniques

11

Example Graph

Data Structures and Programming
Techniques

12

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

Data Structures and Programming
Techniques

13

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

Data Structures and Programming
Techniques

14

W=2 is chosen for the second stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

Data Structures and Programming
Techniques

15

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

Data Structures and Programming
Techniques

16

W=6 is chosen for the third stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

Data Structures and Programming
Techniques

17

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

Data Structures and Programming
Techniques

18

W=4 is chosen for the fourth stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

Data Structures and Programming
Techniques

19

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

Data Structures and Programming
Techniques

20

W=3 is chosen for the fifth stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

Data Structures and Programming
Techniques

21

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

Data Structures and Programming
Techniques

22

W=5 is chosen for the sixth stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

6 {1,2,6,4,3,5} {} 5 11 0 3 10 7 11 5

Data Structures and Programming
Techniques

23

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

// Δεδομένα
src: αρχικός κόμβος
dest: τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο v
W[v] : 1 αν ο v είναι στο σύνολο W, 0 διαφορετικά
dist[v] : ο πίνακας Δ/ShortestDistance
prev[v] : ο προηγούμενος του v στο βέλτιστο μονοπάτι

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
for each vertex v in Graph:
 dist[v] = INT_MAX // infinity
 prev[v] = NULL
 W[v] = 0

dist[src] = 0

// Κυρίως αλγόριθμος
while true:
 u = vertex with minimum dist[u], among those with W[u] = 0
 W[u] = 1
 if u == dest
 stop
 // optimal cost = dist[dest]
 // optimal path = dest<-prev[dest]<-...<-src (inverse)

 for each neighbor v of u:
 if W[v] == 1
 continue
 alt = dist[u] + weight(u,v) // cost of src->...->u->v
 if alt < dist[v]:
 dist[v] = alt
 prev[v] = u

// Δεδομένα
src: αρχικός κόμβος
dest: τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο v
W[v] : 1 αν ο v είναι στο σύνολο W, 0 διαφορετικά
dist[v] : ο πίνακας Δ/ShortestDistance
prev[v] : ο προηγούμενος του v στο βέλτιστο μονοπάτι
PQ : Pr. Queue, κάθε κόμβος v εισάγεται με priority dist[v]

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
prev[src] = NULL
dist[src] = 0
Insert(PQ, src, 0)

// Κυρίως αλγόριθμος
while PQ is not empty:
 u = Remove(PQ) // u with minimal dist[u]
 if exists(W[v])

continue
 W[u] = 1
 if u == dest
 stop // optimal cost/path same as before

 for each neighbor v of u:
 if exists(W[v])
 continue
 alt = dist[u] + weight(u,v) // cost of src->...->u->v
 if !exists(dist[v]) OR alt < dist[v]:
 dist[v] = alt

 prev[v] = u
 Insert(PQ, v, alt) // Προαιρετικά: replace

stop // PQ άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι

Δύο βασικές ιδιότητες

1. ∀ είναι το κόστος του
συντο ότερου ονοπατιού που
περνάει όνο από το

2. Για κορυφές ∈ το συντο ότερο
συνολικά ονοπάτι περνάει όνο
από το

Απόδειξη επαγωγή στο έγεθος του

Proof of Correctness

• We will first prove that when 𝑤 is selected,
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] gives us the length of
the shortest path from the source to 𝑤.

• We will also prove that, at each stage, after 𝑊
is enlarged by the addition of 𝑤 and shortest
distances updated, 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑢]
gives the distance of the shortest path from 𝑠
to every vertex 𝑢 in 𝑉 −𝑊 via intermediaries
lying wholly in 𝑊.

Data Structures and Programming
Techniques

26

Proof (cont’d)

• So first consider when we are ready to enlarge
the vertex set 𝑊 by choosing a new vertex 𝑤
to add to it.

• We will prove that 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤]
gives us the length of the shortest path from 𝑠
to 𝑤.

Data Structures and Programming
Techniques

27

Proof (cont’d)

• Let us assume that this is not the case i.e.,
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] is not the length of the shortest
path from 𝑠 to 𝑤.

• Then, there must exist some shorter path 𝑝, which
starts at 𝑠 and contains a vertex in 𝑉 −𝑊 other than
𝑤.

• We can start at the source 𝑠 and proceed along path 𝑝,
passing through vertices in 𝑊, until we come to the
first vertex 𝑟, that is not in 𝑊.

• Now notice that the length of the initial portion of the
path 𝑝 from 𝑠 to 𝑟 is shorter than the length of the
entire path 𝑝 from 𝑠 to 𝑤.

Data Structures and Programming
Techniques

28

Hypothetical Shorter Path to 𝑤

Data Structures and Programming
Techniques

29

𝑤

𝑟

𝑠

𝑊

Proof (cont’d)

• Since we assumed that the length of path 𝑝 was shorter
than 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤], the length of the path from 𝑠
to 𝑟 is shorter than 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 also.

• Moreover, the path from 𝑠 to 𝑟 has all its vertices except
for 𝑟 lying in 𝑊.

• Thus we would have 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟 <
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 when 𝑤 was chosen as the next
vertex to add to 𝑊.

• But this contradicts the choice of 𝑤 and would have meant
that we would have chosen 𝑟 instead.

• Since we reached a contradiction, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 is
the length of the shortest path from 𝑠 to 𝑤.

Data Structures and Programming
Techniques

30

Proof (cont’d)

• Now we need to verify that 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 gives the shortest
distance from 𝑠 to every vertex 𝑢 in 𝑉 −𝑊 traveling via
intermediaries in 𝑊 after the new vertex 𝑤 has been added to 𝑊.

• Observe that when we add a new vertex 𝑤 to 𝑊, we adjust the
shortest distances to take into account of the possibility that there
is now a shorter path to 𝑢 going through 𝑤.

• If that path goes through the old 𝑊 to 𝑤 and then immediately to
𝑢, its length will be compared with 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 and
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 will be reduced if the new path is shorter.

• The only other possibility for a shorter path is shown on the next
slide where the path travels to 𝑤, then back into the old 𝑊, to
some member 𝑥 of the old 𝑊, then to 𝑢.

Data Structures and Programming
Techniques

31

Impossible Shortest Path

Data Structures and Programming
Techniques

32

𝑢

𝑤

𝑠Old 𝑊

𝑥

Proof (cont’d)

• But there really cannot be such a path. Since 𝑥
was placed in 𝑊 before 𝑤, the shortest of all
paths from the source to 𝑥 runs through the old
𝑊 alone. Therefore, the path to 𝑥 through 𝑤
shown on the figure is no shorter than the path
directly to 𝑥 through 𝑊. As a result, the length of
the path from the source to 𝑤, 𝑥 and 𝑢 is no less
from the old value of 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 .

• Thus, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 cannot be reduced by
the algorithm due to a path through 𝑤 and 𝑥, and
we need not consider the length of such paths.

Data Structures and Programming
Techniques

33

Time Complexity

• If we use an adjacency matrix to represent the
digraph, Dijkstra’s algorithm runs in 𝑶(𝒏𝟐) time
where 𝑛 is the number of vertices of the graph.

• The initialization stage runs through 𝑛 − 1
vertices and takes time 𝑂 𝑛 .

• The while-loop runs through the 𝑛 − 1 vertices of
𝑉 − {𝑠} one at a time, and for each such vertex,
the selection of the new vertex at minimum
distance, as well as the updating of the distances
takes time proportional to the number of vertices
in 𝑉 −𝑊. Therefore, the loop takes 𝑂(𝑛2) time.

Data Structures and Programming
Techniques

34

Time Complexity (cont’d)

• If 𝒆 is much less than 𝒏𝟐 it is better to use the
adjacency list representation of the graph and a
priority queue to organize the vertices in 𝑉 −𝑊.

• Then, the updating of the array
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 can be done by going down
the adjacency list of 𝑤 and updating the
distances in the priority queue. A total of 𝑒
updates will be made, each at cost 𝑂(log 𝑛) if the
priority queue is implemented as a heap, so the
total time for updates is 𝑂(𝑒 log 𝑛).

Data Structures and Programming
Techniques

35

Time Complexity (cont’d)

• The time to initialize the priority queue is
𝑂 𝑛 .

• The time needed to select 𝑤 is 𝑂 log 𝑛 since
it involves finding and removing the minimum
element in a heap.

• Thus, the total time of the algorithm is
𝑶(𝒆 𝒍𝒐𝒈𝒏) which is considerably better than
𝑂(𝑛2) for sparse graphs.

Data Structures and Programming
Techniques

36

The All-Pairs Shortest Path Problem

• Suppose we have a weighted digraph that gives the
flying time on certain routes containing cities, and
we wish to construct a table that gives the shortest
time required to fly from any one city to any other.

• This is an instance of the all-pairs shortest path
problem.

Data Structures and Programming
Techniques

37

The All-Pairs Shortest Path Problem
(cont’d)

• More formally, let 𝐺 = (𝑉, 𝐸) be a weighted
directed graph in which each edge (𝑣,𝑤) has a
non-negative weight 𝐶[𝑣, 𝑤]. The all-pairs
shortest path problem is to find for each pair of
vertices 𝑣,𝑤, the shortest path from 𝑣 to 𝑤.

• We could solve this problem by running Dijkstra’s
algorithm with each vertex in turn as a source.

• We will present a more direct way of solving the
problem due to R. W. Floyd.

Data Structures and Programming
Techniques

38

Floyd’s Algorithm

• Let us assume that vertices in 𝑉 are numbered
with 1,2, … , 𝑛. The algorithm uses an 𝑛 × 𝑛
matrix 𝐴 in which to compute the lengths of
the shortest paths.

• We initially set 𝐴 𝑖, 𝑗 = 𝐶[𝑖, 𝑗] for all 𝑖 ≠ 𝑗.

• If there is no edge from 𝑖 to 𝑗, we assume
𝐶 𝑖, 𝑗 = ∞.

• Each diagonal element of 𝐴 is set to 0.

Data Structures and Programming
Techniques

39

Floyd’s Algorithm (cont’d)

• The algorithm makes 𝑛 iterations over the matrix
𝐴.

• After the 𝒌-th iteration, 𝐴[𝑖, 𝑗] will have as value
the smallest length of any path from vertex 𝑖 to
vertex 𝑗 that does not pass through a vertex
numbered higher than 𝑘.

• In the 𝑘-th iteration, we use the following
formulas to compute 𝐴:

𝐴𝑘 𝑖, 𝑗 = 𝑚𝑖𝑛 ቊ
𝐴𝑘−1[𝑖, 𝑗]

𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗]

Data Structures and Programming
Techniques

40

The 𝑘-th Iteration Graphically

Data Structures and Programming
Techniques

41

𝑘

𝑖 𝑗

𝐴𝑘−1[𝑖, 𝑘]
𝐴𝑘−1[𝑘, 𝑗]

𝐴𝑘−1[𝑖, 𝑗]

Floyd’s Algorithm (cont’d)

void APSP(void)

{

int i,j,k;

int A[MAX][MAX], C[MAX][MAX];

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

A[i][j]=C[i][j];

for (i=0; i<=MAX-1; i++)

A[i][i]=0;

for (k=0; k<=MAX-1; k++)

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

if (A[i][k]+A[k][j] < A[i][j])

A[i][j]=A[i][k]+A[k][j];

}

Data Structures and Programming
Techniques

42

Time Complexity

• The running time of Floyd’s algorithm is
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.

Data Structures and Programming
Techniques

43

Transitive Closure (Μεταβατική
Κλειστότητα)

• In some problems we may be interested in
determining only whether there exists a path
of length one or more from vertex 𝑖 to vertex 𝑗
of directed graph 𝐺.

• The algorithm for this problem is a
modification of Floyd’s algorithm, which
historically predates Floyd’s algorithm, called
Warshall’s algorithm.

Data Structures and Programming
Techniques

44

Transitive Closure (cont’d)

• Suppose our weight matrix 𝐶 is just the
adjacency matrix of graph 𝐺. That is, 𝐶 𝑖, 𝑗 =
1 if there is an edge from 𝑖 to 𝑗, and 0
otherwise.

• We wish to compute the matrix 𝐴 such that
𝐴 𝑖, 𝑗 = 1 if there is a path of length one or
more from 𝑖 to 𝑗, and 0 otherwise.

• 𝐴 is often called the transitive closure of the
adjacency matrix.

Data Structures and Programming
Techniques

45

Transitive Closure (cont’d)

• The transitive closure can be computed using a
procedure similar to the one we used for the all-pairs
shortest path problem.

• We apply the following formula in the 𝑘-th pass over
the Boolean matrix 𝐴:

𝐴𝑘 𝑖, 𝑗 = 𝐴𝑘−1 𝑖, 𝑗 𝑜𝑟 (𝐴𝑘−1 𝑖, 𝑘 𝑎𝑛𝑑 𝐴𝑘−1 𝑘, 𝑗)

• The formula states that there is a path from 𝑖 to 𝑗 not
passing through a vertex numbered higher than 𝑘 if
– there is already a path from 𝑖 to 𝑗 not passing through a

vertex number higher than 𝑘 − 1 or
– there is a path from 𝑖 to 𝑘 not passing through a vertex

numbered higher than 𝑘 − 1 and a path from 𝑘 to 𝑗 not
passing through a vertex numbered higher than 𝑘 − 1.

Data Structures and Programming
Techniques

46

Transitive Closure (cont’d)

void TransitiveClosure(void)

{

int i,j,k;

int A[MAX][MAX], C[MAX][MAX];

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

A[i][j]=C[i][j];

for (k=0; k<=MAX-1; k++)

for (i=0; i<=MAX-1; i++)

for (j=0; j<=MAX-1; j++)

if (!A[i][j])

A[i][j]=A[i][k] && A[k][j];

}

Data Structures and Programming
Techniques

47

Time Complexity

• The running time of Warshall’s algorithm is
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.

Data Structures and Programming
Techniques

48

Readings

• T. A. Standish. Data Structures , Algorithms
and Software Principles in C.

– Chapter 10

• A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data
Structures and Algorithms.

– Chapters 6 and 7

Data Structures and Programming
Techniques

49

